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Abstract—Recurrent neural networks are now the state-of-
the-art in natural language processing because they can build
rich contextual representations and process texts of arbitrary
length. However, recent developments on attention mechanisms
have equipped feedforward networks with similar capabilities,
hence enabling faster computations due to the increase in the
number of operations that can be parallelized. We explore this
new type of architecture in the domain of question-answering
and propose a novel approach that we call Fully Attention Based
Information Retriever (FABIR). We show that FABIR achieves
competitive results in the Stanford Question Answering Dataset
(SQuAD) while having fewer parameters and being faster at both
learning and inference than rival methods.

I. INTRODUCTION

Question-answering (QA) systems that can answer queries
expressed in natural language have been a perennial goal of
the artificial intelligence community. An interesting strategy
in the design of such systems is information extraction, where
the answer is sought in a set of support documents. However,
extracting information from large texts is still a challenging
task, and most state-of-the-art models restrict themselves to
single paragraphs. That is, in fact, the proposed focus of recent
open-domain QA datasets, such as SQuAD [1].

In SQuAD, each problem instance consists of a passage P
and a question Q. A QA system must then provide an answer
A by selecting a snippet from P . That format reduces the
complexity of the task and also facilitates training, as one can
learn a probability distribution over the words that compose
the passage. Since its publication in 2016, SQuAD has been
targeted by many research groups, and the proposed models
are gradually approaching (even overcoming) human-level
performances. All but a few of these models rely on Recurrent
Neural Networks (RNNs), which currently dominate the state-
of-the-art in most Natural Language Processing (NLP) tasks.
However, RNNs do have some drawbacks, of which the most
relevant to real-world applications is the high number of
sequential operations, which increases the processing time
of both learning and inference. To address these limitations,
Vaswani et al. have proposed the Transformer, a machine trans-
lation model that introduces a new deep learning architecture
solely based on “attention” mechanisms [2]. We later clarify
the meaning of attention in this context.

Inspired by the positive results of Vaswani et al. in machine
translation, we have applied a similar architecture to the
domain of question-answering, a model that we have named
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Fully Attention-Based Information Retriever (FABIR). Our
goal then was to verify how much performance we can get
exclusively from the attention mechanism, without combining
it with several other techniques. We validated our model in the
SQuAD dataset, which proved that FABIR not only achieves
competitive results (F1:77.6%, EM:67.7%) but also has fewer
parameters and is faster at both training and testing times
than competing methods. Besides the development of a new
architecture, we identify three major contributions of our work
that have made these results possible:

• Convolutional attention: a novel attention mechanism
that encodes many-to-many relationships between words,
enabling richer contextual representations.

• Reduction layer: a new layer design that fits the pipeline
proposed by Vaswani et al. [2] and compresses the input
embedding size for subsequent layers (this is especially
beneficial when employing pre-trained embeddings).

• Column-wise cross-attention: we modify the cross-
attention operation by [2] and propose a new technique
that is better suited to question-answering.

This article is organized as follows. We first introduce some
of the related work in question-answering and then present
FABIR’s architecture and its basic design choices. Subse-
quently, we report and comment our results in the SQuAD
dataset. Finally, we compare the performance of FABIR with
RNN-based models and draw some conclusions, suggesting
directions for future work.

II. RELATED WORK

The vast majority of papers that address the SQuAD dataset
have adopted RNN-based models [3]–[26]. They all follow
a similar pipeline, with pre-trained word-embeddings that
are processed by bidirectional RNNs. Question and passage
are processed independently, and their interaction is modeled
by attention mechanisms [27] to produce an answer. There
are slight differences in how each model employs attention,
but they all calculate it over the hidden states of an RNN.
Vaswani et al. were the first to apply attention directly over
the word-embeddings, and thus derived a new neural network
architecture which, without any recurrence, achieved state-of-
the-art results in machine translation [2]. In this section, we
briefly discuss both types of attention models.

A. Traditional Attention Mechanisms
In recent years, attention mechanisms have been used with

success in a variety of NLP tasks, such as machine translation
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[2], [27] and natural language inference [28], [29]. Indeed,
most models that target the SQuAD dataset use some form
of attention to model the relationship between question and
passage.

Attention can be defined as a mechanism that gives a score
↵i to a vector pi from a set P = [p1, ..., pm] with respect to
a vector qj from Q = [q1, ..., qn]. This score is a function of
both P and Q and is shown in its most general form in (1).

si,j = f(pi, qj), (1a)

↵i,j =
exp(si,j)P
n

k=1 exp(si,k)
, (1b)

where si and ↵i are scalars and f is a score function that
measures the importance of pi relative to qj . Intuitively, a
large weight ↵i means that the vector pi is somehow strongly
related to Q. In the literature, two alternatives for f have been
proposed, additive [27] and multiplicative [30] attentions:

f(pi, qj) =

(
W3g(W1pi +W2qj) (additive)

p
T

i
W1qj (multiplicative),

(2)

where W1, W2 and W3 are learnable parameters and g is
a elementwise nonlinear function. For small vectors, additive
and multiplicative attention mechanisms have been shown to
produce similar results [31].

In most models, the attention scores ↵ are used to create
a context vector c given by a weighted sum of P , which is
processed by an RNN:

c
t
=

X

i

↵i,tpi, (3a)

v
t
= RNN(v

t�1
, c

t
), (3b)

where v
t is the hidden state of the RNN at time t. Notably, in

the SQuAD dataset, P and Q are the vectorial representations
of passage and question, respectively.

B. Google’s Transformer
The Transformer is a machine translation model introduced

in [2] that achieved state-of-the-art results by combining feed-
forward neural networks with a multiplicative attention mech-
anism applied over position-encoded embedding vectors. It
defines three different matrices U,K and V that are associated
with queries, keys, and values, respectively. Every attention
operation in the Transformer is performed by multiplying these
matrices as shown in (4).

att(U,K, V ) = softmax
�
UWUKK

T
�
V WV , (4)

where WUK ,WV 2 Rdmodel⇥dmodel are weight matrices and
dmodel is the embedding size of each word. Additionally,
Vaswani et al. [2] suggest a multi-head attention, in which
U,K and V are divided into nheads heads and the attention
in the i

th head is computed as

logitsi = UWU,i(KWK,i)
T
, (5a)

atti(U,K, V ) = softmax (logitsi) VWV,i, (5b)

where WU,i,WK,i,WV,i 2 Rdmodel⇥dhead are again learnable
weight matrices and dhead is the embedding dimension of each
head. Finally, attention is computed by the concatenation of
every head attention atti, followed by an affine transformation:

att(U,K, V ) = [att1; ...; attnheads ]WO, (6)

where WO 2 Rnheads⇤dhead⇥dmodel .
If one wants to model the interdependence of words within a

single piece of text, U,K and V are all equal and consist of the
text of interest embedded in some vectorial space. This type
of attention is often called “self-attention” or “self-alignment”
[2], [21]. Conversely, if one seeks the relationship between
words from two different passages, then U represents one,
while K and V represent the other. In that case, we talk about
“cross-attention”.

C. Other RNN-free Models
We also identified another QA model [32] that is inspired by

the architecture introduced by Vaswani et al. [2]. Their model
differs from ours in that it heavily relies on convolutions (46
layers against 2 in FABIR), which approximates it to other
CNN NLP models [33], rather than purely attention based
models. Although they report high F1 and EM scores (82.7%
and 73.3%), our model is almost twice as fast in inference (259
samples/s against 440 in FABIR). Also, their model probably
has a higher number of learned parameters due to the increased
number of layers.

III. FABIR
In this section, we present FABIR’s architecture and the

main design decisions we have made to develop a lighter and
faster question-answering model. In particular, we introduce
the convolutional attention, the column-wise cross-attention,
and the reduction layer, which build on the Transformer model
[2] to enable its application to question-answering.

A. Embeddings
We model each piece of text at the level of a word, i.e.,

sentences are defined by a sequence of vectors !, each one
representing a word in a vectorial space Rdinput . Thus, we
build a new representation of question and passage to which
we will refer as ⌦Q and ⌦P , respectively.

P,Q embed���! ⌦P 2 RPlen⇥dinput ,⌦Q 2 RQlen⇥dinput , (7)

where Qlen and Plen denote the number of tokens in the
question and the passage, respectively. These embeddings are
composed by word-level and character-level representations.
The former is denoted by !w 2 R100 and was imported from
the pre-trained embeddings of GloVe “6B” [34]. The latter is
denoted by !c 2 R100 and is computed for each word as a
result of the composition of its characters. Given a word with
length l, C = [c1, c2, ..., cl], in which ci 2 R8 are learned
character embeddings, we compute !c by convolving C with
kernel H 2 R1⇥5⇥8⇥100 and applying max-over time pooling
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[35]. Finally, we squeeze !c values to [�1, 1] using a hyper-
bolic tangent activation function and pass the concatenation of
!w and tanh(!c) through a two-layer Highway-Network [36]
to obtain the final representation of a word.

! = Highway([!w; tanh (!c)]). (8)

B. Encoder
In contrast to an RNN, FABIR does not process words in

sequence, and hence needs to model the position of each word
in a sentence differently. We add positional information to each
word embedding using a trigonometric encoder as proposed in
[2]. Therefore, given a sequence of embedding vectors of even
size dmodel, the position of the i

th word is encoded in a vector
ei as follows:

ei =

2

66664

sin(i ⇤ f1)
cos(i ⇤ f1)

...

sin(i ⇤ fdmodel/2)

cos(i ⇤ fdmodel/2)

3

77775
, (9)

where fk are scalars, which were chosen according to [2].
The encoding of an embedding matrix ⌦ is represented by

E and the whole operation can be summarized as

P,Q encode���! EP 2 RPlen⇥dmodel , EQ 2 RQlen⇥dmodel , (10)

where dmodel is the size of each position encoding, which is
not necessarily equal to dinput.

The encoding E can be summed to ⌦ to include the
information of the position of each word in the text. Indeed,
in [2], the final vectorial representation of a piece of text is
defined by the sum of the embeddings ⌦ with the position
encoding E, which would require dmodel = dinput. However,
we introduce a layer that processes embeddings and encodings
separately before summing them up. Because we also use this
layer to reduce the embedding size from dinput to dmodel, we
named it “reduction layer”. The architecture of this type of
layer is addressed further on.

C. Convolutional Attention
In FABIR the attention mechanism is inspired by the Trans-

former model introduced in [2]. However, we hypothesize
the word-to-word relationship in (1a) fails to capture the
complexity of expressions involving groups of words. To
facilitate the modeling of the interdependence of surrounding
words, we redefine si,j as

si,j = f(p
i�h�1

2
, ..., p

i+h�1
2
, q

j�w�1
2

, ..., q
j+w�1

2
), (11)

where h and w are the height and width of a convolu-
tion kernel. This new type of attention, which we named
“convolutional-attention”, is entirely defined by the following
sequence of steps:

logitsi = UWU,i(KWK,i)
T
, (12a)

logitsi,padded = pad(logitsi), (12b)

logitsconv = Conv(logitspadded, H), (12c)

atthead,i = softmax(logitsconv,i)VWV,i, (12d)

attconv(U,K, V ) = [att1; ...; attnheads ]WO, (12e)

where Conv represents a single convolutional layer with a
trainable kernel H 2 Rh⇥w⇥nheads⇥nheads that has height h,
width w, and number of filters and channels both equal to
nheads. Note that in (12b) zero-padding is applied so that
logitsconv maintains the same dimension of logits.

D. Sublayers
After converting question and passage to their vectorial

representation Q and P , we apply a series of operations that
we call sublayers. In this section, we introduce each of these
operations.

1) Self-attention: Self-attention (attself ) is the mechanism
that models the interdependence between words in the same
piece of text. It has been proven to help relating distant words,
which is crucial to understand the long sentences that appear
in context paragraphs in SQuAD. In FABIR, self-attention is a
sublayer that applies such operation via convolutional attention
and is defined as

attself(P ) = attconv(P, P, P ). (13)

2) Column-wise Cross-attention: Cross-attention (attcross)
differs from other types of attention by relating two different
pieces of text. Given P and Q, cross-attention of Q over P is
defined as

attcross(P,Q) = attconv(P,Q,Q). (14)

In contrast to Vaswani et al. [2], where the softmax in (12d)
is applied in a row-wise manner, we suggest column-wise
cross-attention. More precisely, we sum over i instead of j

in (1b). Row-wise softmax is inadequate in QA because, in
practice, it computes a weighted average of the question words
for every passage word, and thus cannot model the likely
scenario in which not every word in the passage is related to
the question. In contrast, the column-wise softmax attributes
greater weights to passage words that are more closely related
to the respective question word, which seems appropriate for
the SQuAD task.

Many question-answering models employ cross-attention in
both directions: attcross(P,Q) and attcross(Q,P ) [7], [21],
[22]. However, in FABIR we have observed better results when
only the former is used.

3) Feedforward: The feedforward sublayer is solely com-
posed of a neural network with a single hidden layer, which is
applied vector-wise. Following the architecture suggested by
Vaswani et al. [2], the feedforward sublayer is implemented
in (15) with a two-layer neural network:

xi,out = ReLU (xi W1 + b1)W2 + b2, (15)

where W1 2 Rdmodel⇥dhidden , W2 2 Rdhidden⇥dmodel , b1 2
R1⇥dhidden and b2 2 R1⇥dmodel are all trainable parameters,
dhidden is the dimension of the hidden layer in (15) and
ReLU(x) = max(0, x).
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Fig. 1. On the left, a block diagram representation of FABIR, which receives as input the raw passage and question texts, P and Q. The passage and question
embedding matrices are ⌦P and ⌦Q, respectively, and they both have an embedding dimension of dinput, which is a result of the tokenization, followed
by the word/char embedding process. After the layer reduction, subsequent representations of P and Q have embedding size dmodel and already include
the encoding of word positions. Finally, ŷ1 and ŷ2 are the indices, which define the answer to the passage-question pair P and Q. On the center, a block
representation of the reduction layer, which is the third layer in FABIR’s pipeline. Finally, on the right side, it is the processing layer, which is similar to the
reduction layer except by the absence of the “matrix reduction” sublayer and the substitution of the decoupled attention by a self-attention block.
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Fig. 2. Decoupled Attention. In contrast to previous attention mechanisms,
this structure computes the embedding matrix ⌦0 2 R⌦len⇥dinput and the
encoder matrix E 2 R⌦len⇥dmodel separately. Shared weights WU and WK
and same inputs U and K allow us to compute the convolutional attention
pipeline only once until (12c), as in self-attention.

4) Normalization: This operation is also applied vector-
wise and it normalizes the embedding of each word so that its
variance and mean are reduced to 1 and 0, respectively. The
primary goal of layer normalization is to accelerate training
as shown in [37], [38].

E. Layers

A layer L is a combination of sublayers that produce a
transformation in the representation of question and passage:

P
l+1

, Q
l+1

= L(P l
, Q

l
). (16)

Typically, a layer is composed of self-attention with shared
weights applied to P and Q individually, followed by cross-
attention and feedforward sublayers. This standard layer is
called “processing layer” and is illustrated in Figure 1. Note
that, to facilitate training, every sublayer is followed by
normalization.

FABIR is formed by stacking layers on top of each other as
shown in Figure 1. Not counting the pre-processing and answer
selector layers, our best performing model was composed of
four layers, of which the last three are processing layers and
the first is a reduction layer.
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F. Reduction Layer

The SQuAD dataset is relatively small for the training of
word embeddings, and pre-trained word vectors have been
favored in the literature [21]. Nonetheless, we observed that
the new architecture introduced by Vaswani et al. [2] is more
susceptible to overfitting than RNNs when presented with large
embedding sizes. Hence, we needed a method to compress the
word representations, and thus facilitate and speed up training
by reducing the number of parameters. A straightforward
method to reduce the input embedding size is to multiply it
by a matrix with the required dimensions:

!model = WReduction!input, (17)

where !model 2 R1⇥dmodel , !input 2 R1⇥dinput are the
embedding vectors, and WReduction 2 Rdmodel⇥dinput is a
weight matrix, to which we refer as “reduction matrix”.

Although matrix reduction is quite simple, it discards in-
formation before any processing and hence might hamper
performance by preventing the network from using some rel-
evant data. To incorporate that information before discarding
it, we could add a large processing layer followed by a matrix
reduction, but our experiments have shown that this approach
does not yield positive results in FABIR. Our interpretation
of that behavior is that the position encoding is somehow
dissolved in the matrix reduction process.

A possible solution is to process embeddings of size dinput

and encodings of size dmodel independently and thus limit
the reduction operation to the embeddings. We then suggest
decoupled attention, a mechanism that allows us to apply self-
attention to embeddings and encodings separately to preserve
their different sizes, as described in Figure 2. Both operations
use the full embedding ⌦ 2 R⌦len⇥dinput , but the decoupled
attention outputs embeddings with size dinput and encodings
with final size dmodel.

After applying decoupled attention with shared weights in
P and Q, we add a full processing layer for the embeddings
⌦

0 with size dinput. That layer is equivalent to a regular
processing layer L, but it processes only ⌦

0, leaving the
encoding E untouched. Finally, we use a reduction matrix
to scale ⌦

0 down to dmodel and add the encoder matrix E of
same size, which is the output from the decoupled attention
sublayer. Figure 1 describes this whole process, which we
named “reduction layer”.

G. Answer Selection

Given that in SQuAD the answer is always contained in the
supporting paragraph P , the output of the model is merely the
indices ŷ1 and ŷ2 that represent the first and the last word of
the answer, respectively. Therefore, we can model the answer
as two probability distributions ⇡1 and ⇡2 over the passage P ,
and train the model to minimize the negative log-likelihood.
Given the true indices y1 and y2, the cost function is then
defined as follows:

J = �(y1 log(⇡1) + y2 log(⇡2)). (18)

To compute the cost function, we apply a two layered
convolutional neural network with hidden layer size 32 and
output size 2, as we need one dimension for each probability
distribution. Both convolutions have kernel size 9 and the
activation function (ReLU) is applied only after the first layer.
Subsequently, each output dimension passes through a softmax
operation to compute the probability distributions ⇡̂

y1 and
⇡̂
y2 . Finally, selecting the indices ŷ1 and ŷ2 becomes an

optimization problem:

maximize
i,j

⇡̂
y1
i

⇤ ⇡̂y2
j

subject to i  j < i+ 15,

(19)

where 15 represents the maximum allowed answer length. This
superior limit is imposed to avoid long answers, since short
answers are more frequent.

IV. EXPERIMENTAL RESULTS

We have trained our FABIR model during 54 epochs with
a batch size of 75 in a GPU NVidia Titan X with 12 GB
of RAM. We developed our model in Tensorflow [39] and
made it available at https://worksheets.codalab.org/worksheets/
0xee647ea284674396831ecb5aae9ca297/ for replicability.

We pre-processed the texts with the NLTK Tokenizer [40].
As suggested in [2], we have chosen the Adam optimizer
[41] with the same hyperparameters, except for the learning
rate, which was divided by two in our implementation. For
regularization, we applied residual and attention dropout [2]
of 0.9 in processing layers and of 0.8 in the reduction layer.
In the character-level embedding process, a dropout of 0.75
was added before the convolution. Additionally, a dropout of
0.8 was added before each convolutional layer in the answer
selector. We set processing layers dimension dmodel to 100,
the number of heads nheads in each attention sublayer to 4,
the feed-forward hidden size to 200 in processing layers and
400 in the reduction layer. Convolution kernels in attention
sublayers had spatial dimensions 1⇥ 5.

A. Architecture Evaluation

To better evaluate FABIR’s architecture, we ran controlled
tests on each of its key elements. Table I show the results of
these experiments regarding the F1 and EM scores, and the
Training Time (TT) over 18-epoch runs. This analysis confirms
the effectiveness of char-embeddings, as its addition increased
the F1 and EM scores, by 2.7% and 3.1%, respectively. Most
importantly, when the convolutional attention was replaced
by the standard attention mechanism proposed in [2], the
performance dropped by 2.4% in F1 and 2.5% in EM. That
validates the contribution of this new attention method in
building elaborate contextual representations. Moreover, the
tests also indicate that the reduction layer is capable of
producing useful word representations when compressing the
embeddings. Indeed, when we replaced that layer by a standard
feedforward layer with the same reduction ratio, there was a
drop of 2.1% and 2.5% in the F1 and EM scores, respectively.
Finally, we observed that the column-wise cross-attention
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outperforms its row-wise counterpart by 2.0% and 1.9% in F1
and EM, respectively. It confirms the intuition that applying
the softmax over the passage words is more adequate in QA.

The training times indicate that each one of the new
mechanisms introduced in FABIR incurred an increase in
the processing cost. Nonetheless, that was outweighed by the
improvement in performance, especially because FABIR is still
significantly faster than competing RNN models.

TABLE I
ARCHITECTURE VARIATIONS. F1 AND EM SCORES IN THE DEV SET.

Architecture F1(%) EM(%) TT
FABIR 75.6 65.1 2h14m
FABIR without char embedding 72.9 62.0 1h48m
FABIR without convolutional attention 73.2 62.6 1h49m
FABIR without the reduction layer 73.5 62.6 1h59m
FABIR with row-wise cross attention 73.6 63.2 2h08m
FABIR with 2 attention heads 73.8 63.2 2h12m
FABIR with linear answer selector 74.0 62.8 2h10m
FABIR with 4 layers LQ!X 75.5 64.7 2h47m
FABIR with 2 layers LQ!X 75.0 64.1 1h55m

B. FABIR vs BiDAF
This section compares our model to traditional RNN-

based question-answering models. To have a comprehensive
comparison, we took a state-of-the-art model [21] developed
in Tensorflow [39] that had its code openly available at
https://github.com/allenai/bi-att-flow. That way, we could run
our experiments with both models in the same piece of
hardware to have a fair comparison between them. In Table
II, the BiDAF scores without parentheses were achieved after
training their model for 18,000 iterations of batch size 60 in
our hardware. Conversely, values in parentheses are BiDAF’s
official scores in the SQuAD ranking [42]. Note that for both
models, we batch the examples by paragraph length to improve
computational efficiency.

TABLE II
COMPARISON BETWEEN FABIR AND BIDAF [21] MODELS.

FABIR BiDAF

# of Training Variables 1,385,198 2,695,851
Inference Sample/Second 440 78
Training Sample/Second 202 45

Training Time/Epoch 7m13s 32m30s
Training Epochs 54 12
Training Time 6h30m 6h30m

F1 in the dev set (%) 77.6 77.0 (77.3)
EM in the dev set (%) 67.6 67.3 (68.0)

Regarding EM and F1 scores, FABIR and BiDAF showed
similar performances. Their similar scores render further com-
parisons even more telling, because their differences cannot
be explained by their overall performances, but exclusively
by their architectures. Although both models required similar
training times to reach these scores, the time for training one
epoch in FABIR was more than four times shorter, which could
be useful for tackling larger data sets.

Concerning inference time, FABIR was more than five times
faster in processing the 10,570 question-passage pairs in the
development data set. FABIR’s faster inference is a substantial
advantage in large-scale applications, such as information
extraction in large corpora. Indeed, when running applications
such as search tools or user interfaces, the inference time is
critical to tackle real-world problems. Concerning the number
of training variables, FABIR has almost 50% fewer parameters
than BiDAF, which incurs two major advantages. First, its
training time is expected to be shorter, because the number of
variables to be updated in every iteration is smaller. Secondly,
it has lower memory requirements, which is attractive to
applications that dispose of low computational power.

C. FABIR and BiDAF Statistics
In this section we analyze the performance of FABIR and

BiDAF in the different types of question in SQuAD.
Figure 3 shows that shorter answers are easier for both

models: while they reach more than 75% F1 for answers that
are shorter than four words, for answers longer than ten words
these scores drop to 60.4% and 67.3% for FABIR and BiDAF,
respectively. Long answers are not only more challenging but
are also underrepresented in the dataset, which introduces a
bias towards short responses. More than 79% of the answers
in SQuAD have five words or fewer.

In contrast to what has been observed for answers, longer
questions seem not to increase the complexity of the task. In
Figure 4, the F1 scores for both models varied by less than
2.5% in the considered question length intervals.

Question type is a strong predictor of performance. Figure
5 shows that both models had their best performance with
“when” questions. Answers to these types of questions are
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Fig. 6. F1-Score against passage length for FABIR and BiDAF.

easier to infer because they are usually composed of time-
related words, such as months, years, seasons or weekdays,
which are easier to distinguish from the rest of the text.
Together with “when” questions, “how long” and “how many”
also proved easier to respond, as they possess the same
property of having a smaller universe of possible answers.
In contrast to these, “how” and “why” questions resulted in
considerably lower F1 and EM scores, as they can be answered
by any sentence, and hence require a deeper understanding
of the text. Note that “how” questions do not include “how
many”, “how much” or “how long” questions, whose answers
are more predictable.

“Other” questions include alternatives, such as “Name a
type of...” or “Does it...” or even questions with typos, such as
“Hoe was ...”, which should be “How was ...”. These questions
are more challenging because they might have multiple correct
answers and require higher levels of abstraction. For instance,
to respond to a question such as “Name an ingredient...”, the
model would need a deep understanding of the semantics of
the word “ingredients” to identify “tomatoes” or “cheese” as
possible answers. Questions which expect a “yes” or a “no” as
an answer are also difficult because it is not always possible
to find those words in a snippet from the passage.

Figure 6 shows the performance of FABIR and BiDAF
against the passage length. It is curious that shorter passages
showed the worst performance for both models. It is hard
to interpret that result as, intuitively, one would expect brief
passages to be easier to interpret. One possible explanation
is that short passages give fewer options of simple questions,
such as “when”, “who”, or “how many”, and the annotators
of the dataset had to resort to more elaborate alternatives.

TABLE III
EM AND F1 SCORES IN THE TEST SET FOR BEST PUBLISHED SINGLE

MODELS IN THE SQUAD LEADERBOARD [42]

Model EM (%) F1 (%)

Reinforced Mnemonic Reader [3] 79.545 86.654
MEMEN [4] 78.234 85.344

FRC [32] 76.240 84.599
RaSoR + TR + LM [5] 77.583 84.163

Stochastic Answer Networks [6] 76.828 84.396
r-net [7] 76.461 84.265

FusionNet [8] 75.968 83.900
DCN+ [9] 75.087 83.081

Conductor-net [10] 74.405 82.742
BiDAF + Self Attention [11] 72.139 81.048

smartnet [12] 71.415 80.160
Ruminating Reader [13] 70.639 79.456

jNet [14] 70.607 79.821
ReasoNet [15] 70.555 79.364

Document Reader [16] 70.733 79.353
RaSoR [17] 70.849 78.741

FastQAExt [18] 70.849 78.857
Multi-Perspective Matching [19] 70.387 78.784

SEDT [20] 68.163 77.527
FABIR (Ours) 67.744 77.605

BiDAF [21] 67.974 77.323
Dynamic Coattention Networks [22] 66.233 77.896
Match-LSTM with Bi-Ans-Ptr [23] 64.744 73.743

Fine-Grained Gating [24] 62.446 73.327
OTF dict+spelling [25] 64.083 73.056

Dynamic Chunk Reader [26] 62.499 70.956

V. CONCLUSION AND FUTURE WORK

The experiments validate that attention mechanisms alone
are enough to power an effective question-answering model.
Above all, FABIR proved roughly five times faster at both
training and inference than BiDAF, a competing RNN-based
model with similar performance [21]. These results strengthen
some of FABIR’s compelling advantages, notably, an architec-
ture that is both more parallelizable and lighter, with half of
the number of parameters in comparison to BiDAF [21].

FABIR also brings three significant contributions to this
new class of neural network architectures. The convolutional
attention, the reduction layer, and the column-wise cross-
attention individually increased the model’s F1 and EM scores
by more than 2%. Moreover, being thoroughly compatible
with the Transformer [2], these new mechanisms are valuable
assets to further developments in attention models. In fact, an
intriguing line for future research is to evaluate their impact
on other NLP tasks, such as machine translation or parsing.

Although FABIR is still far from surpassing the models at
the top of the SQuAD leaderboard (Table III), we believe that
its faster and lighter architecture already make it an attractive
alternative to RNN-based models, especially for applications
with limited processing power or that require low-latency.
Also, being a distinct technique, FABIR might have low
correlation with existing RNN-based models, increasing the
potential of ensemble methods. How to combine FABIR with
other systems is then an interesting topic for future research
in diverse NLP applications.
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