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Abstract. The goal of this contribution is to discuss local computa-
tion in credal networks — graphical models that can represent impre-
cise and indeterminate probability values. We analyze the inference
problem in credal networks, discuss how inference algorithms can
benefit from local computation, and suggest that local computation
can be particularly important in approximate inference algorithms.

1 INTRODUCTION

There are several graph-theoretic tools that simplify the representa-
tion of large multivariate models; Bayesian networks and Markov
fields are two examples [24]. These two graphical models display
“locality” in several dimensions: they are built from localpieces, and
they are processed by local operations. These (and other) graphical
models requirepreciseprobability assessments: the models are built
in such a way that every event is associated with a single probability
value.

A credal networkis a graphical model that relaxes the assump-
tion of uniqueness for probability values, while retainingmost of the
structure adopted in the Bayesian network formalism. A credal net-
work is composed of a directed acyclic graph, a collection ofrandom
variables, and a collection of sets of probability measures— sets of
probability measures are used to represent imprecision andindeter-
minacy in probability values. Imprecision and indeterminacy arise
because beliefs may be incomplete, vague, or there may be no re-
sources to gather/process enough information so as to reacha precise
probability assessment; it may also be the case that a group of indi-
viduals must specify probability values and these individuals cannot
agree on precise probability values. Section 2 presents a few basic
concepts on credal networks.

Given a credal network, aninferenceis a computation of a tight
lower or upper bound for some conditional probability. Unfortu-
nately, exact inference in credal networks seems to defy strictly local
approaches, as discussed in Section 3. In this contributionwe ana-
lyze the inference problem in credal networks and discuss how the
problem can benefit from local computations. We suggest thatthe
main use of local information is in producing efficient approxima-
tion schemes — noting that approximate inference methods can be
very useful elements of exact inference algorithms. In Section 4 we
discuss the A/R++ and the MLI algorithms, two complementaryand
quite successful algorithms for approximate inference in credal net-
works.

2 CREDAL NETWORKS AND INFERENCES

Consider a few preliminary definitions. A set of probabilitymea-
sures is called acredal set[23]. A credal set defined by proba-1 Escola Politécnica, Univ. de São Paulo, São Paulo, SP, Brazil. Email: fg-
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bility distributions p(X) is denoted byK(X). A joint credal setK(X) contains joint probability measures for variablesX. Given
a credal setK(X) and an eventA, theupperandlowerprobabilities
of A are defined respectively asP(A) = supp(X)2K(X) P(A) andP(A) = infp(X)2K(X) P(A). The most commonly adopted scheme
for conditioning in credal sets is elementwise Bayes rule (that is,
conditioning is obtained by applying Bayes rule to each element
of a credal set). Such an intuitive prescription, called thegeneral-
ized Bayes ruleby Walley [27, 28], can be justified axiomatically
in various ways [19, 20, 27]. A collection of conditional credal setsK(XjY = y) is separately specifiedwhen the setsK(XjY = y1)
andK(XjY = y2) are unrelated fory1 6= y2 [14].

There are several concepts of independence that can be used when
one deals with credal sets [10, 17, 27]. In this paper we adoptthe
concept ofstrong independence: VariablesX and Y are strongly
independentwhen every extreme point of the underlying credal
setK(X;Y ) satisfies standard stochastic independence ofX andY . Similarly, X andY are strongly independent conditional onZ
when every extreme point ofK(X; Y jZ = z) satisfies conditional
stochastic independence for all values ofZ.

We can now present an appropriate definition for credal networks.
We must have a directed acyclic graph, a set of random variables (one
per node), and a Markov property on the graph: Every variableX is
stronglyindependent of its nondescendants nonparents given its par-
ents. Typically each variable is associated with a “local” collection
of credal sets, indicated byK(Xjpa(X)) (wherepa(X) denotes the
nodes that are parents ofX in the graph). HereK(Xjpa(X)) de-
notes a collection of credal sets, one for each value ofpa(X). Usu-
ally these credal sets are separately specified [18, 14, 26].

Given a credal network, we consider the largest set of joint distri-
butions that satisfy the Markov extension (for strong independence),
called thestrong extension[13]. The strong extension of a network
is the convex hull of all joint distributions that satisfy the Markov
property with respect to standard stochastic independence[13]. That
is, given a credal network with local separately specified credal setsK(Xijpa(Xi)), the strong extension of the network is the convex
hull of the set(Yi p(Xijpa(Xi)) :p(Xijpa(Xi)=�k)2K(Xijpa(Xi)=�k)) :

(1)
Strong extensions were already implicit in the first proposals for
credal networks [7, 26] and have received considerable attention
[1, 8, 11, 18, 29]. There are other types of extension in the litera-
ture [12], but they seem to be less amenable to local computation
and are not further discussed in this paper.

An inferencein a credal network is the computation of lower/upper
probabilities in an extension of the network. IfXq is aqueryvariable
andXE represents a set ofobservedvariables, then an inference is



the computation of tight bounds forp(Xq jXE) for one or more val-
ues ofXq . Consider the computation of a lower probability:p(Xq jXE) = maxPX1;:::;XnnXq;XE p(Xijpa(Xi))PX1;:::;XnnXE p(Xijpa(Xi)) ; (2)

subject top(Xijpa(Xi)) 2 K(Xijpa(Xi)) :
For inferences with strong extensions, it is known that the distribu-
tions that minimize/maximizep(Xq jXE) belong to the set of ver-
tices of the extension [18].

The only credal networks that are amenable to efficient exactin-
ferences are polytree-shaped networks with binary variables [18].
Other types of networks, even polytree-shaped ones, face tremen-
dous computational challenges [14]. Exact inference algorithms typ-
ically examine potential vertices of the strong extension to produce
the required lower/upper values [2, 8, 12, 14, 15]. Approximate in-
ference algorithms can produce eitherouteror innerapproximations:
the former produce intervals that enclose the correct probability in-
terval between lower and upper probabilities [6, 21, 16, 26], while
the latter produce intervals that are enclosed by the correct proba-
bility interval [1, 3, 2, 11]. Rather detailed overviews of inference
algorithms for imprecise probabilities have been published by Cano
and Moral [4, 5].

3 “LOCALITY” IN CREDAL NETWORKS

A credal network is clearly defined by “local” pieces of informa-
tion, represented by the various local credal setsK(Xjpa(X)). We
should expect that this modular structure would lead naturally to
local computation in inference algorithms, much like inference in
Bayesian networks. However, the picture is a little more complicated.

The only exact inference algorithm that is solely based on lo-
cal computation is the 2U algorithm [18]. This algorithm deals
with binary variables in polytree-shaped credal networks;its se-
quence of operations closely resembles Pearl’s propagation scheme
for Bayesian networks [24]. As in Pearl’s propagation, the 2U algo-
rithm prescribes the exchange ofmessagesbetween variables. The
2U algorithm usesinterval-valuedmessages to generate inferences.
The algorithm makes critical use of the fact that a single probability
interval can define any credal set for abinary variable.

Several other exact inference algorithms for strong extensions try
to capture global information through local messages, withvarying
degrees of success. There are several schemes that mimic themes-
sages in Bayesian network inference [8, 12, 14], but there isan im-
portant difference:� Inference in Bayesian networks requires the computation oflocal

real-valued messages that summarize probabilities in certain sub-
networks. Thus a message carries local information that represents
a possibly large portion of a network.� In a strong extension, local messages are not just functions; mes-
sages aresetsof functions. These sets of functions also summarize
the credal sets in certain sub-networks. The difficulty is that a local
set of functions may itself be an exceedingly complex object; in
fact, a set may be as complex as the sub-network it is representing!

Thus one faces the embarassing fact that a “local” message ina credal
network can be literally as rich and complex as the whole “global”
content that the message is transmitting.

To emphasize the point discussed in the previous paragraph,con-
sider the network in Figure 1. This is a very simple polytree-shaped
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Figure 1. Example network.

network; suppose all variables are categorical, with four categories
each. Suppose we have a number of separately specified credalsets
for this network: credal setsK(F ), K(B), K(Ljf) for each cate-
gory ofF , K(Djf; b) for each category of(F;B), andK(Hjd) for
each category ofD. Finally, suppose that each one of these credal
sets has exactly 3 vertices. Note that there are possibly326 different
products

Qi p(Xijpa(Xi)) defined by Expression (1). Depending
on the characteristics of the local credal sets, all of these326 prod-
ucts may be vertices of the strong extension. Suppose now that H is
observed and we are interested in the lower/upper probability for L
conditional onH. Were this network a Bayesian network, the prob-
ability p(LjH) would be produced simply by combining the local
information onL, p(LjF ), with the local message sent byF to L,p(F jH). With a credal network, we have to combine the local in-
formation onL, K(LjF ), with the local message sent byF to L,K(F jH). The difficulty is that this local message is a set that can
have up to322 vertices. Nothing is really gained, in terms of compu-
tational complexity, by the “locality” of the messageK(F jH).

It could be possible to reduce the complexity of set-valued mes-
sages in inference using redundancy elimination algorithms; that is,
a message could be pre-processed before it is sent, so that its non-
extreme elements are eliminated [5]. Such a strategy would conceiv-
ably lead to “local” messages that are actually less complexthan the
objects they represent. However, there is a non-negligiblecost in-
curred by redundancy elimination algorithms, and there areno guar-
antees that the complexity reduction produced by such algorithms is
significant at all — in fact existing empirical results suggest that it is
not [14].

The difficulty in the way of local computation is that inference in
strong extensions is essentially a global optimization problem. Con-
sider the computation of a lower probability for variableXq condi-
tional onXE; that is, consider Expression (2). This is a non-linear
optimization problem, and no set of truly local messages seems to
capture the complexity of the problem.3

It seems difficult to construct a truly local computation scheme
that finds solutions for Expression (2). Even though the constraints
in Expression (2) are linear and “local” with respect to the variables
in the network, the objective function defined by Expression(2) is
not “local” as it contains terms from all credal sets. However, we can
still explore “locality” in Expression (2). The first attempt to do so
has apparently been proposed by Andersen and Hooker [1]; recently3 We use the term “truly local” to indicate methods that perform computation

using local messages that are in fact of lower complexity than the sub-
networks they are intended to summarize.



an alternative proposal has been derived by Campos and Cozman
[9]. The idea of Campos and Cozman’s method is to write Expres-
sion (2) as a sequence of smaller, “local” expressions, using artificial
variables when necessary. To illustrate this idea, consider a simple
networkA ! B ! C ! D ! E. Assume all variables in the net-
work are ternary. Computation of the upper probability forfE = e0g
using Expression (2) leads tomax Xh;i;j;k p(e0jdh) p(dhji) p(ijbj) p(bj jak) p(ak) ;
a multilinear function with 81 nonlinear terms of degree four. We
can transform this expression by introducing new variablesso as
to keep the degree at most 2. We obtain just 30 nonlinear termsinmaxPi p(e0jdi) p(di) subject top(dk) = Xj p(dkjj) p(j) ;p(k) = Xj p(kjbj) p(bj) ;p(bk) = Xj p(bkjaj) p(aj)
(for k = 0; 1; 2), plus the linear constraints. Note that these terms
keep some of the “local” structure in the network. The resulting
multilinear programming techniques is then solved using appropriate
techniques; the most promising exact inference algorithm for credal
networks is currently based on this idea [9]. Given the “global” char-
acter of the multilinear program, we do not dwell on it here. However
there is an important point we want to make. When solving any mul-
tilinear program, particularly a large multilinear program, the exis-
tence of approximate solutions is critical [9]. Because themultilinear
program has a structure that mirrors the structure of the underlying
credal network, we can use approximate inference algorithms on the
network as intermediate solutions inside the multilinear program [9].
This is precisely the advantage of using local structure to formulate
the multilinear program.

Given the difficulties of local computation methods in exactin-
ference, and the importance of approximate inference, we might ask
whether local computation is a viable idea for approximate inference.
Here the answer is clearly positive: not only there are many algo-
rithms for approximate inference based on local computation, but it
seems that the potential for further developments is large.In the next
section we discuss two recent, and quite successful, algorithms for
approximate inference based on local computation.

4 THE A/R++ AND MLI ALGORITHMS

Tessem’s A/R algorithm seems to be the first local computation
scheme for polytree-shaped credal networks: the algorithmessen-
tially follows Pearl’s propagation, but approximates eachset-valued
message with interval probabilities [26]. The A/R algorithm was later
extended to general multiply connected networks, using thesame
types of approximations [21]. Another extension of the A/R algo-
rithm was proposed by Rocha and Cozman [14], where the local
approximations are still intervals but the combination of intervals is
performed with higher precision operations. A different local approx-
imation method is to use probability trees to represent local messages
at different levels of granularity, as done by Cano and Moral[6]. All
such methods produce outer approximations.

The central ideas in the A/R algorithm (and its extensions byHa
et al [21] and by Rocha et al [14]) can be cast as follows. Consider

a network, a query variableXq and evidenceXE . We can produce
lower/upper probabilities forXq conditional onXE by creating an
elimination order, and by eliminating through summation one vari-
able at a time, exceptXq [12]. This is essentially the variable elimi-
nation algorithm applied to credal networks; as discussed in Section
3, here we must deal with sets of functions instead of single func-
tions. The intermediate sets of functions generated by the method
can be quite complex; the idea of the A/R algorithm algorihm is to
approximate any set of functions by a single interval-valued func-
tion. This general idea is particularly elegant when the network is
polytree-shaped, because then the elimination order can bereplaced
by Pearl’s propagation scheme. The intermediate functions(themes-
sages) generated in Pearl’s propagation scheme are then replacedby
interval-valued messages. Take for instance a nodeX and consider
thatX must send a message�X(Y ) to its parentY , by combining
messages received fromX ’s other parents and children (here we fol-
low the terminology and notation in Pearl’s propagation algorithm).
The A/R algorithm sends upper and lower bounds for�X(Y ).

The interval-valued functions that are used by the A/R algorithm
(and variants) can beeasily produced by multilinear programming
— they are actually local versions of Expression (2)! Thus weobtain
the following algorithm, which we callA/R++: eliminate variables
in a credal network, but approximate the intermediate sets of func-
tions by interval-valued functions, and compute these interval-valued
functions using local multilinear programs. Here the “local” compu-
tation generates an approximation, not an exact result.

We have conducted experiments on five sets of networks, to il-
lustrate the behaviour of inference with A/R++. Results areshown in
Table 1. Each test set was composed of 10 randomly generated multi-
connected credal networks (generated with BNGenerator [22]). Ex-
periments refer to computation of upper probabilities without evi-
dence; results refer to the most challenging inferences in each net-
work. Table 1 indicates the topology of the test networks. Experi-
ments were performed in a Pentium IV 1.7GHz, using Sherali and
Tuncbilek’s Reformulation-Linearization algorithm for multilinear
programming, and CPLEX as linear solver. Further details can be
found elsewhere [9].

Network Type of # variables # vertices A/R++
topology variables per credal set error

dense binary 10 2 2:8684%
Alarm binary 37 2 5:5706%
dense ternary 10 3 10:4304%
Alarm ternary 37 3 22:3293%
dense quaternary 10 4 13:4146%

Table 1. Test sets (each with 10 networks) with average errors during
inference.

There are several methods based on local computation for inner
approximations. An inner approximation forp(Xq jXE) can be gen-
erated by any method that looks for a local maxima ofp(Xq jXE)
subject to constraints imposed by local credal setsK(Xijpa(Xi)).
Methods based on gradient descent, simulated annealing andgenetic
programming pursue this idea [1, 2, 3, 11, 29].

A particularly successful scheme is the MLI algorithm presented
by Rocha et al [16]. The MLI algorithm tries to use the fact that the
non-linear problem (2) has linear constraints that are “local” to their
associated credal sets. The algorithm fixes a vertex for every credal
set except one, and checks which vertex of the remaining credal set
minimizes/maximizesp(Xq jXE) (given that all the others are fixed).



The algorithm then retains the minimizing/maximizing vertex, and
then move to the next credal set. Now all the vertices are fixed, ex-
cept for this next credal set,using the minimizing/maximizingvertex
obtained in the previous step. The algorithm keeps repeating these
steps, going over and over all the local credal sets in the credal net-
work. The process is surely to stop: every step increases theobjective
function, and there is only a finite number of possible moves (given
that variables are discrete and local credal sets have finitely many
vertices). Implementation details can be found in [16].

The MLI algorithm typically produces very accurate approxima-
tions. We have run it in a large number of medium-sized networks,
and verified that in most cases it finds the exact answer, and always
finds a very accurate approximation.

5 CONCLUSION

We have tried to provide a brief but coherent commentary of local
computation in credal networks. These graphical models areinter-
esting tools for representation of several forms of uncertainty, and
they have a modular (and therefore “local”) structure. In short, lo-
cal computation is quite important in approximate algorithms, and
less directly applicable in exact algorithms. We should stress that
any approximate inference algorithm can be used inside other exact
inference algorithms: As the exact solution of Expression (2) usu-
ally employs branch-and-bound (or similar) techniques, any guid-
ing approximation can speed up exact inference in very significant
ways [9].

It seems that several local computation techniques could beap-
plied to approximate inference in the near future, with a potential for
excellent results. The use of local computation in exact inference is
also promising but remains a challenge for the most part.
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