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Abstract. The Noisy-OR function is extensively used in probabilis-
tic reasoning, and usually justified with heuristic arguments. This pa-
per investigates sets of conditions that imply the Noisy-ORfunction.

1 INTRODUCTION

This paper examines the foundations of a rather popular pattern of
probabilistic reasoning, theNoisy-ORcombination function.

When building a probabilistic model, one must often deal with
a variableX that depends directly on several variablesY1; : : : ; Yn.
The Bayesian network fragment in Figure 1 (left) shows a possible
situation, where variablesYi are parents ofX. In this case callX
a collider [11]. To specify a Bayesian network, each collider must
be associated with a probability distributionp(XjY1; : : : ; Yn). If all
variables are binary, the complete specification ofp(XjY1; : : : ; Yn)
requires2n probability values. An attractive strategy is then to find
methods that specifyp(XjY1; : : : ; Yn) using relatively few param-
eters. The Noisy-OR function is a compact representation for the
distribution of colliders when all involved variables are binary: As-
sume all variables have valuesT (for “true”) andF (for “false”), and
start withn probability valuespi, wherepi is the probability thatfX = Tg conditional on the event thatonly Yi is equal toT . That
is, pi = p�X = T jYi = T; fYj = Fgnj=1;j 6=i�. The probabilitiespi
are calledlink probabilities. The distribution ofX conditional onY1; : : : ; Yn isp(X = T jY1; : : : ; Yn) = 1 � Yi:Yi=T(1� pi): (1)

Given its history of good service, the Noisy-OR has been the ob-
ject of intense investigation in the literature. However itdoes not
seem that the following question has been asked so far: Is there a
simple set of conditions on colliders that forces the Noisy-OR func-
tion to be adopted? An axiomatic characterization of the Noisy-OR
is the purpose of this paper.

2 ARGUMENTS FOR NOISY-OR

The Noisy-OR function was proposed by Pearl (apparently at the
same time as similar proposals appeared in other fields) [10]. The
argument for Noisy-OR was detailed by Henrion [6], who addeda
leak probability pL thatX is T even when allYi areF . Other ex-
tensions of the Noisy-OR model ensued, for example Noisy-AND,
Noisy-MAX [3, 12].

A particularly relevant characteristic of the Noisy-OR function
is its explaining awayproperty. Assuming variablesY1; : : : ; Yn are1 Escola Politécnica, Univ. de São Paulo, São Paulo, Brazil. Email: fgcoz-
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(unconditionally) independent of each other, explaining away occurs
when, for any distinctYi andYj ,p(Yi = T jX = T; Yj = T;Y�ij) < p(Yi = T jX = T;Y�ij) ;

(2)
where Y�ij indicates arbitrary instantiations of variablesfYkgnk=1;k 6=i;k 6=j (note that Wellman and Henrion define “ex-
plaining away” in a slightly different form). Explaining away is one
of several qualitative patterns of probabilistic reasoning that can be
referred to assynergypatterns among parents of a variable [13, 14].
We note that Lucas has also put forward a thorough analysis of
the interaction between qualitative patterns and several “noisy”
combination functions [8].

The basic independence relations of the Noisy-OR function and
generalizations were captured by Heckerman and Breese; their basic
structure is depicted in Figure 1 (right) [5]. Zhang and Poole have
also investigated this structure, additionally assuming thatg is itself
a combination of two-place functions [15].

A slightly different stream of research has focused on the use of
Noisy-OR functions for combination of logical/probabilistic rules [4,
7, 9].Hence the Noisy-OR function has become a central element in
the interface between logical and probabilistic reasoning.

3 AXIOMS FOR NOISY-OR

Assume thatY1; : : : ; Yn are binary variables that are (uncondition-
ally) independent of each other, andX is a binary variable that di-
rectly depends onY1; : : : ; Yn. All binary variables have valuesT
andF . Pearl argues that the following properties are desirable for a
combination function [10]:

Accountability: The probability offX = Tg must be zero if allYi
are set toF .

Exception independence: The value ofX is affected by eachYi
only through(Yi ^ Ii), where theI1; : : : ; In are inhibitory vari-
ables that are (unconditionally) independent of each otherand of
the variablesY1; : : : ; Yn.

Exception independence implies the structure in Figure 1 (right),
whereg is a function offYi ^ Iigni=1. Now, g may be any function,
including a probabilistic one. An additional, and rather substantive,
condition that is present in the literature is to takeg as adeterministic
function:mY1 mX mYn: : : ��	��R mY1mI1 m̂ mg m̂ mYnmIn: : : X- - ���� ��I��	��R
Figure 1. Left: A collider X with parentsY1; : : : ; Yn (or the purposes of
this paper, nodes and variables are equivalent). Right: Inhibitory variables

and the combination functiong.



Determinism: The value ofX is produced by a deterministic func-
tion g(Y1 ^ I1; : : : ; Yn ^ In).

A quite reasonable requirement is thatg be “associative” and “com-
mutative” [15]:

Associativity: For any fY1; : : : ; Yng, g(Y1; : : : ; Yn) =g(: : : g(g(Yi; Yj); Yk) : : : ; Yl) (for distinct i,j,k,l), and the
value ofg does not change for any permutation of its inputs.

We obtain, using direct results by Lucas [8]:2

Theorem 1 Accountability, exception independence, determinism,
and associativity, are satisfied only by four two-place functionsg(A;B): fF; A ^ B;A�B;A _Bg.

Exception independence, associativity and determinism are “struc-
tural” properties that define the nature of combination functions. To
proceed, further conditions must be adopted — conditions that cap-
ture the intended meaning for combination functions. A possible con-
dition to impose on any combination function is that the function
satisfies the explaining away property (2).

Explaining Away: Property (2) is satisfied as long asY1; : : : ; Yn
are (unconditionally) independence of one another, when link
probabilities and prior probabilities for theYi are in the open in-
terval (0,1).

We obtain:

Theorem 2 Accountability, exception independence, associativity,
determinism and explaining away are satisfied only by two two-place
functionsg(A;B): fA�B;A _Bg.
Proof can be found in [2] (with additional discussion on the role of
zero probabilities).

One possible alternative to the explaining away property isthe fol-
lowing property, first explored by Agosta [1]:

Reverse independence If X is produced by a combination of (un-
conditionally) independence parentsY1; : : : ; Yn, then the parents
are independent conditional onfX = Fg.

Reverse independence “almost” implies the Noisy-OR function:

Theorem 3 Accountability, exception independence, associativity,
determinism and reverse independence are satisfied only by two two-
place functionsg(A;B): fF; A _Bg.
Proof can be found in [2].

Explaining away and reverse independence do not uniquely im-
ply the Noisy-OR function when adopted separately. However, we
uniquely obtain the Noisy-OR function by adopting both properties:

Theorem 4 Accountability, exception independence, associativity,
determinism, explaining away and reverse independence areonly
satisfied by the Noisy-OR function.

Thus we have identified one possible path for axiomatizing the
Noisy-OR function, in the form of the six conditions in Theorem 4
(a similar conclusion can be derived from results by Lucas [8]). One
may wonder whether an alternative axiomatization is possible with
less conditions. Consider then the following intuitive property that is
satisfied by the Noisy-OR function:

Cumulativity: If two configurations Y1 and Y2 of parentsY1; : : : ; Yn are identical, except that some variables are set toT
inY1 and toF inY2, thenp(X = T jY1) > p(X = T jY2) for
link probabilities in the open interval(0; 1).2 A�B denotes the XOR operation forA andB.

While the explaining away and reverse independence properties are
found in the literature and reflect standard facts about the Noisy-OR,
cumulativity is a new (albeit straightforward) assumptionon combi-
nation functions. Note that, once cumulativity is assumed,account-
ability loses most of its appeal. In fact, accountability isnot even
necessary in the presence of cumulativity:

Theorem 5 Exception independence, associativity, determinism and
cumulativity are only satisfied by Noisy-OR functions.

Proof can be found in [2].

4 CONCLUSION

To summarize, there are two sets of properties that imply theNoisy-
OR function. First, accountability, exception independence, associa-
tivity, determinism, explaining away and reverse independence. Sec-
ond, exception independence, associativity, determinismand cumu-
lativity. The first set of properties contains conditions that have been
long associated with the Noisy-OR function, usually in connection to
causal models. The second set is more compact, and is perhapsap-
propriate as a common foundation for both “causal” and “rule-based”
applications of the Noisy-OR function.
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