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Independence for Sets of Full Conditional Probabilities,
Sets of Lexicographic Probabilities, and Sets of Desirable Gambles

Fabio Gagliardi Cozman
Escola Politecnica - Universidade de Sao Paulo

Av. Prof. Mello Moraes 2231 - Cidade Universitaria, Sao Paulo, SP - Brazil

Abstract

In this paper we examine concepts of independence
for sets of full conditional probabilities; that is, for
sets of set-functions where conditional probability is
the primitive concept, and where conditioning can be
considered on events of probability zero. We also dis-
cuss the related issue of independence for (sets of)
lexicographic probabilities and for sets of desirable
gambles.
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1 Introduction

This paper examines concepts of independence for sets
of full conditional probabilities and related models.
We study the behavior of several concepts of inde-
pendence in the literature, and propose a number of
possible additional concepts. The results should be of
interest to anyone concerned with representations of
uncertainty that allow indeterminacy and imprecision
in probability values, and that allow conditioning on
every nonempty event.

The motivation for this paper is the following.

The use of a single standard probability measure fails
to encode indeterminacy and imprecision about prob-
ability values. Belief functions, interval-valued prob-
ability, and sets of probability measures have been
proposed to handle such indeterminacy and impreci-
sion. It is not obvious how to generalize the concept
of stochastic independence when one deals with sets
of probability measures; accordingly, there have been
many proposed concepts of independence in the liter-
ature.

Another problem with standard probability measures
is that they do not handle conditioning on events of

probability zero; that is, if P (B) = 0, then P (A|B)
does not exist, regardless of the event A. Indeed, stan-
dard conditional probability is merely a derived, in-
completely specified concept, while one might argue
that conditional probability should be the primitive
object of interest. Full conditional probabilities offer
an account of conditional probability as primitive ob-
jects that can be specified even if conditioning events
have probability zero. As standard stochastic inde-
pendence is quite weak when applied to full condi-
tional probabilities, there have been several proposals
for concepts of independence that are appropriate for
a single full conditional probability.

However, there is still much to be understood about
concepts of independence for sets of full conditional
probabilities. This paper tries to partially fill this
gap, by examining a number of concepts of indepen-
dence and deriving their graphoid properties (these
properties are often taken as abstract properties that
any “sensible” concept of independence should sat-
isfy). We also discuss concepts of independence for
(sets of) lexicographic probabilities and sets of desir-
able gambles, as they share several features with full
conditional probabilities.

Section 2 describes existing and novel concepts of in-
dependence for credal sets and full conditional proba-
bilities. It does not seem that a similar analysis can be
found in the literature. Section 3 examines a number
of new concepts of independence for sets of full condi-
tional probabilities. Section 4 then examines concepts
of independence that resort to lexicographic probabil-
ities and to sets of desirable gambles.

2 Concepts of independence

We assume throughout that the possibility space Ω
is finite, so there are no issues of measurability.
Throughout the paper we use W , X, Y and Z to
denote random variables. Then w denotes a possible
value of W , x denotes a possible value of X, y denotes
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a possible value of Y , z denotes a possible value of Z.
And {x} denotes the event {ω ∈ Ω : X(ω) = x}; like-
wise for {w}, {y} and {z}. The letters A and C will
always denote nonempty events in the algebra gener-
ated by X. Likewise, the letters B and D will always
denote nonempty events in the algebra generated by
Y . The letter f will always denote a function of X,
and the letter g will always denote a function of Y .

The intersection of events G and H is written either
as GH or as G,H. When the event {x} appears in an
intersection, we remove braces whenever possible; for
instance, xG denotes the event {x} ∩ G. Sometimes
we add braces to enhance clarity; for instance, we may
write {y, z} instead of simply y, z.

Finally, when w, x, y, z appear in expressions,
they are universally quantified unless explicitly noted.
Likewise, when functions f and g appear in expres-
sions, they are universally quantified unless explicitly
noted.

Conditional stochastic independence of random vari-
ables X and Y given random variable Z obtains when
P (x, y|z) = P (x|z)P (y|z) whenever P (z) > 0.

Throughout, if Z is any constant function, we remove
the expression “given Z” and in that case we have
“unconditional” independence of X and Y (for any
concept of independence of interest). Often we just
write “independence” to mean both conditional and
unconditional independence.

Concepts of independence can be evaluated by their
graphoid properties [14, 34]. For any three-place rela-
tion (·⊥⊥· | ·), we are interested in the following prop-
erties, all of them satisfied by stochastic indepen-
dence:

Symmetry: (X⊥⊥Y |Z) ⇒ (Y ⊥⊥X |Z)

Redundancy: (X⊥⊥Y |X)

Decomposition: (X⊥⊥(W,Y ) |Z) ⇒ (X⊥⊥Y |Z)

Weak union: (X⊥⊥(W,Y ) |Z) ⇒ (X⊥⊥Y |(W,Z))

Contraction:
(X⊥⊥Y |Z)∧ (X⊥⊥W |(Y, Z)) ⇒ (X⊥⊥(W,Y ) |Z).

2.1 Independence for sets of standard
probability measures

A set of standard (Kolmogorovian-style) probability
measures, not assumed to be closed and convex, is re-
ferred to as a credal set. Denote by K(X) the set
of probability distributions for variable X. Given
a function f(X), its lower and upper expectations
are, respectively E[f(X)] = infP∈K EP [f(X)] and
E[f(X)] = supP∈K EP [f(X)], where EP [f(X)] is

the expectation of f(X) with respect to P . Simi-
larly, given an event A, its lower and upper prob-
abilities are, respectively P (A) = infP∈K P (A) and
P (A) = supP∈K P (A).

Given a credal set K(X), we define the conditional
credal set

K(X|A) = {P (·|A) : P ∈ K(X)} if P (A) > 0;

otherwise, K(X|A) is left undefined [21]. Another
option is to define a conditional credal set that fo-
cuses on those probability measures that assign posi-
tive probability to A:

K>(X|A) = {P (·|A) : P ∈ K(X) and P (A) > 0}

if P (A) > 0; (1)

otherwise K>(X|A) is left undefined [44, 45]. Ob-
viously, if P (A) > 0, then K(X|A) = K>(X|A).
The set K>(X|A) is convex when K(X) is convex,
but it may be open even when K(X) is closed. We
define E>[f(X)|A] = infP(·|A)∈K>(X|A) EP [f(X)|A]

and E
>
[f(X)|A] = supP(·|A)∈K>(X|A) EP [f(X)|A].

For a moment, assume that all lower probabilities are
positive.

Following Levi [29], say that Y is confirmationally ir-
relevant to X given Z when

K(X|y, z) = K(X|z) . (2)

Walley has proposed a similar concept [41, 42]: Y is
epistemically irrelevant to X given Z when

E[f(X)|y, z] = E[f(X)|z] (3)

(recall our conventions: by implicit quantification,
this equality is required for all f , for all y, z).

Both confirmational and epistemic irrelevance fail
Symmetry. Walley’s clever solution, borrowed from
the work of Keynes, was to “symmetrize” irrelevance
to obtain epistemic independence: X and Y are epis-
temically independent given Z when X is epistemi-
cally irrelevant to Y given Z and Y is epistemically
irrelevant to X given Z [42]. Take confirmational in-
dependence to be a likewise symmetrized version of
confirmational irrelevance.

If all credal sets are closed and convex, then confir-
mational and epistemic independence are equivalent.
Now even if all lower probabilities are positive and
all credal sets are closed and convex, epistemic in-
dependence (and confirmational independence) fails
Contraction [7]. And if credal sets are not required to
be convex, then confirmational independence fails De-
composition, Weak Union and Contraction even when
all lower probabilities are positive [9].
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Matters become more complicated if lower proba-
bilites are allowed to be zero. Suppose first that Y
is taken to be confirmationally irrelevant to X if

K(X|y, z) = K(X|z) whenever P (y, z) > 0.

We are surely flirting with disaster here, because it is
not difficult to have a variable Z such that every value
of Z has zero lower probability, and yet K(Z) is not a
vacuous credal set (that is, it does not contain every
possible distribution for Z). Now given such a vari-
able Z, every two other variables are confirmationally
independent! This is not reasonable.

The other path to handle events of zero lower prob-
ability within confirmational independence is to say
that Y is confirmationally irrelevant to X given Z
when

K>(X|y, z) = K(X|z) whenever P (y, z) > 0. (4)

The symmetrized concept of independence fails De-
composition, Weak Union and Contraction (as noted
before, these properties fail even when all lower prob-
abilities are positive [9]).

Another possibility is to define epistemic irrelevance
of Y to X given Z by requiring:

E>[f(X)|y, z] = E[f(X)|z] whenever P (y, z) > 0.
(5)

The resulting symmetrized concept of independence
fails Contraction (as noted before, this property fails
even when all lower probabilities are positive [7]). It
is an open question whether Decomposition and Weak
Union hold when Expression (5) is used to define in-
dependence; Decomposition and Weak Union hold for
epistemic independence when all lower probabilities
are positive [12].

Note: Expressions (4) and (5) impose different con-
straints, as K>(X|A) may be open even when K(X)
is closed.

Yet another path has been followed by de Campos
and Moral [15]: they say Y is type-5 irrelevant to X
if

K>(X|B) = K(X) whenever P (B) > 0

(recall: B is an event in the algebra generated by Y ).
Accordingly, say that Y is type-5 irrelevant toX given
Z if

K>(X|B, z) = K(X|z) whenever P (B, z) > 0.

Now we might also modify epistemic irrelevance, and
say that Y is type-5 epistemically irrelevant toX given
Z if

E>[f(X)|B, z] = E[f(X)|z] whenever P (B, z) > 0.

And we can symmetrize type-5 irrelevance and type-
5 epistemic irrelevance to obtain corresponding con-
cepts of independence. Now, Contraction fails for
type-5 independence and for type-5 epistemic inde-
pendence (Contraction fails already when all lower
probabilities are positive [7]). It is an open question
whether Weak Union holds for these concepts of in-
dependence. As for Decomposition:

Proposition 1 Both type-5 independence and type-5
epistemic independence satisfy Decomposition.

Proof. Assume X and (W,Y ) are type-5 independent
given Z. Then K(Y |A, z) = K(Y |z) by marginal-
ization, and K(X|B, z) = K(X|z) because any B
belongs to the algebra generated by (W,Y ). Like-
wise, assume type-5 epistemic independence holds for
X and (W,Y ). Then E[g(Y )|A, z] = E[g(Y )|z] be-
cause any function of Y is a function of (W,Y ), and
E[f(X)|B, z] = E[f(X)|z]. �
Type-5 irrelevance may seem very attractive at first,
but the following example, due to de Campos and
Moral [15], displays rather weird behavior when lower
probabilities are zero. Take binary variables X and
Y , and K(X,Y ) with two distributions, one that as-
signs probability one to (x0, y0) and another that as-
signs probability one to (x1, y1) (if K(X,Y ) must be
convex, take the convex hull of these two distribu-
tions). Both distributions satisfy stochastic indepen-
dence, but X and Y fail to be type-5 independent! In
general, type-5 independence may fail even when all
elements of the credal set K(X,Y ) factorize.

This discussion suggests that concepts of indepen-
dence for credal sets must handle conditioning care-
fully. We now describe a few concepts of independence
that require no discussion about conditioning.

Strong independence was also proposed by Levi [29],
initially with the name strong confirmational irrel-
evance: X and Y are strongly independent when
K(X,Y ) is the convex hull of a set of probability mea-
sures that satisfy stochastic independence. Strong in-
dependence is an attempt to stay close to stochas-
tic independence while assuming convexity (given
that imposing stochastic independence over a set of
probability measures may generate a nonconvex set
of measures). Strong independence can be derived
from assumptions of infinite exchangeability [9] or fi-
nite exchangeability together with epistemic indepen-
dence [16]. Note that strong independence, and slight
variants of it, have received several names in the lit-
erature, such as type-1 product, type-2 product, type-2
independence, independence in the selection, repeti-
tion independence [9].

Complete independence abandons convexity and im-
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poses stochastic independence directly: X and Y are
completely independent when every joint distribu-
tion in K(X,Y ) satisfies stochastic independence [9].
Complete independence satisfies all graphoid proper-
ties previously mentioned.

The last notable concept of independence we mention
for credal sets is due to Kuznetsov [28]: X and Y are
Kuznetsov-independent if

E[f(X)g(Y )] = E[f(X)]� E[g(Y )]

for all functions f(X) and g(Y ), where E[·] de-
notes the interval from lower to upper expectations,
and � denotes interval multiplication. Kuznetsov-
independence satisfies Symmetry, Redundancy and
Decomposition; it fails Contraction even when all
probabilities are positive [8], and it is an open ques-
tion whether it satisfies Weak Union or not.

2.2 Independence for full conditional
probabilities

A full conditional probability [20] P : B × (B\∅) →
�, where B is a Boolean algebra, is a two-place set-
function such that for every event H �= ∅:
(1) P (H|H) = 1;
(2) P (G|H) ≥ 0 for all G;
(3) P (G1 ∪G2|H) = P (G1|H) + P (G2|H)

whenever G1 ∩G2 = ∅;
(4) P (G1, G2|H) = P (G1|G2, H)× P (G2|H)

whenever G2H �= ∅.
This fourth axiom is often stated as P (G1|H) =
P (G1|G2)P (G2|H) when G1 ⊆ G2 ⊆ H and G2 �= ∅
[13, Section 2].

Define the “unconditional” probability P (G) of an
event G to be P (G|Ω). That is, whenever the con-
ditioning event H is equal to Ω, we suppress it and
write the “unconditional” probability P (G).

There are other names for full conditional proba-
bilities in the literature, such as conditional proba-
bilities [27] and complete conditional probability sys-
tems [33]. We simplify to full probability whenever
possible. Full probabilities have found applications
in several fields, notably economy, philosophy, and
statistics [5, 19, 26, 30, 32, 35, 38].

We can partition Ω into events L0, . . . , LK as follows.
First, take L0 to be the set of elements of Ω that
have positive unconditional probability. Then take
L1 to be the set of elements of Ω that have positive
probability conditional on Ω\L0. And then take Li,
for i ∈ {2, . . . ,K}, to be the set of elements of Ω
that have positive probability conditional on Ω\∪i−1

j=0
Lj . The events Li are called the layers of the full
probability. Note that some authors use a different

y0 y1
x0 �1�0 �1− α�1
x1 �α�1 �1�2

y0 y1
x0 �1�0 �1�i
x1 �1�j �1�3

Table 1: Joint full distributions for binary variables
X and Y . The right table stands for two full distri-
butions: one for i = 1, j = 2; another for i = 2, j = 1.

terminology, using instead the sequence ∪K
j=iLj rather

than Li [5, 27].

Any full probability can be represented by a sequence
of probability measures P0, . . . , PK , where Pi is posi-
tive over Li. This useful result that has been derived
by several authors [3, 5, 23, 27].

For nonempty G, denote by LG the first layer such
that P (G|LG) > 0, and refer to it as the layer of G.
We then have P (G|H) = P (G|H ∩ LH) [2, Lemma
2.1a].

We often write �α�i to denote a probability value α
that belongs to the ith layer Li. Table 1 shows three
full distributions using this compact notation.

Given a full probability and a nonempty event H, the
two-place function P (·| · ∩H) is also a full probabil-
ity from which a partition of H consisting of layers
L0|H , L1|H , . . . , LK|H can be built. Given an event G
such that G ∩H �= ∅, denote by LG|H the first layer
of P (·| · ∩H) such that P

�
G|LG|H

�
> 0.

For a nonempty event G, the index i of the first layer
Li of the full probability P such that P (G|Li) > 0
is the layer number of G. Layer numbers have been
studied by Coletti and Scozzafava [5], who refer to
them as zero-layers. The layer number of G is denoted
by ◦(G). Inspired by Coletti and Scozzafava [5], we
define the layer number of G given nonempty H as
◦(G|H) = ◦(G ∩H)−◦(H), and we adopt ◦(∅) = ∞.

Now consider concepts of independence for full prob-
abilities.

Stochastic independence satisfies all graphoid prop-
erties we have mentioned previously, when applied
to full probabilities. Unfortunately, it may happen
that X and Y are stochastically independent and yet
P (A|B) �= P (A) when P (B) = 0. Table 2 shows an
extreme example. To avoid this embarrassment, more
stringent notions of independence have been proposed
for full probabilities [3, 5, 23, 39].

Say that Y is epistemically irrelevant to X given Z
if P (A|y, z) = P (A|z) whenever {y, z} �= ∅, and then
say that X and Y are epistemically independent given
Z if X is epistemically irrelevant to Y given Z and
vice-versa. Epistemic independence satisfies Sym-
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y0 y1
x0 �1�0 �1�3
x1 �1�1 �1�2

Table 2: Joint full distributions for stochastically in-
dependent binary variables, where P (x0) = 1 �= 0 =
P (x0|y1).

w0y0 w1y0 w0y1 w1y1
x0 �α�0 �β�2 �1− α�0 �1− β�2
x1 �α�1 �γ�3 �1− α�1 �1− γ�3

Table 3: Full distribution for W , X, Y , with distinct
α ∈ (0, 1), β ∈ (0, 1), γ ∈ (0, 1).

metry, Redundancy, Decomposition and Contraction,
but it fails Weak Union [11, Proposition 4.2]. The full
distribution in Table 3 displays failure of Weak Union
for epistemic independence.

As proposed by Hammond [23], say that Y is h-
irrelevant to X given Z when

P (A|B,C, z) = P (A|C, z) whenever {B,C, z} �= ∅,

and say thatX and Y are h-independent given Z when
X is h-irrelevant to Y given Z and vice-versa (recall
our conventions: this equality must hold for every A
and C in the algebra generated by X, and for every
B in the algebra generated by Y ).

If X and Y are h-independent given Z, then

P (A,B|C,D, z) = P (A|C, z)P (B|D, z)

whenever {C,D, z} �= ∅.

H-independence satisfies Symmetry, Redundancy, De-
composition and Weak Union, but it fails Contraction
[11, Theorem 5.4]. The full distribution in Table 3
displays failure of Contraction for h-independence.

Coletti and Scozzafava [5] have proposed conditions
on zero-layers to characterize independence. Say that
event H is cs-irrelevant to event G, where H �= ∅ �=
Hc, if P (G|H) = P (G|Hc), ◦(G|H) = ◦(G|Hc), and
◦(Gc|H) = ◦(Gc|Hc). To understand the motivation
for these conditions on layer numbers, suppose that
GH, GHc, GcH are nonempty, but GcHc = ∅. Hence
observation of Hc does provide information about G.
However, the indicator functions of G and H can be
epistemically/h-independent! Coletti and Scozzafava
eliminate such difficulties using their conditions on
layer numbers; other authors, such as Hammond [23]
and Battigalli [2], explicitly require the possibility
space to be the product of the possibility spaces for
each of the variables.

Vantaggi [39, 40] has extended Coletti and Scozzafava
conditions to independence of variables. Say that Y
is cs-irrelevant to X given Z when event {y} is cs-
irrelevant to event {x} given event {z}, whenever
{y, z} �= ∅ �= {{y}c, z} [39, Definition 7.3]. Call
the symmetrized concept cs-independence of X and
Y given Z. Besides Symmetry, cs-independence sat-
isfies Redundancy, Decomposition and Contraction,
and it fails Weak Union [39, Section 9].

The conditions on layer numbers imposed by cs-
independence can be written as [11, Corollary 4.11]:

◦(x, y|z) = ◦(x|z) + ◦(y|z) for {z} �= ∅. (6)

Condition (6) can be used to generate additional con-
cepts of independence. For instance, say that Y is
fully irrelevant to X given Z if Y is h-irrelevant to
X given Z and if they satisfy Condition (6); say that
X and Y are fully independent given Z if they are
h-independent given Z and satisfy Condition (6) [11].

Full independence satisfies Symmetry, Redundancy,
Decomposition and Weak Union, but it fails Contrac-
tion [11, Theorem 5.7]. Table 3 displays failure of
Contraction for full independence.

A different concept of independence has been pro-
posed by Kohlberg and Reny [26], essentially as fol-
lows. Say that X and Y are kr-independent given Z
when both:

• if {x, z} �= ∅ and {y, z} �= ∅, then {x, y, z} �= ∅;

• if, whenever conditioning events are nonempty,

P
�
x, y|Lx,y|z ∪ Lx�,y�|z

�

P
�
x�, y�|Lx,y|z ∪ Lx�,y�|z

� =

lim
n→∞

Pn(x|z)Pn(y|z)
Pn(x�|z)Pn(y�|z)

for some sequence of product probability mea-
sures Pn(·|z).

Relatively little is known about kr-independence; we
only note that it satisfies Symmetry, Redundancy, De-
composition and Weak Union, and it fails Contraction
as can be seen in Table 3 [10, Theorem 1].

We now introduce a new concept of independence for
full probabilities where we require factorization across
layers of the full probability [10]. Consider:

Definition 1 X and Y are layer independent given
Z if, for each layer Li of the underlying full probability
P , and each z such that {Li, z} �= ∅, we have both

P (x, y|Li, z) = P (x|Li, z)P (y|Li, z) ,

◦(x, y|z) = ◦(x|z) + ◦(y|z) .
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This concept of independence satisfies Symmetry, Re-
dundancy, Decomposition, Weak Union and Contrac-
tion; in fact, this seems to be the only known concept
of independence for full probabilities that satisfies all
these five properties.

We conclude this section by commenting on an aspect
of full probabilities that has not received the deserved
attention so far; namely, failure of uniqueness (some
comments about it appear in the work of Battigalli
[1] and Kohlberg and Reny [26]). The issue is this.
Suppose one is given marginal probabilities P (x0) =
P (y0) = 1 for binary variables X and Y . Now every
full distribution in Table 1 (for every α ∈ (0, 1)) satis-
fies these marginal assessments and epistemic/h-/cs-
/full/kr-independence; moreover, the two full distri-
butions encoded by the right table satisfy layer inde-
pendence. In general, one cannot uniquely determine
a single full probability by specifying marginal assess-
ments and judgments of independence. Once assess-
ments are to be combined with existing concepts of
independence, one must be prepared to consider a set
of joint full probabilities that satisfies all constraints.

3 Full credal sets and independence

We now focus on sets of full probabilities, and inves-
tigate the graphoid properties of several concepts of
independence. We refer to such sets as full credal sets;
we do not assume the sets to be convex and closed.

As already noted, a concept of independence that
relies on product factorizations is too weak in the
context of full probabilities. Indeed we have that
Kuznetsov, strong, complete and type-5 independence
declare X and Y independent for the full credal set
containing only the full distribution in Table 2.

Complete independence can be adapted to full credal
sets as follows. Define elementwise epistemic/h-
/cs-/full/kr-/layer independence of X and Y given
Z to hold when every element of the full credal
set K(X,Y |z) satisfies respectively epistemic/h-/cs-
/full/kr-/layer independence whenever {z} �= ∅. We
note that Coletti and Scozzafava’s concept of inde-
pendence for lower probabilities [4, Definition 6], ex-
tended to variables by Vantaggi [40, Definition 7], is
quite similar to elementwise cs-independence.

Given the results mentioned in the previous section:

Proposition 2 Elementwise epistemic/cs-indepen-
dence satisfy Symmetry, Redundancy, Decomposition
and Contraction (and fail Weak Union). Element-
wise h-/full/kr-independence satisfy Symmetry, Re-
dundancy, Decomposition and Weak Union (and fail
Contraction). Elementwise layer independence sat-

isfies Symmetry, Redundancy, Decomposition, Weak
Union and Contraction.

A challenge that merits future work is to justify these
concepts of independence from behavioral or decision-
theoretic arguments. Even though complete indepen-
dence has an intuitive justification using choice func-
tions [9, 37], the interaction between choice functions
and full probabilities is yet to be explored.

Consider now confirmational and epistemic indepen-
dence as defined in Section 2.1, but applied to full
credal sets. The resulting concepts were originally
proposed by Levi [29] and by Walley [42] within the-
ories that adopt full probabilities.

Confirmational independence fails Decomposition,
Weak Union and Contraction when applied to gen-
eral full credal sets (even when all lower probabilities
are positive [9]).

Epistemic independence fails Decomposition and
Weak Union when applied to full credal sets [12], as
can be seen in Example 1, and fails Contraction even
when all lower probabilities are positive [7].

Example 1 Consider a full credal set with the two
distributions depicted in Table 4, where α ∈ (0, 1/2).
We have P (w0) ∈ [α, 1−α] and P (w0|x, y) ∈ [α, 1−α]
for all possible x, y: (X,Y ) is epistemically irrelevant
to W . The reader can verify that both distributions
yield identical values of P (x, y|w) and P (x, y) such
that P (x, y|w) = P (x, y), for all possible (x, y, z).
Hence W is epistemically irrelevant to (X,Y ). Thus
we have epistemic independence of W and (X,Y ).
However, P (w0|x1) = 1/2; consequently, X is not
epistemically irrelevant to W (Decomposition fails),
and Y is not epistemically irrelevant to W given X
(Weak Union fails). �

So, at least from the point of view of graphoid proper-
ties, both confirmational and epistemic independence
fare rather poorly.

Note that the motivation behind confirma-
tional/epistemic irrelevance of Y to X is that
observation of Y does not change beliefs about X.
However, for a full probability the beliefs about X
are encoded not just by expectations E[f(X)] but
rather by conditional expectations E[f(X)|A] for
events A in the algebra generated by X. This is
indeed the rationale behind h-independence; for this
reason, the combination of h-independence and full
credal sets seems very attractive.

Consider then adapting h-independence to full credal
sets as follows:
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�
1
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1

�
1−α
2

�
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Table 4: Extreme points of the full credal set in Example 1.

y0 y1
x0 �α�0 �1− α�0
x1 �α�1 �1− α�1

Table 5: Marginal probabilities from Table 3.

Definition 2 Y is h-irrelevant to X given Z if

E[f(X)|A,B, z] = E[f(X)|A, z]

whenever {A,B, z} �= ∅.

X and Y are h-independent given Z when X is h-
irrelevant to Y given Z and vice-versa.

We have:

Theorem 1 H-independence satisfies Symmetry, Re-
dundancy, Decomposition, and Weak Union.

Proof. Symmetry holds by definition; Redun-
dancy is trivial. From the assumed h-independence
of X and (W,Y ), we have: E[f(X)|A,B, z] =
E[f(X)|A, z], and E[g(Y )|A,B, z] = E[g(Y )|B, z]
(Decomposition). Weak Union follows from
E[g(Y )|A,B,w, z] = E[g(Y )|B,w, z], and then, using
Decomposition, E[f(X)|A,w, z] = E[f(X)|A, z] =
E[f(X)|A,B,w, z]. �
Note that h-independence fails Contraction (Table 3).

In the next section we examine two other representa-
tions that are closely related to full conditional mea-
sures and full credal sets.

4 Lexicographic probabilities and sets
of desirable gambles

Consider again Table 3. For this full distribution we
have X and Y epistemic/h-/cs-/full/kr-/layer inde-
pendent. One might argue that there is something
strange about this “independence”. For take a func-
tion g(Y ) such that g(y0) = −(1− α) and g(y1) = α.
This function has expected utility zero. But if β < α
one might argue that g is better than the zero func-
tion; after all, if {w1} happens to be observed, then
the expected value of g given {w1} is α − β, and g

y0 y1
x0 �α�0, �β�2 �1− α�0, �1− β�2
x1 �α�1, �γ�3 �1− α�1, �1− γ�3

Table 6: Lexicographic marginal probabilities from
Table 3.

should then be considered better than the zero func-
tion. And if γ > α, then conditional on {w1, x1}
the zero function should be considered better than g.
Hence conditioning on {x1} seems to change opinions
about a function of Y .

One way to understand this example is to look at the
marginal full probability for (X,Y ), shown in Table
5. Note that when the full probability in Table 3 is
marginalized over W , the content of layers L2 and L3

disappear: in Table 5 one sees neither β nor γ. Pref-
erences about g that might depend on deeper layers
can only be exposed by observing W . In a sense, the
direct marginalization of Table 3 loses important in-
formation about the joint full probability. It would
make more sense to say that the marginal probabil-
ities obtained from Table 3 should be given by the
overlapping layers in Table 6, so as to conclude that
X and Y are not independent.

We are then moving into lexicographic probabilities
that assign probability measures to various layers with
possibly overlapping support. Due to the lack of
space, we omit detailed background on lexicographic
probabilities, and refer the reader to the work of
Blume et al. [3] for all necessary definitions. We as-
sume their axiomatization of the non-Archimedean
preference relation �, and use the fact that this pref-
erence relation can be represented by a sequence of
probability measures over Ω; each one of these mea-
sures is a “layer” of the lexicographic probability. [3,
Corollary 3.1]. Two functions f1(X) and f2(X) are
compared with respect to a lexicographic rule in the
sense that f1 � f2 if and only if

�
�

x

f1(x)Pi(x)

�K

i=0

≥L

�
�

x

f2(x)Pi(x)

�K

i=0

,

(for a, b ∈ �K , a ≥L b iff whenever bj > aj , there
exists a k < j such that ak > bk). These probabili-
ties are unique only up to linear transformations, so
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there is some intrinsic non-uniqueness associated with
lexicographic probabilities:

Example 2 Suppose that a binary variable Y is asso-
ciated with two layers such that P0(y0) = 1−P0(y1) =
α and P1(y0) = 1 − P1(y1) = β. For fixed α, every
β ∈ [0, α) yields identical preferences; likewise, every
β ∈ (α, 1] yields identical preferences. So the spe-
cific value of β cannot be fixed by resorting to lexico-
graphic preferences. �

Conditional lexicographic probabilities given
nonempty event H are obtained by conditioning
every layer of the lexicographic probability on H,
after discarding those layers that do not intersect
H. These conditional probabilities encode the
preferences f1(X)IH � f2(X)IH [3, Theorem 4.3],
denoted by [f1(X) � f2(X)|H].

The close proximity between full probabilities and lex-
icographic probabilities is apparent. A full probabil-
ity can be represented by a lexicographic probability
with disjoint layers [22, 23]. And for any lexicographic
probability, the function P (A|B) = Pi(A|B), where
Pi the the first measure such that Pi(B) > 0, is a
full probability. However, as indicated by the dis-
cussion of marginalization concerning Tables 3, 5 and
6, full probabilities and lexicographic probabilities do
not behave identically.

Now consider defining a concept of independence for
lexicographic probabilities. We might try to define a
“product” for lexicographic probabilities. Here diffi-
culties abound due to non-uniqueness. First, prob-
abilities in various layers can be modified so as to
break factorization. Additionally, probability values
are not tied to specific layer numbers. For instance, if
we have a lexicographic probability with three over-
lapping layers, each with probability measures p0, p1
and p2, we can generate an equivalent representation
with four layers p0, p0, p1 and p2. Therefore a con-
dition such as layer factorization seems rather fragile
as we cannot control layer numbers just by looking at
marginal lexicographic probabilities.

Indeed the difficulties with product lexicographic
probabilities have already been discussed by several
authors [3, 23, 24]. Solutions based on factorization of
nonstandard measures have been advanced by these
authors; the interpretation and the manipulation of
such concepts do not seem easy, and we leave that to
future work.

Hence we are led, in our study of lexicographic proba-
bilities, to concepts of independence that rely on con-
ditioning. Blume et al. [3] say that X and Y are

w0y0 w1y0 w0y1 w1y1
x0 �α�0 �β�2 �1− α�0 �1− β�2
x1 �α�1

�β�3 ,
�γ�4

�1− α�1
�1− β�3 ,
�1− γ�4

Table 7: Lexicographic distribution forW , X, Y , with
distinct α ∈ (0, 1), β ∈ (0, 1), γ ∈ (0, 1).

y0 y1

x0
�α�0 ,
�β�2

�1− α�0 ,
�1− β�2

x1
�α�1 ,
�β�3

�1− α�1 ,
�1− β�3

P (W,X|Y = y)
w0 w1

x0 �1�0 �1�2
x1 �1�1 �1�3

Table 8: Marginal (left) and conditional (right) lexi-
cographic probabilities from Table 7.

independent when we have both

[f1(X) � f2(X)|y1] ⇔ [f1(X) � f2(X)|y2],

[g1(Y ) � g2(Y )|x1] ⇔ [g1(Y ) � g2(Y )|x2]

whenever conditioning events are nonempty. Say that
X and Y are independent given Z when the expres-
sions above are satisfied conditional on any {z} such
that conditioning events are nonempty.

Even though Table 3 no longer fails Contraction if we
use this concept of independence (because X and Y
are no longer independent), consider Table 7. The
distributions for (X,Y ), for (X,W ) given {y0}, and
for (X,W ) given {y1} are shown in Table 8. Here X
and Y are independent and X and W are indepen-
dent given Y ; yet X and (W,Y ) are not independent.
Contraction fails. The fourth layer “vanishes” when
one marginalizes out W as preferences are decided al-
ready at the third layer. To understand this, consider
Example 2: once α and β are fixed, every preference
about Y is fixed, and there is no need to examine
further layers.

Now suppose we have a set of lexicographic probabil-
ities, where preference is given by unanimity amongst
lexicographic comparisons [36]. Example 1 shows that
Decomposition and Weak Union can fail for Blume et
al.’s concept of independence (just consider each full
probability a lexicographic probability, and take their
convex hull if a convex set is desired).

We suggest that a more promising concept of inde-
pendence for (sets of) lexicographic probabilities is
obtained by symmetrizing the following concept: Y is
irrelevant to X given Z when

[f1(X) � f2(X)|A,B, z] ⇔ [f1(X) � f2(X)|A, z],

for all functions, whenever conditioning events are
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nonempty. And X and Y are independent given Z
when Y is irrelevant to X given Z and vice-versa.

This concept of independence satisfies Symmetry, Re-
dundancy, Decomposition and Weak Union; Contrac-
tion fails (Table 7). Redundancy obtains because

[f1(X) � f2(X)|A,B, x] ⇔ f1(x) ≥ f2(x)

⇔ [f1(X) � f2(X)|B, x].

Decomposition holds because any event B belongs to
the algebra generated by (W,Y ), and any function
g(Y ) is also a function of (W,Y ) (hence independence
of X and (W,Y ) given Z implies independence of X
and Y given Z). Weak Union holds because, assuming
X and (W,Y ) independent given Z, we have

[g1(Y ) � g2(Y )|A,B,w, z] ⇔ [g1(Y ) � g2(Y )|B,w, z],

and, using Decomposition,

[f1(X) � f2(X)|A,w, z] ⇔ [f1(X) � f2(X)|A, z]

⇔ [f1(X) � f2(X)|A,B,w, z].

Sets of lexicographic probabilities are equivalent, from
the point of view of preference representations, to
sets of desirable gambles, a representation that has
received considerable attention [6, 17, 18, 31, 43]. In-
deed the derivation of lexicographic representations
for sets of desirable gambles appears already in the
work of Seidenfeld et al. [36], who show that a par-
tially ordered set of preferences (that encodes a set
of desirable gambles) can be represented by a set of
complete orderings, each one of which can be repre-
sented by a lexicographic probability (either using re-
sults by Kee [25] or the more direct results by Blume
et al. [3]). In recent work, Couso and Moral [6] have
studied the representation of sets of desirable gambles
through lexicographic probabilities.

A set of desirable gambles D is a set of variables not
containing the zero function and containing all non-
negative variables that are different from zero, and
such that λX ∈ D if X ∈ D and λ > 0, and X+Y ∈ D
if X,Y ∈ D [17, Definition 1]. The set of desirable
gambles conditional on event A, denoted by [D|A],
contains all desirable gambles X such that XIA = X,
where IA is the indicator function of A [18, Section
3.2]. Following notation by Moral [31], denote by D↓X

the set of desirable gambles that are functions of X
(that is, D↓X is the “marginal” set of gambles with
respect to X). A natural concept of independence for
sets of desirable gambles is [17, Definition 3]: Y is
irrelevant to X given Z if

[D|y, z]↓X = [D|z]↓X whenever {y, z} �= ∅.

And then: X and Y are independent given Z if X
is irrelevant to Y given Z and vice-versa. (Note that

there are other concepts of independence for sets of
desirable gambles in the literature [31].)

Mimicking our proposal for (sets of) lexicographic
probabilities, consider the following definition of inde-
pendence for sets of desirable gambles: Y is irrelevant
to X if

[D|A,B, z]↓X = [D|A, z]↓X whenever {A,B, z} �= ∅.

And then define independence of X and Y given Z by
symmetrizing this concept of irrelevance.

5 Conclusion

This paper has studied concepts of independence for
sets of full probabilities, and for their close relatives,
sets of lexicographic probabilities, and sets of desir-
able gambles. We have tried to offer a commented
and organized review of the literature in Section 2.
We have then analyzed a large number of concepts of
independence in Sections 3 and 4.

At this point the only concept of independence for full
credal sets that satisfy Symmetry, Redundancy, De-
composition, Weak Union and Contraction is elemen-
twise layer independence. The concepts of confirma-
tional and epistemic independence seem particularly
weak when applied to full credal sets. The concept
of h-independence fares considerably better but still
fails Contraction. The extent to which one can adopt
concepts that fail various graphoid properties is yet
to be fully analyzed.

Concerning lexicographic probabilities: they do add
flexibility, but they introduce significant complexity
in dealing with non-uniqueness and marginalization.
Sets of desirable gambles also require some care in
dealing with marginalization. The new concepts of
independence suggested here for sets of lexicographic
probabilities and sets of desirable gambles should be
helpful in future work.
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