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Abstract. This papers investigates the manipulation of statements of strong in-
dependence in probabilistic logic. Inference methods based on polynomial pro-
gramming are presented for strong independence, both for unconditional and con-
ditional cases. We also consider graph-theoretic representations, where each node
in a graph is associated with a Boolean variable and edges carry a Markov condi-
tion. The resulting model generalizes Bayesian networks, allowing probabilistic
assessments and logical constraints to be mixed.

1 Introduction

Probabilistic logic offers a unifying language for a vast portion of human and computa-
tional discourse, as it merges logical and probabilistic sentences into a uniform scheme.
However, probabilistic logic faces two difficulties: inferential vacuousness and compu-
tational complexity.

A simple example of inferential vacuousness is as follows. Suppose events A and B
have no logical relation and P(A) = p, P(B) = ¢, with p, ¢ > 0. Then the probability
of P(A N B) is completely vacuous: P(A A B) can be in the whole interval [0, 1]. In this
simple example it is obvious that a judgement of independence would greatly change
matters: if the events A and B are considered independent, then P(AA B) = pq. In fact,
judgements of independence are used in large multivariate models, such as Bayesian
networks, to create complex distributions out of few probability assessments.

The goal of this paper is to pursue a language that retains both the freedom of
probabilistic logic and the power of independence relations. In short, the thesis explored
in this paper is that independence relations should be part of the vocabulary of general
probabilistic logic and probabilistic logic programming. The adopted language is the
propositional part of Halpern’s first order probabilistic logic [1, 2], plus a few predicates
that are needed to deal with independence. The contribution is to propose concrete
algorithms that can handle this extended vocabulary.

As for computational complexity, probabilistic logic without independence rela-
tions is already quite hard. Independence relations cannot per si reduce this complexity;
however, independence relations may allow us to build compact and modular knowl-
edge bases, hopefully suggesting simplifications and approximations that are not avail-
able in independence-free probabilistic logic. This paper explores graph-theoretic rep-
resentations for large multivariate models, aiming at a language that can expose such
modularity in practice.



Section 2 presents a few relevant facts about probabilistic logic. Section 3 treats the
inference problem with strong independence judgements and unstructured sentences,
while Section 4 defines a graph-theoretic representation for probabilistic and logical
assessments and presents an inference algorithm. Section 5 concludes the paper.

2 Probabilistic Logic

In this paragraph we fix basic notation; there are detailed treatments of propositional and
first order logic in the literature [3]. We use a set of propositions A = {A;}?_,, taken
as facts, situations, or events. An atomic formula consists of a proposition. A formula
consists either of an atomic formula or of a combination of other formulas through log-
ical connectives: negation (—), disjunction (V) and conjunction (A). Connectives have
the usual semantics defined by truth tables. A literal is a formula consisting either of
a proposition or a negated proposition. A truth assignment to a set of propositions is a
vector assigning either value true or value false to each proposition (and each propo-
sition can take only one of these values). These assignments are often called possible
worlds. For n propositions, there are 2" truth assignments; if a formula ¢ is true for
some truth assignment w, then ¢ is satisfied by w.

The probabilistic satisfiability problem is this: given a set of propositions A, a set of
formulas {¢;}7%, over A, and a set of assessments p; in the real interval [0, 1], such that
each p; is associated with a formula ¢;, is there a probability distribution P such that
P(¢;) = p; for all p; [4,5]? Here P(¢;) is taken as the measure of the set of possible
worlds where ¢; is true. A related problem is to determine the probability P(¢*) for a
formula ¢* given a set of formulas and assessments. This is often called a probabilistic
inference for P(¢*).

Probabilistic satisfiability has old roots and has been rediscovered a few times.
Boole tried already to combine probability and logic [6]; Boole’s efforts were then
generalized by Hailperin [7], and later proposed in the artificial intelligence literature
by Nilsson [8]. Linear programming is the main tool for satisfiability and inference,
and it can handle assessments of conditional probability, inference of conditional prob-
ability, and assessments in the form of probability intervals. An excellent historical and
technical review is given by Hansen and Jaumard [5].

A different trail to probabilistic satisfiability started with de Finetti, who began
a comprehensive program to place logical and probabilistic statements into a single
coherency-based framework [9]. Linear programming is again the main inference tool
[10], but the coherency-based approach is distinguished by its ability to handle condi-
tioning on propositions of zero probability [11] — in this paper we assume that every
conditioning event has positive probability. The relationship between probabilistic sat-
isfiability and the coherency-based framework has been explored recently [12].

A few authors have considered stochastic independence* in probabilistic satisfiabil-
ity [13, 5]. No systematic implementation of proposed algorithms has been discussed in
the literature. The study of independence in the context of coherency-based reasoning,
where zero probabilities are dealt with explicitly, started recently with the seminal work

* Events C and D are stochastically independent if P(C|D) = P(C) and P(D|C) = P(D).



of Coletti and Scozzafava [14], and is explored in depth in the work of Vantaggi [15].
Specialized algorithms for small problems have been proposed in this latter work.

Two further notable generalizations of probabilistic satisfiability have appeared in
the artificial intelligence literature: constructs from first order logic have been incor-
porated [1], and declarative programs have adopted techniques from probabilistic sat-
isfiability [16, 17]. A rather elegant formulation of probabilistic logic programming is
given by Lukasiewicz, where a rule is expressed as (¢|¢)[l, u], meaning “the proba-
bility of ¢ conditional on ¢ is in the interval [I, u]” [18]. We adopt this notation in this
paper, specialized for propositional formulae. More general first order probabilistic log-
ics have appeared in the work of Bacchus [19] and Halpern [1, 2]. These logics define
model-based semantics for general formulae; in this paper we only use their proposi-
tional parts plus predicates that indicate independence (say an independent predicate)
and that indicate graph-theoretic constructs (such as parentOf).

3 Inferences with Unstructured Sentences

Consider m assessments (¢;|¢;)[li, u;] defined on n Boolean variables X7, ..., X,,.
We use zx to indicate that variable X is true, and use T to indicate that variable X is
false. There are 2" possible worlds (each formula ¢;, @, is true or false in each world)
and world wy, is associated with probability pj. Denote by V[¢] the vector with 2™
elements where the kth element is 1 if ¢ is true in wy and 0 otherwise, and denote by p
the vector containing all pi. Under the assumption of positivity for conditioning events
mentioned previously, any conditional assessment can be written as constraints such as
(Vigs Aps] = LiV[pi]) - p > 0.

The inference problem is to compute the lower and upper probabilities for a formula
¢* conditional on a formula *:

min /max (V[¢" A "] - p) / (VI¢'] - P), (1)

subjectto >, pr = 1, p > 0 forall k, (Vg A ;] —;V][ps]) - p > 0and (V[p; A
il —uw;V]pi]) -p <0, forall i = 1,..., m. The Charnes-Cooper transformation can
reduce this optimization problem to the linear program miny, / maxy, (V[¢* A ¢*] - p),
subject to V[p*] - p = 1, pr, > 0 for all k, (V[p; A 3] — L;V[ei]) - p > 0 and
(Viping:]—u;V]ei])-p < 0,foralli = 1,. .., m. The Charnes-Cooper transformation
is well-known in probabilistic logic [5] and statistics [20].

Note that probabilistic logic is essentially concerned with sets of probability mea-
sures — sets induced by linear and fractional equality and inequality constraints. To
this model we will include independence judgements. There are several concepts of
independence that can be used when one deals with sets of probabilities [21-23]. We
adopt the most commonly used concept of strong independence: formulas 6 and 1 are
strongly independent conditional on ) when

(V[ondnn]-p) (Vinl-p) = (VIAn]-p) (V[IAn]-p). 2)

Suppose now that s statements of the form SIN (6;,1;|n;) are present in the knowl-
edge base, indicating that §; and 9); are strongly independent given ;. Each one of



these independent statements implies a non-linear expression (2), given the positivity
assumption and the fact that multilinear programs have global optima in the boundary of
the feasible region [24]. Thus s polynomial equalities of the form (2) must be added to
problem (1). We can avoid the fractional term in the objective function without chang-
ing the basic properties of the problem:

Theorem 1 Problem (1) with additional constraints (2) is equivalent to
min / max (V[¢" A ¢*] - '), A3)
p’ p’

subject to constraints (2), V[o*]-p’ = 1, pr, > Oforallk, (V[diApi]—1L:V[pi]) p' >0
and (Vo AN oi] —w;Vips]) - p' <0, foralli=1,...,m.

*

Proof. Introduce a new variable ¢ such that t=! = (V[p*] - p). Consider a new vector
p’ = pt. The objective function becomes (V[p* A ©*] - (p'/t)) t = (V[¢* A ¢*] - D).
The constraint ¢t =1 = (V[p*] - p’/t) becomes V[p*] - p’ = 1. As for the strong inde-
pendence constraints, note that constraints (2) remain the same (but over p’ instead of
p). The same applies to the remaining linear constraints. O

Unlike geometric programming problems, constraints (2) lead to nonconvex primal
and dual programs. Existing solution methods produce sequences of sub-problems that
eventually contain only the global optimum, using either branch-and-bound or cutting-
plane techniques [25-29]. The algorithms of Maranas and Floudas [27], and Gochet
and Smeers [25] produce convex nonlinear sub-problems, while Sherali and Adams’
algorithm produces linear sub-problems [28].

The characteristics of Sherali and Adams’ branch-and-bound algorithm make it par-
ticularly suitable for probabilistic logic. As the sub-problems generated by this method
are linear programs, column generation techniques can be applied to them — and col-
umn generation techniques are necessary to handle large scale problems [5]. The idea
of Sherali and Adams’ algorithm is to replace products of variables by new “artificial”
variables, and to solve the resulting linear problem. The algorithm iterates by branching
over the range of variables whenever necessary, until each artificial variable is close
enough to its corresponding product.

The probabilistic satisfiability problem is NP-Complete [4]. The inclusion of inde-
pendence statements SIN (6, ¥|n) makes it harder:

Theorem 2 Problem (1) with additional constraints (2) is NPYY -Hard.

Proof. We can reduce a binary credal network belief updating problem [30] to this prob-
lem, naming each node of the network as a formula ¢;, specifying each local probability
constraint of the network P(¢;|pa(¢;)) as a probabilistic logic constraint and inserting
(a polynomial number of) independence statements SIN (¢;, ¢;|Px) between any two
nodes ¢; and ¢; that are separated by ¢, in the network. As the binary credal network
belief updating problem is NPPP-Complete, this theorem follows. O

4 Graph-theoretic representations: PPL networks

The flexibility of propositional probabilistic logic with independence is attractive but
comes at a price in computational complexity. Besides, a language that is too general



and unstructured may overwhelm users with too many possible options. In this section
we explore situations where assessments and judgements in probabilistic logic can be
compactly organized using graphs — following the practical success of several statisti-
cal models based on graphs, such as Bayesian and Markov networks [31].

In Bayesian networks and their many variants, the underlying graphs serve simulta-
neously as an encoding for independence relations and for assessments. In the context
of probabilistic logic it seems reasonable to aim at representations that can accommo-
date both probabilistic and purely logical assessments. As logical constraints have not
“direction,” we consider graphs G where each node is associated with a proposition, and
containing directed and undirected edges. The undirected edges are clearly intended to
represent logical constraints, as in constraint and mixed networks [32].

Our requirement about the graph G is that it is a chain graph; that is, it does not have
any directed cycles [33]. The semantics of the graph is given by the following Markov
condition over all subsets A, B and S of nodes of G [33, p. 76]: If S separates A and
B in the smallest ancestral set containing A U B U S, then A and B are independent
conditional on S. This condition is equivalent to various other “local” properties when
probability values are all nonzero, an assumption we cannot make in the presence of
logical constraints. We will always assume that conditional probabilities are computed
for conditioning events that have positive probability. The assumption of acyclicity and
the Markov condition are consistent with the representation of logical constraints by
undirected edges. For ease of exposition, we also assume that logical constraints contain
only two propositions each.

We call the resulting structures binary PPL networks. A similar scheme of assess-
ments has been considered previously by Campos and Cozman [34], where a directed
acyclic graph is associated with propositions and arbitrary assessments over logical for-
mulas. Their resulting model is not as convenient as the one developed in this paper; it
is a bit restrictive in its reliance on directed acyclic graphs, and it is too liberal in the
assessments it accepts, leading to computational difficulties.

There are several algorithms that compute probabilities in standard, probabilistic
chain graphs [33]. Algorithms developed for Bayesian networks can be easily adapted
to chain graphs, and there is an extensive literature on the former. A particularly sim-
ple algorithm is variable elimination [35,36]. The purpose of variable elimination is to
efficiently compute an expression such as )y [[, P(X;|pa(X;)), where X is a set of
random variables X;. In fact variable elimination can be directly applied to inference
in chain graphs, where each term in the inner product may be a probability distribu-
tion or simply an unnormalized potential. The variable elimination algorithm has been
recently employed to conduct inferences in credal networks; that is, graph-theoretical
structures that are similar to Bayesian networks but where a random variable X; may
be associated to a set of probability distributions K (X;|pa(X;)) [37,38]. The idea is to
first run variable elimination “symbolically” and store the intermediate expressions in
the sum/product. These expressions form a multilinear program that is then solved.

The same idea can be applied to our current setting, where one may wish to com-
pute lower and upper conditional probabilities. This result is reached by an algorithm
of two stages. In the first stage, the PPL network is transformed in a Boolean credal net-
work that encodes the dependence structure of the original model. In the second stage a



modified version of Campos and Cozman algorithm [37] is used to compute the desired
interval.

A few definitions are useful in the remainder of the paper. A Boolean credal net-
work is a triple (G, X, K) where G is a directed acyclic graph with each node associated
to a Boolean random variable of X and K is a collection of credal sets. Arcs repre-
sent direct dependencies between variables in X and nodes are associated with locally
specified credal sets K (X;|pa(X;)) [39]. We assume that this structure satisfies the fol-
lowing Markov condition: every variable is strongly independent of its nondescendants
nonparents given its parents. Given a credal network, an event of interest { X, = ¢} and
a set of evidences [, the belief updating procedure aims at computing the limits of a
interval for (X, = i|E). These limits are called the lower and upper probabilities of
{X, = i} given E. Currently, there are several algorithms for computing these val-
ues exactly [40,37], although the time complexity of the problem has motivated the
utilization of approximate algorithms [41-43]. Now, a binary constraint network [44]
is a triple (H, X, C) where H is an undirected graph and C is denotes a set of binary
constraints on pairs of Boolean variables in X. Each binary constraint C' in C is asso-
ciated with an edge of H. The usual constraint satisfaction problem is to determine a
instantiation of the variables in X that is consistent with all constraints [45].

A binary PPL network is a mixture of both credal and constraint networks.

Definition 1 Let X be a set of propositional variables and C a set of binary logical
constraints on variables in X. A binary PPL network is a quadruple (M, X, K, C),
where M is a chain graph with arcs encoding conditional probabilities (through local
credal sets) and edges encoding binary logical constraints between its variables; that
is, each node X; is associated to a collection of local credal sets K (X;|pa(X;)) € K
and each undirected edge E = (X;, X;) is associated with a binary logical constraint
C of C with probability of being true defined by a credal set.

The Figure 1 illustrates the structure of a PPL network. Nodes represent proposi-
tional variables and arcs denote direct conditional dependency.

()

Fig. 1. Example of a binary PPL network.

We describe here the two stage procedure for belief updating in binary PPL net-
works. Suppose that the network of Figure 1 has the following probability distribu-
tions associated to it: P(z1) = 0.4; PT1) = 0.6; Pas|zy) = 0.3; P@3|z1) =
0.7, P(z2|Z7) = 0.5; P(T3|71) = 0.5; Plzy|zs) = 0.2; P(Tg|xs) = 0.8; Plag|Z3) =
0.6; P(T4|T3) = 0.4. Suppose also that it was not possible to produce a Bayesian net-
work because the knowledge engineer could not elicit P(X3|X3) or P(X3|X3); how-
ever suppose it was possible to estimate an interval to P(X3) represented by the con-
straint 0.3 < P(X3 = x3) < 0.6. We will write P(x3) instead of (X3 = x3) where



possible. Additionally, suppose that external data allowed to state that P(¢) is equal to
or greater than 0.252, where ¢ = (x2 A x3). This constraint is associated to the edge
that connects X» and X3 and is not part of a usual credal network.

Now assume we need to compute the maximum possible value of P(z4|z1). In the
first stage, we transform the binary PPL network into an auxiliary credal network that
has the same nodes and directed arcs as the original network, but each undirected edge
(X;, X;) is replaced by a new artificial node Y, child of X; and X;. The local credal
sets K (Y| X;, X;) are defined through the original credal sets associated to the logical
constraint. Figure 2 shows this auxiliary network. C' is the artificial node.

Fig. 2. The auxiliary credal network.

In the second stage, a modified version of the multilinear programming algorithm
proposed by Campos and Cozman [37] for inference in credal networks is executed.
The multilinear programming problem becomes min / max P(x4|z1), subject to

Pz, 1) = Pwa|21)(PA2a, 21) + T4, 21)) and
P(X4,21) = Pley, X4, 1) + P(er, Xy, 1), where Xy € {24, T4},
P(C1, Xy, 1) = A(Ch, 21 |v3) A Xa|2s) Pas) + P(Ch, 21 |T3) A Xa|Z3) AT3),
where C € {c1,c1}, X4 € {x4, T4},
P(C1, X1]X3) = A(Chl|za, X3) A X1, 22) + PH(C1]72, X3) A X1,72),
where Cy € {c1,e1}, X1 € {x1,T1}, X5 € {23, T3},
P(Xy,X3) = P(X3|X1)P(X1), where X; € {z1,71}, X2 € {22,732}

and the linear constraints defining the local credal sets. Besides the pure probabilistic as-
sessments, we have P(c1) > 0.252 which implies the following additional constraints:

Pc1) = Pc1,x3) 4+ Pley, T3) > 0.252,
Pley, X3) = Pley, 1| X3)P(X3) + Pler, 71| X3) P X3) where X3 € {z3,T3}.
Our implementation promptly produces P(x4|z1) = 0.36. If the constraint between

X and X3 (the one that implied P(¢1) > 0.252) is discarded, then we get the interval
min Pz4|x1) = 0.36 and max P(x4|z1) = 0.48. The following result is relevant:

Theorem 3 The inference in a binary PPL network is NPP?-Complete.

Sketch of Proof. Hardness comes directly from the fact that a binary PPL network is a
extension to the Boolean credal network, so we can trivially reduce the belief updat-
ing problem in credal networks to inference in PPL networks. Pertinence is achieved



because, when we fix the vertices of the credal sets, we obtain a standard Bayesian
network. Then the PP oracle is enough to verify the pertinence. O

5 Conclusion

In this paper we have investigated algorithms for probabilistic logic in the presence
of statements of strong independence. We would like to stress the following contribu-
tions of the paper. We presented algorithms based on Sherali and Adams’ algorithm
that produce inferences for large models (compared to the models that can be handled
by existing algorithms). We focused on exact inferences, hoping that approximation
methods will follow in time. Second, we explored graphical models (in the context of
strong independence) that can be used to build large multivariate models in a compact
manner. Future work can follow several paths: first order logic constructs, conditioning
on zero probability events, coherency-based inference, and general improvement on the
efficiency of inference algorithms.

In closing, it is appropriate to discuss the results of this paper in a broader perspec-
tive. The strategy here is to combine “classic” probabilistic logic with independence, re-
taining the freedom usually associated with the former. We do not require that enforced
independence relations be specified in any particular fashion; this is to be contrasted
with proposals usually labeled “probabilistic relational.” In these proposals the idea is
to combine logic and probability by restricting the language, so as to obtain Bayesian
networks for inference [46-51]. While independence-free probabilistic logic may be too
loose, probabilistic relational models may be foo strict, as they demand a certain num-
ber of independence relations in a specific order. Probabilistic logic with independence
seems to be a sensible middle ground; one can either move in the direction of complete
generality, or one can build rather specific models. As an example, PPL networks are
models that stay between fully general probabilistic logic and probabilistic relational
models — accepting that some structure is necessary, but rejecting that a single recipe
can be used in every knowledge base.
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