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Abstract. The Noisy-OR function is extensively used in probabilis-
tic reasoning, and usually justified with heuristic argutsefhis pa-
per investigates sets of conditions that imply the Noisy{@ttion.

1 INTRODUCTION

This paper examines the foundations of a rather populaenpatif
probabilistic reasoning, thdoisy-ORcombination function.

When building a probabilistic model, one must often deahwit
a variableX that depends directly on several variablgs. .., Y.
The Bayesian network fragment in Figure 1 (left) shows aiptess
situation, where variables; are parents ofX. In this case callX

a collider [11]. To specify a Bayesian network, each collider must

be associated with a probability distributipX|Y1,...,Y,). Ifall
variables are binary, the complete specificatiop©X|Y1,...,Ys)
requires2™ probability values. An attractive strategy is then to find
methods that specify(X|Y1,...,Y,) using relatively few param-
eters. The Noisy-OR function is a compact representatiorthie
distribution of colliders when all involved variables anadry: As-
sume all variables have valugg(for “true”) and F' (for “false”), and
start withn probability valuesp;, wherep; is the probability that
{X = T} conditional on the event thaily Y; is equal toT'. That
is,pi =p(X =T|Y; =T,{Y; = F}}_, j). The probabilitiegp;
are calledlink probabilities The distribution of X conditional on
Yl, N ,Yn is

p(X =TVi,....Y,) =1— [ @-p).

iY;=T

@)

Given its history of good service, the Noisy-OR has been the o
ject of intense investigation in the literature. Howeveddtes not
seem that the following question has been asked so far: te the
simple set of conditions on colliders that forces the Nd#y-func-
tion to be adopted? An axiomatic characterization of thesj@R
is the purpose of this paper.

2 ARGUMENTSFOR NOISY-OR

The Noisy-OR function was proposed by Pearl (apparenthyhat t
same time as similar proposals appeared in other fields) Tt%§
argument for Noisy-OR was detailed by Henrion [6], who adeded
leak probability pz, that X is T even when ally; are F'. Other ex-
tensions of the Noisy-OR model ensued, for example NoisypAN
Noisy-MAX [3, 12].

A particularly relevant characteristic of the Noisy-OR ¢tion
is its explaining awayproperty. Assuming variabléeg,, ..., Y, are
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(unconditionally) independent of each other, explainingyoccurs
when, for any distinct; andY;,

Vi =TIX=TY;=T.Y ) <p(Yi=T|X =T.Y ),
@
where Y_;; indicates arbitrary instantiations of variables
{Yi}i=1 k=i k2; (note that Wellman and Henrion define “ex-
plaining away” in a slightly different form). Explaining ay is one
of several qualitative patterns of probabilistic reasgriimat can be
referred to asynergypatterns among parents of a variable [13, 14].
We note that Lucas has also put forward a thorough analysis of
the interaction between qualitative patterns and sevemalsy”
combination functions [8].

The basic independence relations of the Noisy-OR functiwh a
generalizations were captured by Heckerman and Breesebtsic
structure is depicted in Figure 1 (right) [5]. Zhang and Rdohve
also investigated this structure, additionally assumina 4 is itself
a combination of two-place functions [15].

A slightly different stream of research has focused on tteafs
Noisy-OR functions for combination of logical/probabiiésrules [4,

7, 9].Hence the Noisy-OR function has become a central aleie
the interface between logical and probabilistic reasaning

3 AXIOMSFOR NOISY-OR

Assume that, ..., Y, are binary variables that are (uncondition-
ally) independent of each other, add is a binary variable that di-
rectly depends ofY7,...,Y,. All binary variables have valuef
and F. Pearl argues that the following properties are desirairiea f
combination function [10]:

Accountability: The probability of{ X = T'} must be zero if alt;
are set tar'.

Exception independence: The value ofX is affected by eacly;
only through(Y; A I;), where thel, ..., I, are inhibitory vari-
ables that are (unconditionally) independent of each ahdrof
the variableg7,...,Y,.

Exception independence implies the structure in Figureidht,
whereg is a function of{Y; A I, }7—,. Now, g may be any function,
including a probabilistic one. An additional, and rathebstantive,
condition that is present in the literature is to tgkas adeterministic
function:

Figurel. Left: A collider X with parentsYi, ..., Y, (or the purposes of
this paper, nodes and variables are equivalent). Righibitohy variables
and the combination functiog.



Determinism: The value ofX is produced by a deterministic func-
tiOﬂg(Yl ANli,....,Y, A In)

A quite reasonable requirement is tlydbe “associative” and “com-
mutative” [15]:

Associativity: For any {Yi,...,Y,}, g(Y1,...,Yn) =
g(...9(9(¥:,Y;),Ys) ..., Y;) (for distinct 4,5,kl), and the
value ofg does not change for any permutation of its inputs.

We obtain, using direct results by Lucas f8]:

Theorem 1 Accountability, exception independence, determinism,
and associativity, are satisfied only by four two-place fions
g(A,B): {F,ANB,A® B, AV B}.

Exception independence, associativity and determinisen‘struc-
tural” properties that define the nature of combination fiams. To
proceed, further conditions must be adopted — conditioasdap-
ture the intended meaning for combination functions. A flidsgon-
dition to impose on any combination function is that the fiowc
satisfies the explaining away property (2).

Explaining Away: Property (2) is satisfied as long &5,...,Y,
are (unconditionally) independence of one another, whek li
probabilities and prior probabilities for tiié are in the open in-
terval (0,1).

We obtain:

Theorem 2 Accountability, exception independence, associativity,

determinism and explaining away are satisfied only by twopilace

functionsg(A, B): {A® B, AV B}.

Proof can be found in [2] (with additional discussion on ttoder of

zero probabilities). 1]
One possible alternative to the explaining away propertiyagol-

lowing property, first explored by Agosta [1]:

[2]

Reverseindependence If X is produced by a combination of (un-
conditionally) independence pareffs, . . ., Yy, then the parents  [3]
are independent conditional i = F'}. (4]

Reverse independence “almost” implies the Noisy-OR famcti

Theorem 3 Accountability, exception independence, associativity, [5]
determinism and reverse independence are satisfied onlydnto-
place functiongy(A4, B): {F, AV B}. 6]
Proof can be found in [2].

Explaining away and reverse independence do not uniquely im [7]
ply the Noisy-OR function when adopted separately. Howewer
uniquely obtain the Noisy-OR function by adopting both mies: (8]

Theorem 4 Accountability, exception independence, associativity, 9]
determinism, explaining away and reverse independenceosle
satisfied by the Noisy-OR function. (10]
Thus we have identified one possible path for axiomatizirgy th
Noisy-OR function, in the form of the six conditions in Theor 4
(a similar conclusion can be derived from results by Lucs {8ne
may wonder whether an alternative axiomatization is pdessilith
less conditions. Consider then the following intuitive pecty that is
satisfied by the Noisy-OR function:

[11]
[12]
[13]

[14]
Cumulativity: If two configurations Y; and Y. of parents
Y1,...,Y, are identical, except that some variables are s@t to (5]
inY; and toF in Y, thenp(X = T|Y1) > p(X =T|Y>,) for
link probabilities in the open intervaDd, 1).

2 A @ B denotes the XOR operation for and B.

While the explaining away and reverse independence piepate
found in the literature and reflect standard facts about thisyNOR,
cumulativity is a new (albeit straightforward) assumpt@ncombi-
nation functions. Note that, once cumulativity is assunaetount-
ability loses most of its appeal. In fact, accountabilitynist even
necessary in the presence of cumulativity:

Theorem 5 Exception independence, associativity, determinism and
cumulativity are only satisfied by Noisy-OR functions.

Proof can be found in [2].

4 CONCLUSION

To summarize, there are two sets of properties that imply\iisy-
OR function. First, accountability, exception indeperaierassocia-
tivity, determinism, explaining away and reverse indegsre. Sec-
ond, exception independence, associativity, determimischcumu-
lativity. The first set of properties contains conditionatthave been
long associated with the Noisy-OR function, usually in cection to
causal models. The second set is more compact, and is pehaps
propriate as a common foundation for both “causal” and “hdsed”
applications of the Noisy-OR function.
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