
Probabilistic Satisfiability and Coherence
Checking through Integer Programming

Fabio Gagliardi Cozman and Lucas Fargoni di Ianni

Universidade de Sao Paulo
Av. Prof. Mello Moraes, 2231, Sao Paulo, SP - Brazil

Abstract. This paper presents algorithms based on integer program-
ming, both for probabilistic satisfiability and coherence checking. That is,
we consider probabilistic assessments for both standard probability mea-
sures (Kolmogorovian setup) and full conditional measures (de Finettian
coherence setup), and in both cases verify satisfiability/coherence using
integer programming. We present empirical evaluation of our method,
with evidence of phase-transitions.

1 Introduction

The analysis of arguments that combine propositions and probabilities has de-
served attention for quite some time. For instance, in Boole’s work [8] we find
interesting examples such as:

The probability that it thunders upon a given day is p, the probability
that it both thunders and hails is q, but of the connexion of the two
phenomena of thunder and hail, nothing further is supposed to be known.
Required the probability that it hails on the proposed day.

Here we have propositions A and B, assessments P(A) = p and P(A ∩ B) = q.
Boole asks for P(B) and obtains the tight interval [q, 1−(p−q)]. The assessments
are coherent: there is a probability measure that satisfies them.

Suppose we have propositional sentences {φi}Mi=1, each containing a subset of
atomic propositions {Aj}nj=1. We may associate one or more of these sentences
with probabilities, writing for instance P(φi) = αi. To establish semantics for
these assessments, we consider a probability measure over the set of truth assign-
ments. The Probabilistic Satisfiability (PSAT) problem is to determine whether
it is possible to find a probability measure over truth assignments such that all
assessments are satisfied [14, 18–20, 23]. When assessments involve conditional
probabilities such as P(φ′i|φ′′i) = αi, there are two paths to follow. The Kol-
mogorovian setup reduces such assessments to ratios of probabilities. The other
path is to use de Finetti’s theory of coherent probabilities, where full conditional
measures are used to interpret conditional assessments [11, 12, 32]. The Coherent
Probability Assessment (CPA) problem is to determine whether it is possible to
find a full conditional measure that satisfies all assessments [3, 4].

Probabilistic satisfiability and coherence checking are central problems in
reasoning under uncertainty. They serve as a foundation for logical and proba-
bilistic inference, as a basis for probabilistic rules [30], and as an initial necessary
step in the understanding of combinations of first-order logic and probabilities
[21, 27, 31].

The most direct way to solve a PSAT problem is to write down the problem
as a linear consistency problem [19]. The difficulty is that the resulting linear
program may be too large. One may resort to column generation techniques [25],
or to inference rules that capture probabilistic relationships [3, 16], or even to
combinations of column generation and inference rules [24]. There is also a dif-
ferent approach to probabilistic satisfiability that tackles it by transformation
into logical satisfiability [15].

In this paper we present another approach to Probabilistic Satisfiability,
where the original problem is written as an integer linear program of size that
is polynomial on the size of the original problem. The algorithm is extremely
simple to state; our implementation shows that it is quite efficient compared
to alternatives. Using our implementation we have studied the issue of phase
transitions. We report these experiments in this paper.

Section 2 summarizes necessary background. Our basic algorithm is described
in Section 3. Implementation and experiments, with a discussion of phase transi-
tions, are presented in Section 4. Conditional probabilities are handled in Section
5, and inference problems are discussed in Section 6.

2 SAT and PSAT

Consider n atomic propositions Aj and M sentences φi in propositional logic.
If a truth assignment ω is such that sentence φ is True, write ω |= φ. The
Satisfiability (SAT) problem is to determine whether or not there exists a truth
assignment to all variables such that all sentences evaluate to True [10, 17]. If
every sentence φi is a conjunction of clauses, then we have a SAT problem in
Conjunctive Normal Form (CNF). A SAT problem in CNF is a k-SAT problem
when each clause has k literals. The 2-SAT problem has a polynomial solution,
while k-SAT is NP-complete for k > 2.

For a fixed n, m and k, one may generate a random k-SAT with n propo-
sitions and a single sentence in CNF with m clauses, as follows. For each one
of the m clauses: select k variables at random, and for each variable produce a
literal that may be negated or not, with probability half. There has been intense
study of phase transition phenomena in random k-SAT; that is, study of the
observed fact that for small values of m/n the probability that a random k-SAT
is satisfiable tends to one as n grows (at fixed m/n), while for large values of
m/n the probability that a random k-SAT is satisfiable tends to zero as n grows.
Moreover, in the regions where satisfiability has probability approaching zero or
one we observe that generated random k-SAT problems can be easily solved,
while in the transition between the two regions we find hard problems.

Suppose that some sentences, say φ1 to φq, for q ≤ M , are associated with
probabilities through assessments of the form P(φi) ./ αi, where ./ is one of ≥,
=, ≤. The semantics of such an assessment is as follows. Take the set of 2n truth
assignments that can be generated for the n propositions. A probability measure
P over this set satisfies the assessments if, for each assessment P(φi) ./ αi,∑

ω|=φi

P(ω) ./ αi. (1)

The Probabilistic Satisfiability (PSAT) problem is to determine whether a given
set of sentences and probabilistic assessments can be satisfied. That is, to deter-
mine whether there is a probability measure over those truth assignments that
satisfy sentences not associated with probabilities, such that all assessments are
satisfied by this probability measure. The k-PSAT problem is a PSAT problem
where each sentence is in CNF and where each clause has k literals. The k-
PSAT is NP-complete for all values of k > 1; note that even for k = 2 we obtain
NP-completeness [23]. A few polynomial special cases of PSAT are known [2].

There are many algorithms for PSAT. The most obvious one is to write
down M constraints of the form (1), one for each sentence; some will be actually
associated with assignments P(φi) ./ αi, while others will encode “pure” logical
sentences as P(φi) = 1. Each constraint can be written as

2n∑
j=1

Iφi(ωj)P(ωj) ./ αi, where Iφi(ωj) =

{
1 if ωj |= φi
0 otherwise,

(2)

while truth assignments ωj are ordered from 1 to 2n (say by the n-bit binary
number obtained by writing 0 for False and 1 for True as assigned to A1, . . . , An).
Add to these M linear constraints the necessary constraints

∑
ω P(ω) = 1 and

P(ω) ≥ 0 for all ω. Probabilistic Satisfiability is then obtained when the resulting
set of linear constraints has a solution. The challenge is that we have 2n truth
assignments, so the size of the linear constraints is exponential in the input.

The most efficient algorithms for PSAT combine linear programming tech-
niques and inference rules to simplify the problem [24]. These algorithms use
the fact that a PSAT problem is satisfiable if and only if there is a probability
measure that assigns positive probability mass to (M + 1) truth assignments;
all other truth assignments get zero probability mass [18]. Hence we can write
down a (M + 1)× (M + 1) matrix C and write the PSAT problem as feasibility
of Cp ./././ ααα, where ααα denotes a vector of values αi and ./././ refers to ≥, = or ≤ as
appropriate. Each column of C corresponds to a truth assignment; the challenge
is to select (M + 1) truth assignments. This is done through column generation
techniques from linear programming [5]. Initially a set of (M + 1) columns is
selected, and then pivoting operations exchange columns until the problem is
determined to be satisfiable or not. At each pivoting operation, a column is re-
moved from C, and the choice of the column to enter C happens through an
auxiliary optimization problem (there are several possible formulations for this
auxiliary problem) [23, 24]. Performance improvements are obtained if column

generation is preceded by application of inference rules.1 This combination has
produced the best results so far, being able to solve PSAT problems with up to
200 propositions and 800 clauses, each one of them a clause associated with a
probability.

An entirely different approach to PSAT has been developed by Finger and
De Bona [15]; here the selection of columns of C is reduced to a SAT problem.
All operations with linear constraints are encoded into SAT by careful analysis
of numerical precision, and a SAT solver is used to solve the PSAT problem.

The resulting methods are fairly sophisticated and require numerical care.
Moreover, the extension of such methods to conditional probabilities in de Finetti’s
coherency framework is difficult, and existing methods require sequences of linear
programs (Section 5). In this paper we propose a novel approach that addresses
these concerns.

A PSAT is in Normal Form if a single sentence φ is given, and each prob-
abilistic assessment is an equality associated with a single proposition (that is,
every probabilistic assessment is of the form P(Ai) = αi) [15]. Even though this
form may seem restrictive, every PSAT can be brought to it with polynomial
effort: basically, for each assessment P(φi) ./ αi, introduce if necessary fresh
propositions to transform the assessment into P(φ′i) = αi; then introduce a new
proposition A′

i and exchange the original assessment by a sentence A′
i ⇔ φ′i

and an assessment P(A′
i) = αi; finally, generate a single sentence φ that is a

conjunction of all previous sentences. Every k-PSAT for k > 2 can be reduced
to Normal Form with q assessments P(Ai) = αi plus one CNF φ consisting of
clauses with exactly 3 literals each.

3 PSAT through Integer Programming

Assume our PSAT problem is in Normal Form with assessments {P(Aj) =
αj}qj=1 and a sentence φ in CNF with m clauses, each clause with k literals.
So our problem is parameterized by the number of propositions n, the number
of assessments q, the number of clauses m, and the number of literals per clause
k. Such a parameterized Normal Form neatly separates the probabilistic and the
propositional aspects of Probabilistic Satisfiability.

Our problem is: find the (q + 1) columns of C, each one corresponding to a
truth assignment ω such that ω |= φ, in such a way that Cp = ααα.

Hence we have (q + 1)2 optimization variables (elements of C to look for);
all of them are binary with values 0 and 1. As noted previously, Finger and De
Bona reduce the search for these variables to a SAT problem [15]. We instead
find C by solving an integer program.

Consider looking for the jth column of C; denote it by Cj . Such a column
corresponds to a truth assignment that satisfies φ. We explore the well known
connection between SAT and integer programming to find such a truth assign-
ment [10]. Start by generating a vector aj with n binary variables {ai,j}ni=1, all

1 An example of an inference rule [24]: if P(A1) ∈ [α1, α1] and P(¬A1 ∨A2) ∈ [α1, α2]
for α1 + α2 ≥ 1, then P(A2) ∈ [max(0, α1 + α2 − 1),min(1, α2)].

1: procedure PSAT-IP(propositions {Aj}nj=1, assessments {P(Ai) = αi}qi=1, sen-
tence φ in CNF with m clauses)

2: . Variables ai,j are binary; variables bi,j and pj are real-valued in [0, 1].

3: for j ∈ {1, . . . , q + 1} and each clause (∨k′
l′=1Ail′) ∨ (∨k′′

l′′=1¬Ail′′) of φ do

4: Generate linear constraint (
∑k′

l′=1 ail′ ,j) + (
∑k′′

l′′=1(1− ail′′ ,j)) ≥ 1.

5: for i ∈ {1, . . . , q + 1} do
6: Generate linear constraint

∑q+1
j=1 bi,j = αi.

7: for j ∈ {1, . . . , q + 1} do
8: Generate linear constraints 0 ≤ bi,j ≤ ai,j and ai,j − 1 + pj ≤ bi,j ≤ pj .
9: return Satisfiable if linear constraints have a solution, Unsatisfiable otherwise.

Fig. 1. PSAT solution based on integer linear program.

with values 0 and 1. Now take one clause of φ; suppose it is written as

(∨k
′

l′=1Ail′) ∨ (∨k
′′

l′′=1¬Ail′′).

For this clause, generate the linear inequality: k′∑
l′=1

ail′ ,j

+

 k′′∑
l′′=1

(1− ail′′ ,j)

 ≥ 1. (3)

Consider the m inequalities generated this way (one per clause). A vector aj
that satisfies these m inequalities yields a truth assignment for φ by assigning
True to Ai when ai,j is one, and assigning False to Ai when ai,j is zero. Note
that the elements of Cj are exactly a1,j to aq,j .

We generate the whole matrix C by generating (q + 1) sets of variables aj
and their related inequalities. We now have inequalities for all elements of C,
and we need to solve Cp = ααα. To do so, note that each row of C represents an
equality as follows:

q+1∑
j=1

ai,jpj = αi, (4)

where pj denotes the jth element of p. The challenge is to reduce the bilinear
term ai,jpj to linear constraints. We do that by introducing a new fresh variable
bi,j and the constraints:

0 ≤ bi,j ≤ ai,j and ai,j − 1 + pj ≤ bi,j ≤ pj . (5)

Note that if ai,j = 0, then bi,j = 0; and if ai,j = 1, then bi,j = pj .

The whole algorithm is presented in Figure 1; it basically collects constraints
from Expressions (3), (4), and (5). The algorithm produces an integer linear pro-
gram that has a solution if and only if the original PSAT problem is satisfiable.

4 Implementation, Experiments, and Phase Transition

We have coded our PSAT method using the Java language with calls to CPLEX
version 12, and run experiments in iMac computers with 4GBytes of memory.
The algorithm is very compact, using only 45 lines of code (basically a direct
translation of the algorithm in Figure 1 into CPLEX calls).

We focused on two values of k, namely, 2 and 3. We investigated k = 2 because
2-SAT is polynomial and 2-PSAT is NP-complete, a property not shared by any
other k-PSAT. And we investigated k = 3 because any PSAT problem can be
polynomially reduced to a 3-PSAT problem; in fact, Finger and De Bona pay
attention to 3-PSAT for this reason [15].

Additionally, we were particularly interested in investigating phase transition
phenomena. Until the work of Baioletti et al. [4], and Finger and De Bona [15],
there was no evidence of phase transition in the literature. Consequently it makes
more sense at this stage to examine the behavior of PSAT for various values of
n, m and q, rather than to randomly try out large problems that may in the end
be easy.

Figure 2 summarizes a number of experiments for k = 2. In all of them, PSAT
problems were randomly generated from parameters n, m, q and k: m clauses
with k literals each were randomly generated by selecting propositions randomly
out of the n propositions; each literal was negated or not with probability 1/2;
finally, the first q propositions were associated with probabilities randomly se-
lected in the interval [0, 1]. Each point in each graph conveys mean values for 50
different random PSAT problems. We set a time limit of 10 minutes per problem;
some of the more difficult problems did not finish within this time limit.

The left graphs in Figure 2 show typical behavior for random 2-PSAT: the
darker line indicates the percentage of satisfiable problems, and the lighter line
indicates mean time spent in their solution (mean of 50 distinct random PSAT
problems). The top graph deals with 2-PSAT problems with 1000 variables and
up to 1500 clauses; these are rather large problems and the phase transition
phenomenon is clear (note that we are using larger values of q than in the
previous investigation by Finger and De Bona [15]). The lower graph conveys
the same information, but now for n = 100. The main point to note is that the
phase transition seems to occur for much smaller m/n. Indeed the presence of
probabilities seems to create relationships between n, q and m in ways that are
not observed in 2-SAT (where the phase transition occurs for m/n = 1). An
interesting display of this phenomenon can be found in the right graph, where
one can see that the phase transition is affected by q.

Similar results are displayed in Figure 3. In the left graph we see typical phase
transition behavior, now centered around m/n ≈ 3.5. The reason we show this
particular graph (with n = 40, q = 4) is that the same experiment is reported
by Finger and De Bona [15]; their reported times are about 10 times larger than
ours. The right graph shows the change in the location of phase transition as q
varies, similarly to what happens with 2-PSAT.

To give a better feel of the times involved in solving PSAT problems with
our method, Table 1 summarizes a large variety of tests; each entry is the mean

Fig. 2. Experiments with 2-PSAT.

of 50 distinct PSAT problems. Note that it is not correct to expect that the
larger the problem, the more time it takes; due to phase transition, some large
problems may be easy, while some apparently small problems may be hard.

5 Checking Coherence of Conditional Assessments
through Integer Programming

Suppose that conditional assessments P(φ′i|φ′′i) = αi must be processed. In the
standard, Kolmogorovian style, probability theory, this assessment means that
P(φ′i ∧ φ′′i)/P(φ′′i) = αi if P(φ′′i) > 0. This holds if and only if

P(φ′i ∧ φ′′i)− αiP(φ′′i) = 0. (6)

The only change from “unconditional” PSAT is that each element of the matrix
C is now a linear expression. Indeed, if we only take conditional assessments
of the form P(A′

i|A′′
i) = αi, then the element Ci,j is given by the nonlinear

expression a′i,ja
′′
i,j−αia′′i,j , where a′i,j and a′′i,j are binary variables corresponding

to propositions A′
i,j and A′′

i,j respectively. To handle this, the only change in our
previous algorithm is that the constraints in its line 6 must be replaced by∑q+1
j=1

(
b′i,j − αib′′i,j

)
= 0, and constraints in line 8 must be replaced by

0 ≤ b′i,j ≤ a′i,j , 0 ≤ b′i,j ≤ a′′i,j , a′i,j + a′′i,j − 2 + pj ≤ b′i,j ≤ pj ,

Fig. 3. Experiments with 3-PSAT.

n q m

2-PSAT,
mean time
(sec.)

3-PSAT,
mean time
(sec.)

500 25 500 2.5441801 1.8612529
500 25 750 0.1588879 1.8934227
500 25 1000 0.1802416 12.0530050
500 50 500 18.271062 16.1097538
500 50 750 0.3348024 48.0028159
500 50 1000 0.9317918 177.037949
750 25 500 8.9984422 4.6699495
750 25 750 7.6501204 5.5394115
750 25 1000 0.2109049 3.6071930
750 50 500 0.3424100 19.9149997

n q m

2-PSAT,
mean time
(sec.)

3-PSAT,
mean time
(sec.)

750 50 750 0.4221426 23.5807273
750 50 1000 1.0847125 30.1025869
1000 25 500 2.4382244 2.1816687
1000 25 750 1.5742295 2.2077639
1000 25 1000 0.5740323 3.1606671
1000 25 1500 0.3041526 3.0211587
1000 25 2000 0.5616025 28.1456910
1000 50 500 3.5237384 16.2340889
1000 50 750 1.0613374 15.0277582
1000 50 1000 0.4471337 17.4252168

Table 1. Experiments with 2-PSAT and 3-PSAT.

0 ≤ b′′i,j ≤ a′′i,j , a′′i,j − 1 + pj ≤ b′′i,j ≤ pj .

This Kolmogorovian setup requires some care when interpreting conditional
assessments. Suppose first that A′′

i has probability zero in every probability mea-
sure that satisfies all assessments. In this case we may take P(A′

i|A′′
i) = αi to be

a misguided assignment to a quantity that should really be left undefined. How-
ever suppose that some satisfying probability measures assign zero probability
to A′′

i , while others do not. The most reasonable interpretation of this situation
is that only those probability measures that assign positive probability to A′′

i

should be retained; the others do not satisfy the fact that P(A′
i|A′′

i) has been
actually assessed.

An entirely different view of conditional probability can be found in de
Finetti’s theory of coherence. Here conditional probability is not a derived con-
cept, but rather the primary object of interest. Assessments can be given on
arbitrary events, and coherence of assessments is equated to existence of a full

conditional measure that satisfies the assessments. The selection of a particular
conditional measure imposes considerable structure on events, while de Finetti’s
approach assumes little algebraic structure on the assessments [7, 11]. A full con-
ditional measure P : B× (B\∅)→ <, where B is a Boolean algebra over a set Ω,
is a two-place set-function such that for every nonempty event C [13]:

• P(C|C) = 1 and P(A|C) ≥ 0 for all A;
• P(A ∪B|C) = P(A|C) + P(B|C) when A ∩B = ∅;
• P(A ∩B|C) = P(A|B∩C)P(B|C) when B ∩ C 6= ∅.

Note that conditioning is defined for every nonempty event; whenever the con-
ditioning event is Ω, we suppress it and write the “unconditional” probability
P(A). There are other names for full conditional measures in the literature,
such as conditional probability measures [26]; and complete conditional probabil-
ity systems [29]. Full conditional measures have been applied in economics [22,
29], philosophy [1, 28], artificial intelligence [9].

So, suppose we have the same propositions and assessments as before, and
events are interpreted as sets of truth assignments. We say the assessments are
coherent if there is a full conditional measure that satisfies them [11, 12]. Note
that a set of assessments may be coherent even if P(B) = 0 and P(A|B) = α > 0;
a probability measure that assigns probability zero to a conditioning event need
not be discarded.

There are algorithms for coherency checking that basically work by dividing
the space of truth assignments into “layers”: the first layer contains the truth as-
signments with positive unconditional probability; the second layer contains the
truth assignments with positive conditional probability given the complement
of the first layer, and so on [9, 11]. For each layer an appropriately specified
PSAT problem is solved, and the collection of PSAT problems yields the desired
coherency check. Alternative algorithms employ local rules that mimic logical
inference [3, 4]. To the extent that these methods solve linear programs in inter-
mediate steps, and these linear programs are of size exponential in the input, the
reductions to integer programming that we have explored before can be used.

To illustrate the last comment, consider the formulation of coherence checking
that is due to Walley et al. [32]. They consider that assessments are of the form
P(A′

i|A′′
i) ≥ αi, and show that existence of a satisfying full conditional measure

is equivalent to:

sup
ω|=Sλ

(
q∑
i=1

λiGi(ω)

)
≥ 0 whenever ∀i : λi ≥ 0 and ∃i : λi > 0,

where Gi(ω) = IA′′
i
(ω)(IA′

i
(ω)− αi), Sλ = ∨i:λi>0A

′′
i and IA(ω) is the indicator

function defined in Expression (2): 1 if ω |= A and 0 otherwise.
Walley et al. offer the following algorithm to check coherence, where a se-

quence of linear programs with more than 2n constraints each is generated. First,
set I = {1, . . . , q}. Solve the linear program in Expression (7) below. If τi = 1
for all i ∈ I, then coherence fails (problem is Unsatisfiable). Otherwise, replace

I by {i ∈ I : τi = 1}. If I becomes empty, then coherence holds (problem is
Satisfiable); otherwise solve linear problem in Expression (7) again, and so on.

max
∑
i∈I

τi (7)

s.t.: ∀ω :
∑
i∈I

λiGi(ω) +
∑
i∈I

τiIA′′
i
(ω) ≤ 0;∀λi : λi ≥ 0;∀i ∈ I : τi ∈ [0, 1].

Note that at each step we have the dual of a linear program with 2n opti-
mization variables; one can therefore write a compact integer linear program at
each step, using the techniques described in previous sections.

6 Inference

In this section we offer a few brief comments on the inference problem: given
a satisfiable or coherent set of assessment, find all possible values for P(ϕ), the
probability of an additional sentence ϕ, such that all assessments together are
still satisfiable/coherent.

In the Kolmogorovian setup that is usually adopted for PSAT, both minP(ϕ)
and maxP(ϕ) can be obtained by adding appropriate linear objective functions
to our methods. If additionally one wants tight bounds on a conditional proba-
bility P(ϕ′|ϕ′′), then linear fractional programming [5] can be used in the Kol-
mogorovian setup to transform minP(ϕ′ ∧ ϕ′′)/P(ϕ′′) into a linear objective
function (and similarly for maxP(ϕ′ ∧ ϕ′′)/P(ϕ′′)).

The inference problem is considerably more complex in de Finetti’s frame-
work. Walley et al. [32, Algorithm 5] present solutions for such a situation that
rely on sequences of linear programs. The discussion in Section 5 applies to
that case. Here the verification of coherence is a preliminary step, because only
coherent assessments are allowed to be used in inference [6].

7 Conclusion

In this paper we have introduced an approach to probabilistic satisfiability and
coherence checking that translates these problems into integer linear program-
ming. Our algorithms have the advantage of simplicity when compared to al-
ternative approaches. Because we can rely on existing highly optimized linear
programming solvers, we do not worry about numerical stability; likewise, our
algorithms can inherit any gains from parallelization and heuristics applied to
integer linear programming.

Experiments indicate that our algorithms are quite effective for random
PSAT problems. Moreover, we have presented an analysis of phase transition
in PSAT that improves previous results in the literature. Of course more testing
is necessary to fully understand the properties of probabilistic satisfiability and
coherence checking.

Acknowledgements

Both authors received support by CNPq. We thank the reviewers for very useful
suggestions, in particular for pointing us to Ref. [3] and [4].

References

1. Ernest W. Adams. A Primer of Probability Logic. CSLI Publications, Stanford,
CA, 2002.

2. Kim Allan Andersen and Daniele Pretolani. Easy cases of probabilistic satisfiabil-
ity. Annals of Mathematics and Artificial Intelligence, 33(1):69–91, 2001.

3. Marco Baioletti, Andrea Capotorti, Sauro Tulipani, and Barbara Vantaggi. Sim-
plification rules for the coherent probability assessment problem. Annals of Math-
ematics and Artificial Intelligence, 35(1-4):11-28, 2002.

4. Marco Baioletti, Andrea Capotorti, Sauro Tulipani. An empirical complexity study
for a 2CPA solver. In Bouchon-Meunier, G. Coletti, R. R. Yager, editors, Modern
Information Processing: From Theory to Applications, pages 73–84, 2005.

5. Dimitris Bertsimas and John N. Tsitsiklis. Introduction to Linear Optimization.
Athena Scientific, Belmont, Massachusetts, 1997.

6. V. Biazzo and Angelo Gilio. A generalization of the fundamental theorem of de
Finetti for imprecise conditional probability assessments. International Journal of
Approximate Reasoning 24:251–272, 2000.

7. V. Biazzo, Angelo Gilio, Thomas Lukasiewicz, G. Sanfilippo. Probabilistic logic
under coherence: Complexity and algorithms. Annals of Mathematics and Artificial
Intelligence, 45(1-2):35–81, 2005.

8. George Boole. The Laws of Thought. Dover edition, 1958.
9. Andrea Capotorti, L. Galli, and Barbara Vantaggi. How to use locally strong coher-

ence in an inferential process based on upper-lower probabilities. Soft Computing,
7(5):280–287, 2003.

10. Vijay Chandru and John Hooker. Optimization Methods for Logical Inference.
John Wiley & Sons Inc., 1999.

11. Giulianella Coletti and Romano Scozzafava. Probabilistic Logic in a Coherent
Setting. Trends in logic, 15. Kluwer, Dordrecht, 2002.

12. Bruno de Finetti. Theory of Probability, vol. 1-2. Wiley, New York, 1974.
13. Lester E. Dubins. Finitely additive conditional probability, conglomerability and

disintegrations. Annals of Statistics, 3(1):89–99, 1975.
14. Ronald Fagin, Joseph Y. Halpern, and N. Megiddo. A logic for reasoning about

probabilities. Information and Computation, 87:78–128, 1990.
15. Marcelo Finger and Glauber De Bona. Probabilistic satisfiability: Logic-based

algorithms and phase transition. In IJCAI, pages 528–533, 2011.
16. A. M. Frisch and Peter Haddawy. Anytime deduction for probabilistic logic. Ar-

tificial Intelligence, 69:93–122, 1994.
17. I. P. Gent and T. Walsh. The SAT phase transition. In European Conference on

Artificial Intelligence, pages 105–109, 1994.
18. G. Georgakopoulos, D. Kavvadias, and C. H. Papadimitriou. Probabilistic satisfi-

ability. Journal of Complexity, 4:1–11, 1988.
19. Theodore Hailperin. Best possible inequalities for the probability of a logical func-

tion of events. American Mathematical Monthly, 72:343–359, 1965.

20. Theodore Hailperin. Boole’s Logic and Probability: a Critical Exposition from
the Standpoint of Contemporary Algebra, Logic, and Probability Theory. North-
Holland, Amsterdam, 1976.

21. Joseph Y. Halpern. Reasoning about Uncertainty. MIT Press, Cambridge, Mas-
sachusetts, 2003.

22. Peter J. Hammond. Elementary non-Archimedean representations of probability
for decision theory and games. In P. Humphreys, editor, Patrick Suppes: Scientific
Philosopher; Volume 1, pages 25–59. Kluwer, Dordrecht, The Netherlands, 1994.

23. Pierre Hansen and Brigitte Jaumard. Probabilistic Satisfiability. Technical Report
G-96-31, Les Cahiers du GERAD, École Polytechique de Montréal, 1996.

24. Pierre Hansen and Sylvain Perron. Merging the local and global approaches
to probabilistic satisfiability. International Journal of Approximate Reasoning,
47(2):125–140, 2008.

25. Brigitte Jaumard, Pierre Hansen, and Marcus Poggi de Aragão. Column generation
methods for probabilistic logic. ORSA Journal on Computing, 3(2):135–148, Spring
1991.

26. Peter Krauss. Representation of conditional probability measures on Boolean al-
gebras. Acta Mathematica Academiae Scientiarum Hungaricae, 19(3-4):229–241,
1968.

27. Thomas Lukasiewicz. Expressive probabilistic description logics. Artificial Intelli-
gence, 172(6-7):852–883, April 2008.

28. V. McGee. Learning the impossible. In E. Bells and B. Skyrms, editors, Probability
and Conditionals, pages 179–199. Cambridge University Press, 1994.

29. R. Myerson. Game Theory: Analysis of Conflict. Harvard University Press, Cam-
bridge, MA, 1991.

30. Raymond Ng and V. S. Subrahmanian. Probabilistic logic programming. Infor-
mation and Computation, 101(2):150–201, 1992.

31. N. J. Nilsson. Probabilistic logic. Artificial Intelligence, 28:71–87, 1986.
32. Peter Walley, Renato Pelessoni, and Paolo Vicig. Direct algorithms for check-

ing consistency and making inferences from conditional probability assessments.
Journal of Statistical Planning and Inference, 126(1):119–151, 2004.

