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Abstract

Kuznetsov’s condition says that variables X and Y are independent when
any product of bounded functions f

�
X � and g

�
Y � behaves in a certain way:

the interval of expected values ��� f � X � g � Y ��� must be equal to the interval
product ��� f � X �	��
��� g � Y �	� . The main result of this paper shows how to com-
pute lower expectations using Kuznetsov’s condition. We also generalize
Kuznetsov’s condition to conditional expectation intervals, and study the re-
lationship between Kuznetsov’s conditional condition and the semi-graphoid
properties.
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1 Introduction
Kuznetsov’s condition says that two variables X and Y are independent if, for any
two bounded functions f � X � and g � Y � , we have���

f � X � g � Y ����� ���
f � X ����� ��� g � Y ����� (1)

where
���� � denotes an interval of expected values and the product is understood as

interval multiplication [8].
Kuznetsov’s condition is geared towards models that represent uncertainty

through sets of probability measures and expectation intervals. In those models,
Kuznetsov’s condition is seen to be more general than the standard definition of
stochastic independence. The condition can be viewed as a definition of inde-
pendence, and also as a constraint to be used when building models that involve
imprecise beliefs. The relationship between Kuznetsov’s condition and other con-
cepts of independence was analyzed in a previous paper [5]; several results from
that publication are used in this paper.�
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This paper shows how to compute minima and maxima of expected values
using Kuznetsov’s condition. The main result is a characterization of the largest
credal set that complies with Kuznetsov’s condition — the “Kuznetsov’s exten-
sion” of marginal sets. We discuss the computation of lower expectations from
Kuznetsov’s extensions, and investigate the connection between Kuznetsov’s ex-
tensions and other extensions used in the literature. Section 4 contains these de-
velopments.

We then generalize Kuznetsov’s condition to conditional beliefs (Section 5).
To clarify the behavior of the resulting condition, we investigate its compliance
to the semi-graphoid properties. We show that Kuznetsov’s conditional condition
satisfies symmetry, redundancy, decomposition and weak union, but fails the con-
traction property.

Kuznetsov’s condition is an interesting tool for modeling independence with
imprecise beliefs. This paper provides the basic machinery to manipulate the con-
dition in practice. Section 6 presents our conclusions.

2 Credal sets, lower expectations, extensions
In this section we review the basic concepts necessary for later developments.
Consider two random variables X and Y . In this paper all variables have finitely
many values. The probability density for X is denoted by p � X � , and Ep

�
f � X ���

denotes the expectation of function f � X � with respect to p � X � . A non-empty set
of probability measures is called a credal set [9]; a credal set consisting of den-
sities p � X � is denoted by K � X � . A credal set K � X � Y � consisting of joint den-
sities p � X � Y � is called a joint credal set. The lower and upper expectations of
function f � X � are respectively E

�
f � X ��� � minp! X "�# K ! X " Ep

�
f � X ��� and E

�
f � X ��� �

maxp! X "�# K ! X " Ep
�
f � X ��� . The lower probability and the upper probability of event

A are defined similarly. A credal set produces an expectation interval for any
bounded function h � X � : � � h � X ���$�&% E � h � X ���'� E � h � X ���)( .

There are several concepts of independence that can be applied to credal sets
[2, 7]; here we focus on epistemic independence and strong independence. Vari-
able Y is epistemically irrelevant to X if K � X * y � and K � X � have the same con-
vex hull for all possible values of Y (equivalently, E

�
f � X �+* y �,� E

�
f � X ��� for any

bounded function f � X � and all possible values of Y ). Variables X and Y are epis-
temically independent if X is irrelevant to Y and Y is irrelevant to X . Strong in-
dependence focuses instead on decomposition of probability measures [1, 2, 4]:
Variables X and Y are strongly independent when every extreme point of K � X � Y �
satisfies standard stochastic independence of X and Y .

Given marginal credal sets K � X � and K � Y � , there may be several credal sets
K � X � Y � for which X and Y are independent. Each one of these sets is called an
extension of K � X � and K � Y � . Given marginal sets K � X � and K � Y � , their epistemic
extension (called the independent natural extension by Walley) is the largest joint
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credal set that satisfies epistemic independence with marginals K � X � and K � Y �
[13]. Their strong extension is the largest joint credal set that satisfies strong in-
dependence with marginals K � X � and K � Y � [2, 4]. The term natural extension
is used to indicate the largest possible extension given whatever constraints on
probability and independence are adopted [13].

A credal set K � X � Y � is finitely generated when it is a polytope in the space of
probability measures — the convex hull of a finite number of probability distri-
butions. Such a set is defined by a finite collection of linear inequalities such as
∑X -Y h � X � Y � p � X � Y ��. 0. In the remainder of this paper, f indicates a function of
X , g indicates a function of Y and h indicates a function of X and Y . Similarly,
p indicates a density for X , q indicates a density for Y ; other densities, such as
p � X � Y � , are indicated explicitly. We can view functions and probability densities
as vectors, so we can write � f g � � � pq �/. 0 instead of ∑X -Y f � X � g � Y � p � X � q � Y ��.
0, using the dot product to produce summation.

Note that any hyperplane h
�
p � X � Y ��� 0 goes through the origin. The func-

tion/vector h is the normal vector of the hyperplane. If E
�
h ��� 0, then h defines a

supporting hyperplane for the credal set. If E
�
h �0� 0, then 1 h is a supporting hy-

perplane. A face of a polytope is the intersection of the polytope with a supporting
hyperplane; a facet is a maximal face distinct of the polytope [11].

To simplify notation, we use the same letter ( f , for instance) for a function,
a vector (containing the values of a function), a normal vector (orthogonal to an
hyperplane), an hyperplane (with the normal vector), or a facet (contained in the
hyperplane with the normal vector), depending on the circumstances.

Any function/vector h can be written as h 243 E
�
h � or as 1 h 2 2+3 E

�
h � , where h 2

and h 2 2 are supporting hyperplanes that are parallel to h. Consider any supporting
hyperplane h 2 that goes through a vertex V . Take the facets intersecting at V , and
the normal vectors to these facets. Then it must be possible to write h 2 as a linear
of these normal vectors.

3 Kuznetsov’s condition and Kuznetsov’s extension
Kuznetsov’s condition is a condition for independence operating on expectations
of independent variables [8]. The condition can be expressed either in terms of
expectation intervals (Expression (1)), or as

E
�
f � X � g � Y ���0� min 5 E

�
f � X ��� E � g � Y ���6� E �

f � X ��� E � g � Y �����
E
�
f � X ��� E � g � Y ���'� E �

f � X ��� E � g � Y ���87:9 (2)

To obtain (2) from (1), we recall that the interval product
�
a � b ��� �

c � d � is equal to�
min � ac � ad � bc � bd �;� max � ac � ad � bc � bd ��� 9

The following result is used later:
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Theorem 1 For any bounded functions f � X � and g � Y � , any extension that satis-
fies Kuznetsov’s condition must contain densities that attain E

�
f � E �

g � , E
�
f � E � g � ,

E
�
f � E �

g � , and E
�
f � E � g � .

Proof. Suppose we have a credal set that satisfies Kuznetsov’s condition. Con-
sider a function h1 �<� f 1 E

�
f �63 α �4� g 1 E

�
g �+3 β � , where α � β = 0; then E

�
h1 ���� E � f 1 E

�
f �)��3 α �4� E �

g 1 E
�
g �>��3 β �?� αβ for any α, β. But for this to happen, we

must have a density p1 � X � Y � such that Ep1

�
f �@� E

�
f � and Ep1

�
g �,� E

�
g � at the

same time. The proof can be completed by taking functions h2 �A� f 1 E
�
f ��3

α �4� g 1 E
�
g ��3 β � , h3 �B1C� f 1 E

�
f ��3 α �4� g 1 E

�
g �D3 β � and h4 �E1C� f 1 E

�
f ��3

α �4� g 1 E
�
g �'3 β � .

We can use Kuznetsov’s condition to construct credal sets. Suppose we have
K � X � and K � Y � , and we obtain the information that X and Y satisfy Kuznetsov’s
condition, without further information on K � X � Y � . What can we say about the
joint credal set K � X � Y � ? A reasonable strategy is to focus on the largest joint
credal set that satisfies Kuznetsov’s condition and has the marginals K � X � and
K � Y � . This set is referred to as Kuznetsov’s extension of K � X � and K � Y � . It should
be noted that a Kuznetsov’s extension always exists [5].

Kuznetsov’s extensions are smaller than epistemic extensions when all events
have positive probability, as in this case Kuznetsov’s independence implies epis-
temic independence — and even when all lower probabilities are larger than zero
Kuznetsov’s extensions can be strictly smaller than epistemic extensions [5]. A
strong extension always satisfies Kuznetsov’s condition and is contained in the
corresponding Kuznetsov’s extension (however, the Kuznetsov’s extension can
be strictly larger than the strong extension; also, it is possible that a credal set
satisfies strong independence but does not satisfy Kuznetsov’s condition) [5].

4 Characterizing Kuznetsov’s extensions
Suppose we have two binary variables X and Y , and we construct the strong ex-
tension of K � X � and K � Y � . In this case, it is known that the strong extension and
the Kuznetsov’s extension of K � X � and K � Y � are identical [5]. A more general
result can actually be proved:

Theorem 2 Consider a binary variable X with credal set K � X � , and a variable
Y with N values and credal set K � Y � with M vertices; the strong extension and
Kuznetsov’s extension of K � X � and K � Y � are identical.

Proof. The strong extension is composed of vertices of the form pi � X � q j � Y � ,
where pi indicates a vertex of K � X � and q j indicates a vertex of K � Y � . If K � X �
contains a single point, the result is immediate; suppose that K � X � has two ver-
tices p1 and p2 (so there is a function f1 � X � such that f1

�
p1 � 0, and a function
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f2 � X � such that f2
�
p2 � 0). The strong extension can have at most 2M vertices,

all of them with 2N components (thus the strong extension lives in � 2N 1 1 � di-
mensional space). Any facet of the strong extension is contained in an hyperplane
that is defined by selecting � 2N 1 1 � vertices of the strong extension plus the ori-
gin. Take a facet and divide its vertices (other than the origin) in two sets:
(i) the set C1 containing points of the form p1q j,
(ii) the set C2 containing points of the form p2qk,
where q j, qk are vertices of K � Y � . Suppose that C1 contains more points than C2.
Then we have at most N 1 1 points in C2; we can always find an hyperplane de-
fined by a function g � Y � that goes through all these points. Thus we can construct
a function f1 � X � g � Y � such that

∑
X -Y f1 � X � g � Y � p1 � X � q j � Y �F�HG ∑

X
f1 � X � p1 � X ��IAG ∑

Y
g � Y � q j � Y ��I<� 0

for every point in C1 and every point in C2. So the facet is represented by a de-
composable function f1g. The same construction can be followed if C2 has more
elements than C1, in which case we will arrive at a decomposable function of the
form f2g 2 for some g 2	� Y � . Thus, any facet of the strong extension is defined by a
decomposable hyperplane and consequently is a valid constraint for Kuznetsov’s
extension. The strong extension must then contain Kuznetsov’s extension, and so
both are equal.

The facets generated in the proof of Theorem 2 are of the form f � X � g � Y � . A
little reflection shows that this function g � Y � must define a supporting hyperplane
of K � Y � : If g were not a supporting hyperplane of K � Y � , there should be a point
qc such that ∑Y gqc . 0 and a point qd such that ∑Y gqd J 0. But g

�
qc . 0 would

imply � f g � � � p1qc �?. 0 and g
�
qd J 0 would imply � f g � � � p1qd � J 0, contradicting

the fact that f g is a supporting hyperplane for the strong extension. Consequently,
the facets of the strong extension in Theorem 2 are defined by decomposable
functions that factorize into facets of K � X � and K � Y � .

Consider now a more general situation where we have categorical variables X
and Y and finitely generated marginal credal sets K � X � and K � Y � . Suppose that,
instead of trying to compute Kuznetsov’s extensions, someone simply constructed
the following inequalities:

∑
X -Y f̃i � X � p � X � Y �K. 0 �
∑
X -Y g̃ j � Y � p � X � Y �K. 0 � (3)

∑
X -Y � f̃i � X � g̃ j � Y �L� p � X � Y �K. 0 �
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which can be written as

f̃i
�
p � X � Y �M. 0 � g̃ j

�
p � X � Y ��. 0 �N� f̃ig̃ j � � p � X � Y �M. 0 � (4)

for all combinations of i and j, where f̃i is a facet of K � X � and g̃ j is a facet
of K � Y � . Note that any set of densities that satisfies these inequalities will also
satisfy � f 2 g 2�� � p � X � Y ��. 0, where f 2 and g 2 are supporting hyperplanes of K � X �
and K � Y � respectively.

The next theorem is the main result: it shows how to explicitly construct
Kuznetsov’s extensions. The proof essentially consists of showing that any in-
equality required by Kuznetsov’s condition is already implied by inequalities (4).

Theorem 3 Consider a variable X with finitely generated credal set K � X � , de-
fined by facets f̃i, and a variable Y with finitely generated credal set K � Y � , defined
by facets g̃ j. The Kuznetsov’s extension is entirely defined by the facets f̃i, g̃ j, and� f̃ig̃ j � , for all combinations of i and j.

Proof. Denote by Kk � X � Y � the credal set constructed in the theorem. Every ver-
tex of the strong extension is of the form p � X � q � Y � and consequently satisfies� f̃ig̃ j � � � pq �/. 0. We conclude that the strong extension is contained in Kk � X � Y � ,
thus the expectation intervals generated by the strong extension are contained
in the expectation intervals generated by Kk � X � Y � . Furthermore, for every de-
composable function f � X � g � Y � , there is a density in Kk � X � Y � that attains the
value prescribed by Kuznetsov’s condition, as the strong extension is contained in
Kk � X � Y � .
Now take two arbitrary bounded functions f � X � and g � Y � . There are seven differ-
ent situations to consider:

1. E
�
f �,. 0, E

�
g �. 0: Kuznetsov’s condition requires that E

�
f g �0� E

�
f � E � g � .

Write f as f 263 E
�
f � ( f 2 is a supporting hyperplane of K � X � ) and write

g as g 2D3 E
�
g � (g 2 is a supporting hyperplane of K � Y � ). Then we have:

f g
�
p � X � Y ���O� f 263 E

�
f �	�+� g 2D3 E

�
g �P� � p � X � Y ��� f 2 g 2 � p � X � Y �$3 E

�
f � g 2 �

p � X � Y �$3 E
�
g � f 2 � p � X � Y �?3 E

�
f � E � g � , an expression that is equal to or

larger than E
�
f � E � g � given that p � X � Y � satisfies inequalities (4). This im-

plies that Ep
�
f g �M. E

�
f � E � g � for every p � X � Y � and we obtain E

�
f g �F�

E
�
f � E � g � (because the inclusion of the strong extension in Kk � X � Y � guar-

antees that the equality obtains).

2. E
�
f � J 0, E

�
g � J 0: Kuznetsov’s condition requires E

�
f g � � E

�
f � E � g � . To

show that Ep
�
f g � . E

�
f � E � g � for every p � X � Y � , write f as 1 f 243 E

�
f � and

g as 1 g 243 E
�
g � (where f 2 and g 2 are appropriate supporting hyperplanes),

and then: f g
�
p � X � Y �@�Q�R1 f 2 3 E

�
f �	�+�R1 g 2 3 E

�
g �P� � p � X � Y � , a quantity that

is equal to or larger than E
�
f � E � g � given inequalities (4).

3. E
�
f ��. 0, E

�
g � J 0: Kuznetsov’s condition requires E

�
f g ��� E

�
f � E �

g � . Write
f � f 2'3 E

�
f � , f �S1 f 2 2+3 E

�
f � , and g �T1 g 243 E

�
g � (where f 2 , f 2 2 and g 2
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are appropriate supporting hyperplanes; note that f is written in two differ-
ent ways) and then f g

�
p � X � Y �U� f � g 243 E

�
g �V� � p � X � Y �@�W�L� f 2;3 E

�
f �V� g 2;3�R1 f 2 2X3 E

�
f �	� E �

g �V� � p � X � Y � , which that is equal to or larger than E
�
f � E � g � .

4. E
�
f � J 0, E

�
f ��. 0, E

�
g � J 0: Kuznetsov’s condition requires E

�
f g �/�

E
�
f � E � g � . Write f �S1 f 2'3 E

�
f � , g � g 2+3 E

�
g � , and g �B1 g 2 2'3 E

�
g � , and

then f g
�
p � X � Y �M�S�R1 f 2Y�Z1 g 2 2'3 E

�
g ���3 E

�
f �6� g 2'3 E

�
g �V�L� � p � X � Y � , which

is equal to or larger than E
�
f � E � g � .

5. E
�
f � J 0, E

�
g ��. 0: Kuznetsov’s condition requires E

�
f g ��� E

�
f � E �

g � . Write
f � f 2 3 E

�
f � , g � g 2 3 E

�
g � , and g �T1 g 2 2 3 E

�
g � , and then f g

�
p � X � Y �/�� f 2Y� g 2�3 E

�
g �V�,3 E

�
f �6�Z1 g 2 2�3 E

�
g �P�L� � p � X � Y � , which is equal to or larger

than E
�
f � E � g � .

6. E
�
f � J 0, E

�
g � J 0, E

�
g � . 0: Kuznetsov’s condition requires that E

�
f g ���

E
�
f � E � g � . Write f � f 2'3 E

�
f � , f �T1 f 2 2+3 E

�
f � , and g �T1 g 243 E

�
g � , and

f g
�
p � X � Y ���A�R1 g 2	�R1 f 2 263 E

�
f �	�,3 E

�
g �6� f 2D3 E

�
f �	�Z� � p � X � Y �[�O� f 2 2 g 263

E
�
g � f 2�1 E

�
f � g 2�� � p � X � Y ��3 E

�
f � E �

g � , equal to or larger than E
�
f � E � g � .

7. E
�
f � J 0, E

�
f ��. 0, E

�
g � J 0, E

�
g �F. 0: Kuznetsov’s condition requires

E
�
f g �?� min � E � f � E � g �'� E � f � E �

g �P� . Divide Kk � X � Y � into two sets. Define
K1 � X � Y � to contain the distributions in Kk � X � Y � such that f

�
p � X � Y �\. 0,

and K2 � X � Y � to contain the distributions in Kk � X � Y � such that f
�
p � X � Y � J

0. The value of E
�
f g � with respect to Kk � X � Y � is the minimum of E

�
f g � with

respect to K1 � X � Y � and K2 � X � Y � . Following the previous cases, we obtain
E
�
f � E � g � as E

�
f g � with respect to K1 � X � Y � , and E

�
f � E � g � as E

�
f g � with

respect to K2 � X � Y � . We finally obtain E
�
f g �0� min � E � f � E � g �+� E �

f � E �
g �V� .

Thus Kk � X � Y � satisfies Kuznetsov’s condition, and Kuznetsov’s extension must
contain Kk � X � Y � — however Kuznetsov’s extension cannot be larger than the set
Kk � X � Y � , as every inequality (4) is directly required by Kuznetsov’s condition.

Once we know how to construct Kuznetsov’s extensions, we can compute
E
�
h � X � Y ��� for a non-decomposable function h � X � Y � :

E
�
h � X � Y ����� min � h � X � Y � � p � X � Y �Z�0� (5)

subject to p � X � Y ��. 0, ∑X -Y p � X � Y �U� 1, and inequalities (4).
The linear program (5) provides the solution to the question, Which (decom-

posable) constraints to use when computing a lower expectation for Kuznetsov’s
extension? Theorem 3 proves that inequalities (4) contain all the relevant con-
straints. Kuznetsov himself seems to have obtained different results, using his con-
dition and additional factorization conditions to define extensions — a framework
that led him to prescribe linear programs with infinitely many constraints [8].

Finally, note that we can also use linear programming if we need to compute
a conditional lower expectation such as E

�
h *A � for some event A where P � A �/= 0.
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The computation of E
�
h *A � requires the solution of a fractional linear program

that can be performed using the Charnes-Cooper transformation and linear pro-
gramming [3], using inequalities (4) as the starting point.

5 Kuznetsov’s conditional condition and the semi-
graphoid properties

Kuznetsov’s condition does not deal with the concept of conditional indepen-
dence, but it can certainly be extended to do so. Say that two variables X and Y
are independent conditional on Z if, for bounded functions f � X � and g � Y � ,� �

f g * z �?� � �
f * z �� �@� g * z ���

for any value of Z (we assume that conditioning events have positive lower prob-
ability).

How appropriate is Kuznetsov’s conditional condition as a concept of con-
ditional independence? One way to study concepts of independence is to ver-
ify the semi-graphoid properties satisfied by the concept [6, 10, 12]. A relation� X ]+] Y * Z � is called a semi-graphoid when it satisfies the following axioms:
Symmetry: � X ]+] Y * Z �/^_� Y ]+] X * Z �
Redundancy: � X ]'] Y * X �
Decomposition: � X ]+]`� W � Y ��* Z �/^_� X ]+] Y * Z �
Weak union: � X ]+]`� W � Y ��* Z �F^_� X ]'] Y *R� W � Z �Z�
Contraction: � X ]'] Y * Z � & � X ]+] W *R� Y � Z �Z�U^a� X ]+]`� W � Y ��* Z � .

Denote by � X ]+] K Y * Z � the fact that X and Y satisfy Kuznetsov’s condition
conditional on Z. The notation E

�
f � is used to indicate either E

�
f � or E

�
f � , what-

ever value is required by Kuznetsov’s condition. We have:

Theorem 4 Kuznetsov’s conditional condition satisfies symmetry, redundancy,
weak union and decomposition when applied to credal sets where no event has
zero lower probability.

Proof. Symmetry is immediate, and redundancy follows from
��

f � X � g � Y �'* x0 ��
f � x0 � � � g � Y �'* x0 �,� � �

f � X �'* x0 � � �� g � Y �+* x0 � for any f � X � , g � Y � , and any x0. De-
composition follows from the fact that any function of Y is also a function of Y and
W , so we have

� �
f � X � g � Y �+* z �0� ��

f � X �'* z ��� �U� g � Y �+* z � when � X ]+] K � W � Y ��* Z � .
To simplify the proof of the weak union property, the conditioning variable Z
is suppressed. What must be shown is that E

�
f g *w �@� E

�
f � E � g *w � follows from

E
�
f h �b� E

�
f � E � h � , where h is any function of W and Y (note that E

�
f ��� E

�
f *w � by

hypothesis, as events have positive lower probability). Theorem 1 can be easily
modified to prove that any credal set satisfying Kuznetsov’s condition must con-
tain densities that attain E

�
f � E � g *w � , E

�
f � E � g *w � , E

�
f � E � g *w � and E

�
f � E �

g *w � ;
thus, there is always a density p in a set that satisfies Kuznetsov’s condition
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such that Ep
�
f g *w �/� E

�
f g *w � , where E

�
f g *w � follows Kuznetsov’s condition.

Take Kuznetsov’s extension of K � X � and K � W � Y � , denoted by Kk � W � X � Y � . This
extension must be equal to or larger than any set satisfying X ]'] K � W � Y � . If
we determine that E

�
f g *w �?. E

�
f � E � g *w � for Kk � W � X � Y � , then automatically we

obtain E
�
f g *w �F� E

�
f � E � g *w � for any set satisfying � X ]+] K � W � Y �L� , and weak

union follows. The Kuznetsov’s extension Kk � W � X � Y � satisfies any inequality
h � W � X � Y � � p � W � X � Y �\. 0, and so it satisfies � f � X � g � Y � Iw � W �Z� � p � W � X � Y �M. 0
for any f � X � , g � Y � and w. If we consider the conditional distributions p � X � Y *w �
obtained from Kk � W � X � Y � , they must satisfy � f � X � g � Y �Z� � p � X � Y *w �\. 0 as this
last inequality is obtained by normalizing the previous one. If we were to con-
struct the Kuznetsov’s extension of K � X � and K � Y *w � , where K � Y *w � is obtained
from K � W � X � by conditioning, then this Kuznetsov’s extension would also sat-
isfy any inequality � f � X � g � Y �Z� � p � X � Y *w ��. 0. So, every inequality constraining
the Kuznetsov’s extension of K � X � and K � Y *w � is also a constraint for the con-
ditional set obtained from Kk � W � X � Y � . Thus the former set is equal to or larger
than the latter set. Now notice that, for the Kuznetsov’s extension of K � X � and
K � Y *w � , E

�
f g *w �$� E

�
f � E � g *w � , and so we must have E

�
f g *w �F. E

�
f � E � g *w � for

Kk � W � X � Y � .
Kuznetsov’s condition does not imply the contraction property, as the next

example shows.

Example 1 Consider binary variables W , X , and Y , and a credal set K � W � X � Y �
with eight vertices such that each vertex decomposes as p � W *Y � p � X � p � Y � . Val-
ues of p � w0 * y0 � , p � w0 * y1 � , p � x0 � and p � y0 � are:

Vertex
�
p � w0 * y0 ��� p � w0 * y1 ���

p � x0 ��� p � y0 ��� Vertex
�
p � w0 * y0 ��� p � w0 * y1 ���

p � x0 ��� p � y0 ���
1 [0.7,0.4,0.3,0.2] 5 [0.7,0.4,0.3,0.3]
2 [0.7,0.5,0.2,0.2] 6 [0.7,0.5,0.3,0.3]
3 [0.8,0.4,0.2,0.2] 7 [0.8,0.4,0.3,0.3]
4 [0.8,0.5,0.2,0.2] 8 [0.8,0.5,0.2,0.3]

It can be verified that the set of marginal densities K � X � Y � contains every com-
bination of p � x0 � and p � y0 � , so K � X � Y � is the Kuznetsov’s extension for X and
Y (Theorem 2). Likewise, K � W � X * y0 � is the Kuznetsov’s extension of W and X
conditional on y0, and K � W � X * y1 � is the Kuznetsov’s extension of W and X condi-
tional on y1. Thus the credal set K � W � X � Y � satisfies � X ]+] KY � and � X ]+] K W * Y � ,
but it is not true that X ]+] K � W � Y � . Take the function f � X �U� �

1 � 2 � and the func-
tion h � W � Y ��� �

2 � 1 � 1 � 2 � . Then E
�
f h �?� 2 9 652 for K � W � X � Y � , but E

�
f � E � h �$�

1 9 7 � 1 9 54 � 2 9 61 — violating Kuznetsov’s condition.

Despite the failure of contraction for generic credal sets, there is an important
situation where contraction holds with Kuznetsov’s condition.
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Theorem 5 Kuznetsov’s conditional condition satisfies the contraction property
when applied to credal sets where no events have zero lower probability, and such
that the sets K � X � , K � Y � , and K � W *Y � are separately specified.

Proof. As the relevant sets are separately specified, minimization can occur sepa-
rately within each set, so E

�
f � X � h � W � Y ����� minEp

�
Ep

�
f h *Y �>��� minEp

�
E
�
f h *Y �)� .

As we have � X ]'] K W * Y � , E
�
f � X � h � W � Y ����� minEp % E � f *Y � E � h *Y � ( , and because

X ]'] K Y , E
�
f � X � h � W � Y ����� minE

�
f � Ep % E � h *Y � ( � E

�
f � E � h � .

6 Conclusion
A Kuznetsov’s extension can be viewed as a set that “wraps” a strong extension
using decomposable hyperplanes. In fact, there is an interesting duality between
these two extensions; while the former is constructed with decomposable hyper-
planes, the latter is constructed with decomposable measures.

Kuznetsov’s extensions can have complex structures, except when binary vari-
ables are present. The fact that the conditional version of Kuznetsov’s condition
fails the contraction property is troubling. This failure suggests that it may be
hard to simplify multivariate models using only judgements of conditional inde-
pendence (according to Kuznetsov’s condition), as these judgements are coupled
with the contraction property in traditional multivariate probabilistic models [10].

The challenges for the future are to determine when Kuznetsov’s extensions
(and derived concepts) are applicable in practice and how to manipulate them
efficiently.
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