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Abstract
This paper analyzes the performance of semi-
supervised learning of mixture models. We show
that unlabeled data can lead to an increase in
classification error even in situations where ad-
ditional labeled data would decrease classifica-
tion error. We present a mathematical analysis of
this “degradation” phenomenon and show that it
is due to the fact that bias may be adversely af-
fected by unlabeled data. We discuss the impact
of these theoretical results to practical situations.

1. Introduction

Semi-supervised learning has received considerable atten-
tion in the machine learning literature due to its potential
in reducing the need for expensive labeled data (Seeger,
2001). Applications such as text classification, genetic re-
search and machine vision are examples where cheap unla-
beled data can be added to a pool of labeled samples. The
literature seems to hold a rather optimistic view, where “un-
classified observations should certainly not be discarded”
(O’Neill, 1978). Perhaps the most representative sum-
mary of recent literature comes from McCallum and Nigam
(1998), who declare that “by augmenting this small set [of
labeled samples] with a large set of unlabeled data and
combining the two pools with EM, we can improve our pa-
rameter estimates.”

Unfortunately, several experiments indicate that unlabeled
data are quite often detrimental to the performance of clas-
sifiers (Section 3). That is, the more unlabeled data are
added to a fixed set of labeled samples, the poorer is the
performance of the resulting classifier. We make this state-
ment cautiously, for some readers may find it obvious,
while others may find it unbelievable — and some will dis-

miss it as incorrect. One might argue that numerical er-
rors in EM or similar algorithms are the natural suspects
for such performance degradation; thus we want to stress
that our results concern performance degradation even in
the absence of numerical instabilities. Some might object
that unlabeled data are provably useful (Castelli & Cover,
1996), and so any “degradation” must come from incorrect
analysis, while others might argue that unlabeled data could
conceivably be deleterious in exceptional situations where
modeling assumptions are clearly violated. Yet we note
that unlabeled data can lead to performance degradation
even in situations where labeled data can be useful to clas-
sification, so it must be the case that modeling assuptions
have a rather different effect on these types of data. We
have made extensive tests with semi-supervised learning,
only to witness a complex interaction between modeling
assumptions and classifier performance. Unlabeled data do
require a delicate craftsmanship, and we suspect that most
researchers are unaware of such complexities. With this pa-
per we wish to contribute to a better understanding of semi-
supervised learning by focusing on maximum-likelihood
estimators and generative classifiers.

In Sections 2 and 3 we summarize relevant facts about
semi-supervised learning. In Section 4 we show that per-
formance degradation from unlabeled data depends on bias.
Our main result is Theorem 1, where we characterize
maximum-likelihood semi-supervised learning as a convex
combination of supervised and unsupervised learning, and
show how to understand performance degradation in semi-
supervised learning. We indicate the reasons why we may
observe labeled data to improve a classifier while unlabeled
data may degrade the same classifier: in short, both labeled
and unlabeled data contribute to a reduction of variance, but
unlabeled data may lead to an increase in bias when mod-
eling assumptions are incorrect. We present examples il-
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lustrating such circumstances in semi-supervised learning.
We finish by discussing the behavior of some practical clas-
sifiers learned with labeled and unlabeled data.

2. Semi-Supervised Learning

The goal is to classify an incoming vector of observables X.
Each instantiation x of X is a sample. There exists a class
variable C; the values of C are the classes. To simplify
the discussion, we assume that C is a binary variable with
values

�
c ��� c � ��� . We want to build classifiers that receive a

sample x and output either c � or c � � . We assume 0-1 loss,
thus our objective is to minimize the probability of clas-
sification errors. If we knew exactly the joint distribution
F � C � X � , the optimal rule would be to choose class c � when
the probability of

�
C � c ��� given x is larger than 1 	 2, and

to choose class c � � otherwise (Devroye et al., 1996). This
classification rule attains the minimum possible classifica-
tion error, called the Bayes error.

We take that the probabilities of � C � X � , or functions
of these probabilities, are estimated from data and then
“plugged” into the optimal classification rule. We assume
that a parametric model F � C � X 
 θ � is adopted. An esti-
mate of θ is denoted by θ̂; we adopt the maximum likeli-
hood method for estimation of parameters. If the distribu-
tion F � C � X � belongs to the family F � C � X 
 θ � , we say the
“model is correct”; otherwise we say the “model is incor-
rect.” When the model is correct, the difference between
the expected value Eθ � θ̂ � and θ, � Eθ � θ̂ �� θ � , is called es-
timation bias. If the estimation bias is zero, the estima-
tor θ̂ is unbiased. When the model is incorrect, we use
“bias” loosely to mean the difference between F � C � X � and
F � C � X 
 θ̂ � . The classification error for θ is denoted by e � θ � ;
the difference between E � e � θ̂ ��� and the Bayes error is the
classification bias.

We assume throughout that probability models satisfy the
conditions adopted by White (1982); essentially, parame-
ters belong to compact subsets of Euclidean space, mea-
sures have measurable Radon-Nikodym densities and are
defined on measurable spaces, all functions are twice dif-
ferentiable and all functions and their derivatives are mea-
surable and dominated by integrable functions. A formal
list of assumptions can be found in (Cozman & Cohen,
2003).

In semi-supervised learning, classifiers are built from a
combination of Nl labeled and Nu unlabeled samples. We
assume that the samples are independent and ordered so
that the first Nl samples are labeled. We consider the fol-
lowing scenario. A sample � c � x � is generated from p � C � X � .
The value c is then either revealed, and the sample is a la-
beled one; or the value c is hidden, and the sample is an
unlabeled one. The probability that any sample is labeled,

denoted by λ, is fixed, known, and independent of the sam-
ples. Thus the same underlying distribution p � C � X � mod-
els both labeled and unlabeled data; we do not consider the
possibility that labeled and unlabeled samples have differ-
ent generating mechanisms.

The likelihood of a labeled sample � c � x � is λp � c � x 
 θ � ;
the likelihood of an unlabeled sample x is � 1  λ � p � x 
 θ � .
The density p � X 
 θ � is a mixture model with mixing factor
p � c ��
 θ � (denoted by η):

p � X 
 θ ��� ηp � X 
 c � � θ ����� 1  η � p � X 
 c � � � θ ��� (1)

We assume throughout that mixtures (1) are identifiable:
distinct values of θ determine distinct distributions (permu-
tations of the mixture components are allowed).

The distribution p � C � X 
 θ � can be decomposed either as
p � C 
X � θ � p � X 
 θ � or as p � X 
C � θ � p � C 
 θ � . A parametric
model where both p � X 
C � θ � and p � C 
 θ � depend explic-
itly on θ is referred to as a generative model. A strategy
that departs from the generative scheme is to focus only on
p � C 
X � θ � and to take the marginal p � X � to be independent
of θ. Such a strategy produces a diagnostic model (for ex-
ample, logistic regression (Zhang & Oles, 2000)). In this
narrow sense of diagnostic models, maximum likelihood
cannot process unlabeled data for any given dataset (see
Zhang and Oles (2000) for a discussion). In this paper we
adopt maximum likelihood estimators and generative mod-
els; other strategies can be the object of future work.

3. Do Unlabeled Data Improve or Degrade
Classification Performance?

It would perhaps be reasonable to expect an average im-
provement in classification performance for any increase
in the number of samples (labeled or unlabeled): the more
data are processed, the smaller the variance of estimates,
and the smaller the classification error. Several reports in
the literature seem to corroborate this informal reasoning.
Investigations in the seventies are quite optimistic (Cooper
& Freeman, 1970; Jr., 1973; O’Neill, 1978). More recently,
there has been plenty of applied work with semi-supervised
learning,1 with some notable successes. There have also
been workshops on semi-supervised learning at NIPS1998,
NIPS1999, NIPS2000 and IJCAI2001. These publications
and meetings have generally concluded that unlabeled data
can be profitably used whenever available.

There have also been important positive theoretical results
concerning unlabeled data. Castelli and Cover (1996) and
Ratsaby and Venkatesh (1995) use unlabeled samples to es-

1Relevant references: (Baluja, 1998; Bruce, 2001; Collins &
Singer, 2000; Comité et al., 1999; Goldman & Zhou, 2000; Mc-
Callum & Nigam, 1998; Miller & Uyar, 1996; Nigam et al., 2000;
Shahshahani & Landgrebe, 1994b).



timate decision regions (by estimating p � X � ), and labeled
samples are used solely to determine the labels of each re-
gion (Ratsaby and Venkatesh refer to this procedure as “Al-
gorithm M”). Castelli and Cover basically prove that Algo-
rithm M is asymptotically optimal under various assump-
tions, and that, asymptotically, labeled data contribute ex-
ponentially faster than unlabeled data to the reduction of
classification error. These authors make the critical as-
sumption that p � C � X � belongs to the family of models
p � C � X 
 θ � (the “model is correct”).

However, a more detailed analysis of current empirical re-
sults does reveal some puzzling aspects of unlabeled data.2

We have reviewed descriptions of performance degradation
in the literature in (Cozman & Cohen, 2002); here we just
mention the relevant references. Four results are particu-
larly interesting: Shahshahani and Landgrebe (1994b) and
Baluja (1998) describe degradation in image understand-
ing, while Nigam et al. (2000) report on degradation in
text classification and Bruce (2001) describe degradation
in Bayesian network classifiers. Shahshahani and Land-
grebe speculate that degradation may be due to deviations
from modeling assumptions, such as outliers and “samples
of unknown classes” — they even suggest that unlabeled
samples should be used only when the labeled data alone
produce a poor classifier. Nigam et al. (2000) suggest sev-
eral possible difficulties: numerical problems in the EM
algorithm, mismatches between the natural clusters in fea-
ture space and the assumed classes.

Intrigued by such results, we have conducted extensive
tests with simulated problems, and have observed the same
pattern of “degradation.” The interested reader can again
consult (Cozman & Cohen, 2002). Here we present a dif-
ferent test, now with real data. Figure 1 shows the result of
learning a Naive Bayes classifier using different combina-
tions of labeled and unlabeled datasets for the Adult clas-
sification problem in the UCI repository (using the training
and testing datasets in the repository). We see that adding
unlabeled data can improve classification when the labeled
data set is small (30 labeled data), but degrade performance
as the labeled data set becomes larger.

Both Shahshahani and Landgrebe (1994a) and Nigam
(2001) are rather explicit in stating that unlabeled data can
degrade performance, but rather vague in explaining how
to analyze the phenomenon. There are several possibili-
ties: numerical errors, mismatches between the distribu-
tion of labeled and unlabeled data, incorrect modeling as-
sumptions. Are unlabeled samples harmful only because of
numerical instabilities? Is performance degradation caused
by increases in variance, or bias, or both? Can performance

2The workshop at IJCAI2001 witnessed a great deal of discus-
sion on whether unlabeled data are really useful, as communicated
to us by George Forman.
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Figure 1. Naive Bayes classifiers generated from the Adult
database (bars cover 30 to 70 percentiles).

degradation occur in the absence of bias; that is, when mod-
eling assumptions are correct? Do we need specific types
of models, or very complex structures, to produce perfor-
mance degradation?

Our strategy in addressing these questions is to study the
asymptotic behavior of exact maximum likelihood estima-
tors under semi-supervised learning. The asymptotic re-
sults obtained in the next section allows us to analyze semi-
supervised learning without resorting to numerical meth-
ods, and to obtain insights that are not clouded by the un-
certainties of numerical optimization. We do not deny that
numerical problems can happen in practice (see McLach-
lan and Basford, (1988, Section 3.2) and Corduneanu and
Jaakkola (2002)), but we are interested in more fundamen-
tal phenomena. The examples in the next section show that
performance degradation with unlabeled data would occur
even if numerical problems were somehow removed.

4. Asymptotics of Semi-Supervised Learning

In this section we discuss the asymptotic behavior of max-
imum likelihood estimators in semi-supervised learning.
We assume throughout that expectations E � log p � C � X ��� ,
E � log p � X ��� , E � log p � C � X 
 θ ��� , and E � log p � X 
 θ ��� exist for
every θ, and each function attains a maximum at some
value of θ in an open neighborhood in the parameter space.
Again, we remark that a formal list of assumptions can
be found in (Cozman & Cohen, 2003). The assumptions
eliminate some important models (such as Cauchy distri-
butions), but they retain the most commonly used distribu-
tional models.

To state the relevant results, a Gaussian density with mean
µ and variance σ2 is denoted by N � µ � σ2 � , and the follow-
ing matrices are defined (matrices are formed by running
through the indices i and j):
AY � θ ��� E � ∂2 log p � Y 
 θ � 	 ∂θiθ j � ,
BY � θ ��� E � � ∂ log p � Y 
 θ � 	 ∂θi � � ∂ log p � Y 
 θ ��	 ∂θ j ��� .
We use the following known result (Berk, 1966; Huber,



1967; White, 1982). Consider a parametric model F � Y 
 θ �
with the properties discussed in previous sections, and a se-
quence of maximum likelihood estimates θ̂N , obtained by
maximization of ∑N

i � 1 log p � yi 
 θ � , with an increasing num-
ber of independent samples N, all identically distributed ac-
cording to F � Y � . Then θ̂N

� θ
�

as N � ∞ for θ in an open
neighborhood of θ

�
, where θ

�
maximizes E � log p � Y 
 θ � � . If

θ
�

is interior to the parameter space, θ
�

is a regular point
of AY � θ � and BY � θ � � is non-singular, then

�
N � θ̂N  θ

� ���
N � 0 � C � θ � � � , where CY � θ ��� AY � θ ��� 1BY � θ � AY � θ ��� 1. This
result does not require the distribution F � Y � to belong to
the family F � Y 
 θ � .
In semi-supervised learning, the samples are realizations
of � C � X � with probability λ, and of X with probability � 1 
λ � . Denote by C̃ a random variable that assumes the same
values of C plus the “unlabeled” value u. We have p � C̃ ��
u � � λ. The actually observed samples are realizations of
� C̃ � X � , and we obtain p̃ � C̃ � c � X � equal to

� λp � C � c � X � � I 	 C̃ 
� u �� c � � � 1  λ � p � X � � I 	 C̃ � u �� c � �
where p � X � is a mixture density obtained from p � C � X �
(Expression (1)) and Iφ � Z � is the indicator function (1 if
Z � φ; 0 otherwise). Accordingly, the parametric model
adopted for � C̃ � X � is p̃ � C̃ � c � X 
 θ � , equal to

� λp � C � c � X 
 θ � � I 	 C̃ 
� u �  c � � � 1  λ � p � X 
 θ � � I 	 C̃ � u �  c � �
Using these definitions, we obtain our main result:

Theorem 1 Consider supervised learning where samples
are randomly labeled with probability λ. Adopting pre-
vious assumptions, the value of θ

�
(the limiting value of

maximum likelihood estimates) is:

argmax
θ

λE � log p � C � X 
 θ � � � � 1  λ � E � log p � X 
 θ � � � (2)

where the expectations are with respect to p � C � X � . �

Proof. The value θ
�

maximizes E � log p̃ � C̃ � X 
 θ � � (expec-
tation with respect to p̃ � C̃ � X � ), and E � log p � C̃ � X 
 θ ���
is equal to E � I � C̃ �� u � � C̃ � � logλ � log p � C � X 
 θ � � �
I � C̃ � u � � C̃ � � log � 1  λ � � log p � X 
 θ � � � ; thus the ex-
pected value is equal to λ logλ � � 1  λ � log � 1  λ � �
E � I � C̃ �� u � � C̃ � log p � C � X 
 θ � � � E � I � C̃ � u � � C̃ � log p � X 
 θ ��� . The
first two terms of this expression are irrelevant to maxi-
mization with respect to θ. The last two terms are equal to
λE � log p � C � X 
 θ � 
 C̃ �� u � � � 1  λ � E � log p � X 
 θ � 
 C̃ �
u � . As we have p̃ � C̃ � X 
 C̃ �� u � � p � C � X � and
p̃ � X 
 C̃ � u � � p � X � the last expression is equal to
λE � log p � C � X 
 θ � � � � 1  λ � E � log p � X 
 θ � � , where the last
two expectations are now with respect to p � C � X � . Thus we
obtain Expression (2). �

Expression (2) indicates that the objective function in semi-
supervised learning can be viewed asymptotically as a
“convex” combination of objective functions for supervised
learning (E � log p � C � X 
 θ ��� ) and for unsupervised learning
(E � log p � X 
 θ ��� ). Denote by θ

�
λ the value of θ that maxi-

mizes Expression (2) for a given λ; use θ
�
l for θ

�
1 and θ

�
u for

θ
�
0.3 We note that, with a few additional assumptions on the

modeling densities, Theorem 1 and the implicit function
theorem can be used to prove that θ

�
λ is a continuous func-

tion of λ. This shows that the “path” followed by the so-
lution is a continuous one, as also assumed by Corduneanu
and Jaakkola (2002) in their discussion of numerical meth-
ods for semi-supervised learning.

The asymptotic variance in estimating θ under the con-
ditions of Theorem 1 can also be obtained using re-
sults in White (1982). The asymptotic variance is
ABA, where A � � λA  C �X � � θ

� � � � 1  λ � AX � θ � � � � 1
and

B � � λB  C �X � � θ
� � � � 1  λ � BX � θ � � � . It can be seen that

this asymptotic covariance matrix is positive definite, so
asymptotically an increase in N (the number of labeled
and unlabeled samples), leads to a reduction in the vari-
ance of θ̂. This reduction in variance is true regardless of
whether F � C � X � is in F � C � X 
 θ � .

Model is correct Suppose first that the family of distri-
butions F � C � X 
 θ � contains the distribution F � C � X � ; that
is, F � C � X 
 θ ����� F � C � X � for some θ � . When such a con-
dition is satisfied, θ

�
l � θ

�
u � θ � given identifiability, and

then θ
�
λ � θ � (so maximum likelihood is consistent, bias

is zero, and classification error converges to the Bayes er-
ror). By following a derivation in Shahshahani and Land-
grebe (1994b) for unbiased estimators, we can argue (ap-
proximately) that the expected classification error depends
on the variance of θ̂. We have A � θ �� � �  B � θ �� � , thus the
asymptotic covariance of the maximum likelihood estima-
tor is governed by the inverse of the Fisher information.
Because the Fisher information is a sum of the information
from labeled data and the information from unlabeled data
(Zhang & Oles, 2000; Cozman & Cohen, 2003), and be-
cause the information from unlabeled data is always pos-
itive definite, the conclusion is that unlabeled data must
cause a reduction in classification error when the model is
correct. Similar derivations can be found in Ganesalingam
and McLachlan (1978) and in Castelli (1994).

Model is incorrect We now study the scenario that
is more relevant to our purposes, where the distribution
F � C � X � does not belong to the family of distributions

3We have to handle a difficulty with e � θ �u � : given only unla-
beled data, there is no information to decide the labels for decision
regions, and the classification error is 1/2 (Castelli, 1994). To sim-
plify the discussion, we assume that, when λ � 0, an “oracle” will
be available to indicate the labels of the decision regions.



F � C � X 
 θ � . In view of Theorem 1, it is perhaps not sur-
prising that unlabeled data can have the deleterious effect
discussed in Section 3. Suppose that θ

�
u �� θ

�
l and that

e � θ �u ��� e � θ �l � (we show how this can happen in a later
example). If we observe a large number of labeled sam-
ples, the classification error is approximately e � θ �l � . If we
then collect more samples, most of which unlabeled, we
eventually reach a point where the classification error ap-
proaches e � θ �u � . So, the net result is that we started with
classification error close to e � θ �l � , and by adding a great
number of unlabeled samples, classification performance
degraded towards e � θ �u � . The basic fact here is that (esti-
mation and classification) biases are directly affected by λ.
Hence, a necessary condition for this kind of performance
degradation is that e � θ �u � �� e � θ �l � ; a sufficient condition is
that e � θ �u ��� e � θ �l � . If e � θ �l � is smaller than e � θ �u � , then a
labeled dataset can be dwarfed by a much larger unlabeled
dataset — the classification error using the whole dataset
can be larger than the classification error using only labeled
data.

A summary 1) Labeled and unlabeled data contribute to
a reduction in variance in semi-supervised learning under
maximum likelihood estimation. 2) When the model is
correct, the maximum likelihood estimator is unbiased and
both labeled and unlabeled data reduce classification er-
ror by reducing variance. 3) When the model is incorrect,
there may be different asymptotic estimation/classification
biases for different values of λ; asymptotic classification
error may also be different for different values of λ — an
increase in the number of unlabeled samples may lead to a
larger estimation bias and a larger classification error.

An example: performance degradation with Gaussian
data The previous discussion alluded to the possibility
that e � θ �u ��� e � θ �l � when the model is incorrect. To un-
derstand how such a phenomenon can occur, consider an
example of obvious practical significance. Consider Gaus-
sian observations � X � Y � taken from two classes c � and
c � � . We do not know the mixing factor η � p � C � c � � ;
the data is sampled from a distribution with mixing fac-
tor 3/5. We know that X and Y are Gaussian variables:
the mean of � X � Y � is � 0 � 3 	 2 � conditional on

�
C � c ��� ,

and � 3 	 2 � 0 � conditional on
�
C � c � � � ; variances for X and

for Y conditional on C are equal to 1. We believe that
X and Y are independent given C, but actually X and Y
are dependent conditional on

�
C � c � ��� — the correlation

ρ � E � � X  E �X ��� � Y  E �Y ��� 
C � c � � � is equal to 4 	 5 (X and
Y are in fact independent conditional on

�
C � c � � ). If we

knew the value of ρ, we would obtain an optimal classi-
fication boundary on the plane X � Y (this optimal classi-
fication boundary is quadratic). As we assume that ρ is
zero, we are generating a Naive-Bayes classifier that ap-
proximates p � C 
X � Y � .

Under the incorrect assumption that ρ � 0, the classifica-
tion boundary is linear: y � x � 2log � � 1  η̂ � 	 η̂ � 	 3, and
consequently it is a decreasing function of η̂. With labeled
data we can easily obtain η̂ (a sequence of Bernoulli trials);
then η

�
l � 3 	 5 and the classification boundary is given by

y � x  0 � 27031. Note that the (linear) boundary obtained
with labeled data is not the best possible linear boundary.
We can in fact find the best possible linear boundary of
the form y � x � γ. The classification error can be writ-
ten as a function of γ that has positive second derivative;
consequently the function has a single minimum that can
be found numerically (the minimizing γ is  0 � 45786). If
we consider the set of lines of the form y � x � γ, we see
that the farther we go from the best line, the larger the clas-
sification error. Figure 2 shows the linear boundary ob-
tained with labeled data and the best possible linear bound-
ary. The boundary from labeled data is “above” the best
linear boundary.

Now consider the computation of η
�
u, the asymptotic esti-

mate with unlabeled data. By Theorem 1, we must obtain:

arg max
η ��� 0 � 1 �

	 ∞

� ∞

	 ∞

� ∞
� � 3 	 5 � N � � 0 � 3 	 2 � T � diag � 1 � 1 ��� �

� 2 	 5 � N � � 3 	 2 � 0 � T � � 1
4 
 5 4 
 5

1 ��� ���
log � ηN � � 0 � 3 	 2 � T � diag � 1 � 1 ��� �

� 1  η � N � � 3 	 2 � 0 � T � diag � 1 � 1 ��� � dydx �
The second derivative of this double integral is always neg-
ative (as can be seen interchanging differentiation with in-
tegration), so the function is concave and there is a single
maximum. We can search for the zero of the derivative of
the double integral with respect to η. We obtain this value
numerically, η

�
u � 0 � 54495. Using this estimate, the lin-

ear boundary from unlabeled data is y � x  0 � 12019. This
line is “above” the linear boundary from labeled data, and,
given the previous discussion, leads to a larger classifica-
tion error than the boundary from unlabeled data. We have:
e � γ � � 0 � 06975; e � θ �l � � 0 � 07356; e � θ �u � � 0 � 08141. The
boundary obtained from unlabeled data is also shown in
Figure 2.

This example suggests the following situation. Suppose we
collect a large number Nl of labeled samples from p � C � X � ,
with η � 3 	 5 and ρ � 4 	 5. The labeled estimates form a
sequence of Bernoulli trials with probability 3 	 5, so the es-
timates quickly approach η

�
l (the variance of η̂ decreases as

6 	 � 25Nl � ). If we add a very large amount of unlabeled data
to our data, η̂ approaches η

�
u and the classification error

increases.

By changing the “true” mixing factor and the correlation
ρ, we can produce other examples where the best linear
boundary is between the “labeled” and the “unlabeled”
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Figure 2. Contour plots of the Gaussian mixture p � X � Y � , the best
classification boundary of the form y � x

� γ, the linear boundary
obtained from labeled data (middle line) and the linear boundary
obtained from unlabeled data (upper line).

boundaries, and examples where the “unlabeled” bound-
ary is between the other two. Non-Gaussian examples
of degradation can also be easily produced, including ex-
amples with univariate models; the interested reader may
consult a longer version of this paper (Cozman & Cohen,
2003).

Discussion The obvious consequence of the previous re-
sults is that unlabeled data can in fact degrade performance
even in simple situations. For degradation to occur, mod-
eling errors must be present — unlabeled data are always
beneficial in the absence of modeling errors. The most im-
portant fact to understand is that estimation bias depends
on the ratio of labeled to unlabeled data; this is somewhat
surprising as bias is usually taken to be a property of the
assumed and the “true” models, and not to be dependent on
the data. If the performance obtained with a given set of
labeled data is better than the performance with infinitely
many unlabeled samples, then at some point the addition
of unlabeled data must decrease performance.

5. Learning Classifiers in Practice

To avoid an excessively pessimistic and theoretical tone,
we would like to mention some positive practical experi-
ence with semi-supervised learning. We have observed that
semi-supervised learning of Naive Bayes and TAN classi-
fiers (Friedman et al., 1997), using the EM algorithm to
handle unlabeled samples, can be quite successful in clas-
sification problems with very large numbers of features and
not so large labeled datasets. Text classification and image
understanding problems typically fit this pattern; not sur-
prisingly, the best results in the literature are exactly in
these applications. A plausible explanation is that such
applications contain such a large number of observables

that the variance of estimators is very large for the num-
ber of available labeled samples, and then the reduction
in variance from unlabeled data offsets increases in bias.
This agrees with the empirical findings of Shahshahani
and Landgrebe (1994b), where unlabeled data are useful
as more observables are used in classifiers — while Nigam
et al. (2000) suggest that adding observables can worsen
the effect of unlabeled data, the opposite should be ex-
pected.

However, our experiments indicate that Naive Bayes and
TAN are often plagued by performance degradation in rel-
atively common classification problems, for example for
the datasets found in the UCI repository. Overall, we have
noticed that TAN classifiers have an edge over Naive Bayes
classifiers.4 It is even possible to look at performance
degradation as a “signal” that modeling assumptions are
incorrect, and to switch from an initial Naive Bayes classi-
fiers to a TAN classifier if performance degradation is ob-
served.

We observe that the most natural way to go beyond Naive
Bayes and TAN classifiers is to look for arbitrary Bayesian
networks that can represent the relevant distributions; we
have had significant success in this direction. Given the
many possible approaches to Bayesian network learning,
we just mention an interesting approach that has produced
excellent results.

We have developed an stochastic structure search algo-
rithm (named SSS) that essentially performs Metropolis-
Hastings runs in the space of Bayesian networks; we have
observed that this method, while demanding huge compu-
tational effort, can improve on TAN classifiers (Cohen et
al., 2003). To illustrate these statements, take the Shut-
tle dataset from the UCI repository. With 43500 labeled
samples, a Naive Bayes classifier has classification error of
0 � 07% (on independent test set with 14500 labeled sam-
ples). With 100 labeled samples, a Naive Bayes classi-
fier has classification error of 18%; by adding 43400 un-
labeled samples, the resulting Naive Bayes classifier has
error of about 30%! A TAN classifier with 100 labeled
and 43400 unlabeled samples leads to classification error
of about 19%. The SSS algorithm does much better, lead-
ing to classification error of only 3 � 7%. Interestingly, we
obtain classification error of just 4 � 4% by selecting 500 ad-
ditional labeled samples randomly and producing a TAN
classifier with EM.

The last observation suggests that active learning should be
a profitable strategy in labeled-unlabeled situation McCal-
lum and Nigam (1998). When feasible, active learning can
use unlabeled data in a clever and effective manner.

4The combination of TAN with EM to handle unlabeled data
is described in Meila (1999).



We close by warning the reader that only a careful analysis
of unlabeled data can lead to better learning methods. As an
example, we can use the insights in this paper to analyze the
class of estimators proposed by Nigam et al. (2000). They
build Naive Bayes classifiers by maximizing a modified
log-likelihood of the form λ � Ll � θ � � � 1  λ � � Lu � θ � (where
Ll is the “likelihood” for labeled data and Lu is the “like-
lihood” for unlabeled data) while searching for the best
possible λ � . There is no reason why this procedure would
improve performance, but it may work sometimes: In the
Gaussian example in Section 4, if the boundary from la-
beled data and the boundary from unlabeled data are in dif-
ferent sides of the best linear boundary, we can find the
best linear boundary by changing λ � — we can improve on
both supervised and unsupervised learning in such a situa-
tion!5 In any case, one cannot expect to find the best possi-
ble boundary just by changing λ � ; as an example, consider
again the Shuttle dataset from the UCI repository, taking
100 labeled and 43400 unlabeled samples. We have ob-
served a monotonic increase in classification error of Naive
Bayes classifiers as we vary λ � from 0 to 1: no value of
λ � can do better than just using the available labeled data!
The good results obtained by Nigam et al. (2000) could
either be attributed to the fact that Naive Bayes is the “cor-
rect model” in text classification, or to the fact that text
classification handles a huge number of features (and the
comments in the first paragraph of this section apply).

6. Conclusion

In this paper we have derived and studied the asymptotic
behavior of semi-supervised learning based on maximum
likelihood estimation (Theorem 1). We have also presented
a detailed analysis of performance degradation from un-
labeled data, and explained this phenomenon in terms of
asymptotic bias. In view of these results, overly optimistic
statements in the literature must be ammended. Also, pro-
cedures such as Algorithm M are perhaps not reasonable in
the presence of modeling errors.

Despite these sobering comments, we note that our tech-
niques can lead to better semi-supervised classifiers in a
variety of situations, as argued in Section 5.

We have focused on modeling errors, and not on numer-
ical instabilities. Note first that modeling errors must be
present for performance degradation to occur. One of our
contributions is to connect in a very precise way modeling
errors to performance degradation. The connection, as we
have argued, comes from an understanding of asymptotic
bias. We have on purpose not dealt with two types of mod-

5Some authors have argued that labeled data should be given
more weight (Corduneanu & Jaakkola, 2002), but this example
shows that there are no guarantees concerning the supposedly su-
perior effect of labeled data.

eling errors. First, we have avoided the possibility that la-
beled and unlabeled data are sampled from different distri-
butions (McLachlan, 1992, pages 42-43); second, we have
avoided the possibility that more classes are represented in
the unlabeled data than in the labeled data, perhaps due to
the scarcity of labeled samples (Nigam et al., 2000). We
believe that, by constraining ourselves to simpler model-
ing errors, we have indicated that performance degradation
must be prevalent in practice.

Results in this paper can be extended in several directions.
It should be interesting to find necessary and sufficient con-
ditions for a model to suffer performance degradation with
unlabeled data. Also, the analysis of bias should be much
enlarged, with the addition of finite sample results. An-
other possible avenue is to look for optimal estimators in
the presence of modeling errors (Kharin, 1996). Finally,
it would be important to investigate performance degra-
dation in other frameworks, such as support vector ma-
chines, co-training, or entropy based solutions (Jaakkola
et al., 1999). We conjecture that any approach that in-
corporates unlabeled data, so as to improve performance
when the model is correct, may suffer from performance
degradation when the model is incorrect (this fact can be
seen in the co-training results of Ghani, (2001, Hoovers-
255 dataset)). If we could find an universally robust semi-
supervised learning method, such a method would indeed
be a major accomplishment.

Regardless of the approach that is used, semi-supervised
learning is affected by modeling assumptions in rather
complex ways. The present paper should be helpful as a
first step in understanding unlabeled data and their pecu-
liarities in machine learning.
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