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Abstract

Sets of lexicographic probabilities and sets
of desirable gambles share several features,
despite their apparent differences. In this
paper we examine properties of marginaliza-
tion, conditioning and independence for sets
of lexicographic probabilities and sets of de-
sirable gambles.

1 Introduction

The standard theory of probabilities is widely used to
represent situations that display uncertainty. In that
theory, events form a field, and probabilities are real-
valued, non-negative, and countably additive. There
are many variants of this Kolmogorovian theory of
probabilities [8, 10, 21, 29, 32], including proposals
that abandon the real scale and focus on infinitesimal
probabilities [16] or on lexicographic probabilities [3].
Other departures from probability theory attempt to
represent imprecision in numeric values [33, 34]. For
instance, the theory of credal sets uses sets of proba-
bility measures as its basic entities [20]. Yet another
departure from probability theory is the theory of sets
of desirable gambles [35]. Matters become even more
involved if one allows a language with negation and
conjunction of desirability statements [27].

The purpose of this paper is to examine some prop-
erties of sets of lexicographic probabilities and of sets
of desirable gambles. We present these formalisms
through a hopefully illuminating analysis, emphasiz-
ing their close connection (Section 2). Because both
lexicographic probabilities and sets of desirable gam-
bles represent the same sort of preference orderings,
by studying one of them, we obtain insights about the
other; perhaps contentious concepts and drawbacks
can be clarified by such a study.

Sections 3 to 6 examine features of marginalization
and conditioning. We first compare lexicographic and

full conditional probabilities, and show they are not
as similar as usually suggested by the literature. We
then examine convexity, non-uniqueness and indepen-
dence, always together with marginalization and con-
ditioning. Several of the properties discussed here are
well-known, but still they may be somewhat surpris-
ing as a whole, and call for further study concerning
these formalisms.

2 Lexicographic probabilities and sets
of desirable gambles

In this paper we only deal with finite objects, so
that complications arising from infinity are entirely
ignored. We assume there is a finite set of states, de-
noted by Ω, and that every subset of Ω is an event.
A gamble is a function from states to real numbers.
If Ω contains n states, a gamble can be thought of as
an n-dimensional point. Hence we will treat sets of
gambles as subsets of <n.

The plan for this section is to emphasize the relation-
ship between sets of lexicographic probability mea-
sures and sets of desirable gambles. Previously, Couso
and Moral have studied this relationship in some re-
stricted cases [5], and Quaeghebeur has dealt with
this relationship in considerable detail [24, 25]. Most
of the following discussion touches on topics that may
be familiar to readers with background on imprecise
probabilities.

Probabilities are often justified and derived by assum-
ing axioms about preferences [1, 11, 30]. To sim-
plify matters, we always take preferences over the
set of all gambles. A popular way to do so is to
take a preference relation � between gambles, such
that f � g is interpreted as “f is preferred to g”.
Suppose � is a (strict) partial order, meaning that
it is irreflexive and transitive [11], and that � sat-
isfies a monotonicity condition: if f(ω) > g(ω) for
all ω, then f � g. Suppose additionally that it sat-
isfies an “independence condition” such as: for any



α ∈ (0, 1] and any f , g, h, we have f � g if and only
if αf + (1 − α)h � αg + (1 − α)h. In this case the
set of gambles that are preferred to the zero gamble
is a cone that completely represents �. Suppose one
assumes that this cone is open, an assumption that
encodes an “Archimedean condition” on � [31]. One
then obtains the following representation: there is a
unique maximal convex set K of probability measures
such that f � g if and only if ∀P ∈ K : EP[f ] > EP[g].
Such a set of probability measures is called a credal
set. Note that a preference profile may be completely
characterized by more than one credal set, but there
is a unique maximal credal set that offers such a rep-
resentation, and this credal set is convex.

Suppose that � is such that absence of preference is
an equivalence (reflexive, transitive, symmetric); we
then say that � is a strict weak order [11]. If � is a
strict weak order, the credal set K is a singleton, so we
obtain the usual representation by a single probability
measure [11].

One might consider replacing the monotonicity con-
dition by the following one: if f(ω) ≥ g(ω) for all ω
and f(ω) > g(ω) for some ω, then f � g. Following
Blume et al., we refer to this property as admissibil-
ity [3, Definition 4.1]. Note that a standard proba-
bility measure may fail to represent admissibility (if
P(ω) = 0, differences on this ω do not matter).

2.1 Lexicographic probabilities

Now suppose � is a strict partial order that satisfies
the “independence condition” and admissibility, but
no Archimedean condition. We then obtain a repre-
sentation using lexicographic probabilities. A lexico-
graphic probability measure is simply a sequence of
standard probability measures [P0, . . . ,PK ], and the
representation is of the form: f � g if and only if
there is [P0, . . . ,PK ] such that

[EP1
[f ] , . . . ,EPK

[f ]] >L [EP1
[g] , . . . ,EPK

[g]] ,

where >L denotes lexicographic comparison (for a, b ∈
<K , a >L b iff aj > bj for some j ≤ K and ai = bi for
1 < i < j).

To produce the representation of � in terms of lexico-
graphic probability measures, note that � can always
be extended to a total order �∗ over gambles, such
that �∗ satisfies the “independence condition” [31,
Theorem 1] and admissibility. Every �∗ can be repre-
sented by a lexicographic linear utility [12, Chapter 4],
and this lexicographic linear utility can be expressed
as the expected value of a lexicographic probability
measure (using the arguments by Blume et al. [3,
Theorem 3.1]). Also the set of all extensions of �,
and consequently � itself, can be represented by a

H T
layer 0 α (1− α)
layer 1 γ (1− γ)

Table 1: Lexicographic probabilities; α, γ ∈ (0, 1).

unique maximal convex set of lexicographic linear util-
ities [31, Theorem 2]. If � is a strict weak order, the
set of lexicographic linear utilities collapses to a single
lexicographic probability measure [12, Chapter 4].

Consider a lexicographic probability measure
[P0, . . . ,PK ]. Then Pi is called the ith layer of the
lexicographic probability measure. One important
fact is that each Pi is only unique up to linear
combinations of P0, . . . ,Pi that assign positive weight
to Pi [3, Theorem 3.1]. So in fact there is no intrinsic
uniqueness in the lexicographic representation, as
emphasized in the following example.

Example 1 Consider the lexicographic probability
measure in Table 1, where each row contains a layer.
The question is whether a gamble f such that f(H) =
a and f(T ) = b is preferred to the zero gamble. Using
the first layer, E[f ] = 0 only if aα = −b(1 − α), so
we might focus on the question of whether the gam-
ble (1− α,−α) is desirable or not. As the next layer
gives value γ − α to this gamble, we only need to de-
termine whether γ > α or γ < α to fix all preferences
(if γ = α, the second layer can be discarded). �

Admissibility requires each event to have positive
probability with respect to at least one layer. This
follows from the fact that any indicator function is
nonnegative and positive for at least one ω; hence
any indicator function if preferred to zero, and conse-
quently for any event there is a probability measure
that assigns it positive probability.

2.2 Sets of desirable gambles

For all preference orderings already discussed, axioms
about preferences guarantee that f � g if and only
if f − g � 0. As noted already, we can then capture
the preference relation by the set of gambles that are
preferred to the zero gamble. This latter set is called
the set of desirable gambles generated by the pref-
erence relation. But we can also start with sets of
desirable gambles, properly axiomatized, and obtain
preferences from them. For instance, here is a set of
axioms that has been proposed for sets of desirable
gambles [35]: a set of desirable gambles D is coherent
if the zero gamble is not in D; if all f such that f ≥ 0
and f 6= 0 are in D; if for any λ > 0 and any f ∈ D,
we have λf ∈ D; and if for any f, g ∈ D, we have



f + g ∈ D. To obtain preferences from a given set
of desirable gambles, just say that f � g if and only
if f − g ∈ D. By doing so, one notes that irreflex-
ivity follows from the condition that the zero gamble
is not in D. Note also that admissibility follows from
the second condition: if f(ω) ≥ g(ω) for all ω and
f(ω) > g(ω) for some ω, then f � g. Finally, tran-
sitivity and the independence condition follow from
the other axioms. Hence a coherent set of desirable
gambles can be completely represented by a (unique
maximal convex) set of lexicographic linear utilities.
From now on, every set of desirable gambles is as-
sumed coherent, so we drop the qualifier “coherent”
whenever possible.

2.3 Marginalization and conditioning

Now consider a pair of random variables X and Y
defined over Ω.

Marginalization of lexicographic probability measures
is usually understood in a layer-wise fashion [14].
That is, if [P0, . . . ,PK ] are the layers of a lexicographic
probability measure, then the marginal for X is a lex-
icographic probability measure where each layer is a
probability measure over ΩX with value (for X at x)∑
ω:X(ω)=x Pi(ω).

Given a set of desirable gambles D, the marginal set of
desirable gambles for X, denoted by D(X), is simply
the set of all desirable gambles in D that are functions
of X. For instance, if Ω is the Cartesian product of
the set of values of X and the set of values of Y ,
respectively ΩX and ΩY , then the Y -marginal D(Y )
is {g : g is a function of Y and g ∈ D}, with the un-
derstanding that g ∈ D means that the cylindrical
extension of g belongs to D [26].

It should be apparent that marginalization means the
same thing both for sets of desirable gambles and sets
of lexicographic probability measures, given appropri-
ate interpretation. If one starts with a set of desirable
gambles, generates a set of lexicographic probability
measures, marginalizes the latter, and generates the
corresponding set of desirable gambles, one reaches
the marginal of the original set of desirable gambles.

Conditioning of lexicographic probability measures
has also received a layer-wise definition by Blume et
al. [3]. That is, if we again have the lexicographic
probability measure [P0, . . . ,PK ], then conditioning
on A yields [P0(·|A), . . . ,PK′(·|A)], where each layer
that assigns positive probability to A is processed
through Bayes rule, and all other layers are discarded.
This sort of layer-wise Bayes rule is actually derived
from preferences, as follows. From a preference re-
lation �, obtain conditional preference given A, de-
noted by �A, by saying that f �A g if and only if

Af � Ag [3, Definition 2.1]. Then �A is represented
by a conditional lexicographic probability measure as
just defined [3, Theorem 4.3].1

Given a set of desirable gambles D and an event A, the
conditional set of desirable gambles D|A is simply {f :
IAf ∈ D}, where IA denotes the indicator function of
A [26]. In fact, by using de Finetti’s convention where
an event and its indicator function are denoted by the
same symbol, we have [35]:

D|A = {f : Af ∈ D}.

But this is clearly equivalent to representing the pref-
erences Af � Ag. That is, both conditional lexico-
graphic probability measures and conditional sets of
desirable gambles represent the same operation.

In short, sets of (admissible) lexicographic probabil-
ity measures and (coherent) sets of desirable gambles
are equivalent representations for preferences under
uncertainty.

3 Full conditional probabilities: not
really

One of the attractive features of lexicographic proba-
bilities and sets of desirable gambles is the fact that
conditioning is well defined for any nonempty condi-
tioning event (because every event has positive proba-
bility in some layer). Thus it is not surprising that lex-
icographic probability measures have been connected
with the theory of full conditional probabilities [8, 19],
because the latter also offers conditioning on every
nonempty event.

In fact, there are some recurring themes in the connec-
tion between lexicographic and full conditional prob-
abilities [3, 15, 16]. On the one hand, the structure
of full conditional probabilities can be understood
through lexicographic probabilities, and full condi-
tional probabilities can be justified using the axioms
of lexicographic probabilities. On the other hand, full
conditional probabilities can be treated as if they were
a class of lexicographic probabilities that are easy to
specify, interpret, and handle. We now examine to
which extent these intuitions are valid.

3.1 A brief review

To recap, a full conditional probability P : B ×
(B\∅) → <, where B is a Boolean algebra, is a two-
place set-function such that for every event H 6= ∅ [9]:
(1) P(H|H) = 1;

1Note that Blume et al. actually assumes that preference
relations are reflexive, but their analysis of conditional proba-
bility is not affected by that.



(2) P(G|H) ≥ 0 for all G;
(3) P(G1 ∪G2|H) = P(G1|H) + P(G2|H) whenever
G1 ∩G2 = ∅;
(4) P(G1 ∩G2|H) = P(G1|G2 ∩H)× P(G2|H) when-
ever G2 ∩H 6= ∅.
Whenever the conditioning event H is equal to Ω, we
suppress it and write the “unconditional” probability
P(G).

The theory of coherent probabilities advocated by de
Finetti adopts full conditional probabilities, and of-
fers a justification for them that is based on betting
(in fact de Finetti’s original arguments were later for-
malized by Holzer [17] and Regazzini [28]). It should
be noted that similar (but more general) axioms have
been proposed by Renyi [29] and Popper [23]; there
are also variants of those theories that we do not dis-
cuss for the sake of space.

Example 2 Take a coin with heads (H), tails (T ), a
sharp edge (S), and a blunt edge (B). We can have
P(H) = P(T ) = 1/2, hence P(S) = P(B) = 0, but
still P(B|S ∪B) = 2/3. �

A full conditional probability can always be repre-
sented as a sequence of standard probability mea-
sures P0, . . . ,PK [3, 4, 16, 19]. To obtain this rep-
resentation, we must partition Ω into several events
L0, . . . , LK . Take L0 to be the set of elements of Ω
that have positive unconditional probability. Then
take L1 to be the set of elements of Ω that have
positive probability conditional on Ω\L0. And then
take Li, for i ∈ {2, . . . ,K}, to be the set of ele-
ments of Ω that have positive probability conditional
on Ω\ ∪i−1j=0 Lj . The event Li denotes the support of
the layer Pi of the full conditional probability. The
layer number of layer Pi is i. For nonempty G, de-
note by LG the support of the first layer such that
P(G|LG) > 0. We then have P(G|H) = P(G|H ∩ LH)
[2, Lemma 2.1a]. Note that some authors use a dif-
ferent terminology, using instead the sequence ∪Kj=iLj
rather than Li [4, 19].

Example 3 In Example 2, we have two layers. The
first consists of H and T , with associated probabilities
P0(H) = P0(T ) = 1/2. The second layer consists
of S and B, with associated probabilities 2P1(S) =
P1(B) = 2/3. �

3.2 Admissibility and marginalization

Given the results enumerated in the previous section,
it is natural to think that full conditional probabil-
ities are just instances of lexicographic probability
measures. However, strictly speaking, full conditional
probabilities cannot pose as admissible lexicographic

probabilities, as the theory of full conditional proba-
bilities does not satisfy admissibility. For instance,
consider the gamble f such that f(H) = f(T ) =
f(S) = 0, f(B) = 1 in Example 2. Computing ex-
pected value in the usual way with respect to this full
conditional probability, we obtain zero; as far as pref-
erences are to be extracted from expected values, this
gamble is indistinguishable from the zero gamble. But
if we were to interpret the layers of the full conditional
probability as the layers of a lexicographic probability
measure, then f � 0.

To obtain admissibility in actual decisions, one might
use lexicographic expected values with respect to lay-
ers of a full conditional probability whenever neces-
sary. For instance, in the previous paragraph one
might say that f � 0 by looking at all layers of the
full conditional probability. However, matters become
even more delicate when we look at marginalization.

Example 4 Consider two variables X and Y , each
with values {0, 1, 2}. Take a full conditional proba-
bility over (X,Y ) with two layers (layer numbers are
indicated by subscripts):

Y = 0 Y = 1 Y = 2
X = 0 (1/5)0 (1/5)0 (1/5)0
X = 1 (1/5)0 (1/4)1 (1/4)1
X = 2 (1/5)0 (1/4)1 (1/4)1

We have marginal probabilities for X: P(X = 0) =
3P(X = 1) = 3P(X = 2) = 3/5. These marginal
probabilities characterize a full conditional probabil-
ity with a single layer. For this marginal full condi-
tional probability, the gamble f(X) such that f(0) =
−1, f(1) = 1, f(2) = 2 has expected value equal to
zero.

So, with respect to the marginal full conditional prob-
abilities for X, there is not much to say about f ; it
is just indistinguishable from the zero gamble. There
are no deeper layers to look at because the marginal
full conditional probability does not assign zero prob-
ability to any event. So, there is no way to produce a
lexicographic comparison if we first produce the full
conditional probability that is the marginal of X.

However, as f can be obviously viewed as a function
of X and Y , its expected value can be computed with
respect to the joint full conditional probability. But
now we see that we can have a lexicographic com-
parison: the expected value of f with respect to the
second layer is 3/2, hence f � 0.

That is, marginalization of full conditional probabil-
ities loses information concerning layers, information
that is needed if we were to compute lexicographic
expected values. If we were to treat full conditional



probabilities as lexicographic probabilities, we would
need to have marginal full conditional probabilities
that carry some extra information.

Indeed, if we took the joint full conditional probabil-
ity in our example as a lexicographic probability mea-
sure to begin with, and then marginalized it, we would
obtain the following marginal lexicographic probabil-
ities:

X = 0 X = 1 X = 2
(3/5)0 (1/5)0, (1/2)1 (1/5)0, (1/2)1

With respect to this marginal lexicographic probabil-
ity measure, we obtain f � 0, as we must. �

So, if we wish to preserve admissibility by using lexi-
cographic expectation with respect to full conditional
probabilities, then the marginal of a full conditional
probability must actually be represented as a lexico-
graphic probability measure. The message is that lexi-
cographic probabilities (and sets of desirable gambles)
do offer conditioning on events of probability zero, but
their solution is different from the one offered by full
conditional probabilities. Lexicographic probabilities
may be a representation for full conditional probabil-
ities, but both behave differently.

4 Convexity?

When we adopt sets of lexicographic probability mea-
sures (or equivalently sets of desirable gambles), we
seem to have convexity at hand. First, a set of de-
sirable gambles is a convex object. Second, a strict
ordering with independence and admissibility can be
represented uniquely by a maximal convex set of lex-
icographic linear utilities.

However, convexity deserves further scrutiny. Again,
it is useful to start this discussion with full conditional
probabilities. Typically one assumes that, conditional
on an event A, the set of probability measures K(·|A)
is convex [34]. But a set of full conditional proba-
bilities cannot always be convex [13, 22], even if all
probabilities are positive:

Example 5 Suppose Ω = {ω1, ω2, ω3}, P1(ω1) =
P1(ω2) = P1(ω3) = 1/3 and P2(ω1) = 2P2(ω2) =
2P2(ω3) = 1/2. Build the convex combination Pα =
αP1 + (1 − α)P2. There is no α ∈ (0, 1) such
that Pα(ω1|ω1 ∪ ω3) = 2(α − 3)/(α − 9) is equal to
αP1(ω1|ω1∪ω3)+(1−α)P2(ω1|ω1∪ω3) = α/2+2(1−
α)/3. That is, Pα cannot be a convex combination of
the functions P1 and P2. �

Consider a preference � that can be extended to at
least two orders, the former encoded by lexicographic

linear utility u1 and the latter by lexicographic linear
utility u2. On the one hand, any convex combina-
tion of these lexicographic linear utilities generates
the same preference profile [31]. On the other hand,
admissibility allows us to normalize each utility in the
lexicographies, so as to obtain lexicographic probabil-
ity measures [3]. However, suppose we wish to both
normalize and do convex combinations. Apparently,
matters are simple:

Example 6 Consider Ω = {ω1, ω2, ω3}, α, β ∈ (0, 1),
and lexicographic probability measures LP1 and LP2:

ω1 ω2 ω3

LP1(ωi) (α)0 (1− α)0 11

ω1 ω2 ω3

LP2(ωi) (1)0 (β)1 (1− β)1

Their half-half convex combination is:

ω1 ω2 ω3

((1 + α)/2)0 ((1− α)/2)0,
(β/2)1 (1− β/2)1

As a digression: LP1 and LP2 have disjoint layers, so
they could be representations for full conditional prob-
abilities. But their convex combination is certainly
not the representation of a full conditional probabil-
ity as the supports of the layers are not disjoint. �

The convex combination of lexicographic probability
measures works perfectly if all lexicographic probabil-
ity measures involved in the convex combination have
the same number of layers. But suppose that model-
ing decisions have built two preference orderings with
distinct depths; what to do?

Example 7 Consider Ω = {ω1, ω2, ω3}, α, β, γ ∈
(0, 1), all distinct, and lexicographic probability mea-
sures:

ω1 ω2 ω3

LP1(ωi) (α)0, (1− α)0,
11

(γ)2 (1− γ)2

ω1 ω2 ω3

LP2(ωi) (1)0
(β)1 (1− β)1

Note that LP1 reproduces Example 1, with one addi-
tional intervening layer. In fact LP1 defines a total
order over gambles. And LP2 appeared in the previ-
ous example; for LP2 there are gambles that get zero
expectation with respect to all layers (for instance,
h(ω1) = 0, f(ω2) = 1− β, f(ω3) = −β).



Consider LP1/2, a half-half combination of LP1 and
LP2. If we operate layer-wise,

ω1 ω2 ω3

LP1/2(ωi) (1 + α/2)0, ((1− α)/2)0,
(β/2)1 (1− β/2)1

(γ/2)2 ((1− γ)/2)2

This is not a very satisfying result as probabilities in
the last layer do not add up to one. �

One possible way to avoid the difficulties in this last
example is always represent � as a collection of total
orders, all of which have the same depth. Indeed, the
sets of lexicographic utilities by Seidenfeld et al. [31]
are explicitly built from all such total orders, hence
this sort of modeling decision makes sense conceptu-
ally.

However, there is a significant inconvenience. Sup-
pose we wish to represent a set of preference order-
ings, some of which do display absence of preference.
For instance, the ordering generated by LP2 does dis-
play absence of preferences (there are gambles that
are not preferred nor dispreferred to the zero gam-
ble). To represent such an ordering using total orders,
we may need to introduce (possibly many) layers and
measures that are apparently useless. To understand
this, consider again LP2: to represent the strict weak
order generated by LP2 using total orders, we might
use a set consisting of two lexicographic probability
measures:

ω1 ω2 ω3

LP3(ωi) (1)0
(β)1 (1− β)1
(δ1)2 (1− δ1)2

ω1 ω2 ω3

LP4(ωi) (1)0
(β)1 (1− β)1
(δ2)2 (1− δ2)2

It is particularly annoying that there is great lati-
tude in selecting the probability values: as long as
(δ1 − β)(δ2 − β) < 0, we have the desired strict weak
order collectively represented by LP3 and LP4 (and
their convex combinations, if desired). The lack of
control over the representation, given the ordering, is
apparent.

One might look for alternative approaches. For in-
stance, we might define the convex combination of
two lexicographic probability measures so that a final
normalization step is applied to each layer. Another
possibility: adopt lexicographic “probability” mea-
sures that are not normalized below the first layer,

and allow convex combinations without further con-
cern. Whatever the solution, it seems that convexity
deserves further analysis when applied to sets of lexi-
cographic probability measures.

To a great extent, this discussion does not affect the
theory of sets of desirable gambles. However, in prac-
tice one may be interested in representations for sets
of desirable gambles that are based on probability val-
ues. When such representations are needed, the chal-
lenges in mixing sets of lexicographic probabilities and
convexity are bound to surface.

5 Non-uniqueness and weakness

Some of the discussion in Section 3 concentrated on
the fact that, given joint probabilities, marginals may
not carry all necessary information. Now consider the
reverse situation; that is, we have marginal and condi-
tional lexicographic probabilities, and we wish to con-
struct a joint lexicographic probability measure out of
them. We find this not to be an easy problem. In fact,
matters are difficult already for full conditional prob-
abilities [6], as the next example shows. (Again, we
resort to subscripts to indicate layer numbers.)

Example 8 Consider two binary variables X and
Y . Suppose P(X = 0) = 1 and P(Y = 0|X = 0) =
P(Y = 0|X = 1) = 1 (that is, the conditional prob-
ability of Y given X is actually not affected by X).
The following joint full conditional probabilities:

Y = 0 Y = 1
X = 0 10 11
X = 1 12 13

Y = 0 Y = 1
X = 0 10 12
X = 1 11 13

satisfy all marginal and conditional assessments. �

The fact that marginal and conditional assessments
cannot always uniquely characterize a joint full con-
ditional probability has been noted before [6, 18]. In
fact, one should take this phenomenon to suggest that
as long as statistical modeling employs full conditional
probabilities, one should not abide by any axiom that
enforces uniqueness of probability values.

Lexicographic probabilities suffer from the same lack
of uniqueness, only they suffer more deeply down their
layers. Consider the following example.

Example 9 Suppose we have two variables X and
Y , each with values {0, 1, 2}. Consider the following
marginal assessments

X = 0 X = 1 X = 2
(1/2)0 (1/2)0, (1/2)1 (1/2)1



and the following conditional assessments (for Y given
X)

Y = 0 Y = 1 Y = 2
X = 0 (1/2)0 (1/2)0,

(1/2)1 (1/2)1
X = 1 (1/2)0, (1/2)0

(1/2)1 (1/2)1
X = 2 (1/2)0 (1/2)0

11

There are many possible joint lexicographic probabil-
ity measures that are compatible with these assess-
ments. One possibility:

Y = 0 Y = 1 Y = 2
X = 0 (1/4)0 (1/4)0, (1/4)1 (1/4)1
X = 1 (1/4)1, (1/4)0, (1/4)1, (1/4)0,

(1/4)3 (1/4)2, (1/4)3 (1/4)2
X = 2 (1/4)2 (1/2)3 (1/4)2

Another possible joint lexicographic probability mea-
sure is obtained, for instance, by exchanging the sec-
ond and third layers of this latter lexicographic prob-
ability measure. But we can be more creative still, by
adding layers in various ways; for instance, consider
the following joint lexicographic probability measure,
with eight layers, that satisfies all assessments. Here
we use the notation (α)i:j to indicate that value α
appears in all layers between layer i (inclusive) and
layer j (inclusive).

Y = 0 Y = 1 Y = 2
X = 0 (1/4)0:1 (1/4)0:3 (1/4)2:3
X = 1 (1/4)1, (1/4)0:7 (1/4)0, (1/4)2,

(1/4)3 (1/4)4:7
X = 2 (1/4)4, (1/2)5, (1/4)4,

(1/4)6 (1/2)7 (1/4)6

We can produce many more joint lexicographic prob-
abilities by combining marginal and conditional layers
in various ways. �

To emphasize how information is lost through
marginalization, consider one more example.

Example 10 Consider the following joint lexico-
graphic probability measure.

Y = 0 Y = 1 Y = 2
X = 0 10 (1/3)1 (3/8)2
X = 1 (1/6)1 (1/6)1 (1/8)2
X = 2 (1/6)1 (1/2)2 (1/2)3
X = 3 (1/6)1 (1/2)3 14

To obtain the marginal lexicographic probability mea-
sure for Y , marginalize for each layer. We get

[1, 0, 0] for the first layer, [1/2, 1/2, 0] for the second,
[0, 1/2, 1/2] for the third, [0, 1/2, 1/2] for the fourth,
and [0, 0, 1] for the fifth. Note that the third and
fourth layers collapse in the marginal; hence the “rel-
ative depth” of the fifth layer is lost.

One can interpret these facts as indicating that, once
lexicographic probabilities are adopted, uniqueness
of joint probabilities should be abandoned. So, one
should be prepared to use sets of lexicographic proba-
bilities (and the corresponding sets of desirable gam-
bles) from the outset. This is a nice thought for any-
one interested in imprecise and indeterminate prob-
abilities; however, one can also interpret these ex-
amples as suggesting that marginalization and condi-
tioning are quite weak when applied to lexicographic
probabilities (and sets of desirable gambles). Consider
this. If we start with a joint lexicographic probability
measure, then its marginal and conditional probabil-
ities contain some useful information, but not all the
information needed to rebuild the joint. Specifically,
we do not have information concerning which layers
of marginal and conditional probabilities should be
combined together to produce the joint. Similarly, if
we start with marginal and conditional lexicographic
probabilities, we do not have all the information to
build a single joint. Should we really have all this
indeterminacy?

6 Independence

In this section we briefly comment on the concept of
independence in the context of lexicographic proba-
bilities. To do so, first we must agree on what “inde-
pendence” means here.

One might try to define independence by requiring
the joint to be a product of the marginals. But
a little reflection suggests this not to be easy: be-
cause a lexicographic probability does not fundamen-
tally change if we transform linearly its layers, one
can destroy an “independence” just by rewriting its
terms through linear transformations. It seems wiser
to define independence as a property of the prefer-
ence orderings that are implied by conditional and
marginal probabilities. This sort of definition is pro-
posed by Blume et al. [3]. They use conditional pref-
erences, denoted by �A (Section 2), as follows. Vari-
ables X and Y are independent when we have, first,
[f1(X) �{Y=y1} f2(X)] ⇔ [f1(X) �{Y=y2} f2(X)]
for any f1, f2, y1, y2, and second, the same condi-
tion with X and Y exchanged.2 A stronger condition

2The fact that X and Y are independent does not guaran-
tee any factorization of lexicographic probabilities. Blume et
al. show that even hyperreal representations of lexicographic
probabilities fail to factorize under their definition [3].



W = 0, Y = 0 W = 1, Y = 0 W = 0, Y = 1 W = 1, Y = 1
X = 0 (1/2)0 (1/2)0 (1)2 (1)3
X = 1 (1/2)1 (1/2)1 (1/2)4 (1/2)4

Table 2: Lexicographic probabilities in Example 11.

is [7]: X and Y are independent when [f1(X) �{Y=y}
f2(X)]⇔ [f1(X) � f2(X)] for any f1, f2, y, and sec-
ond, the same condition with X and Y exchanged.
These concepts of independence fail the Decomposi-
tion property [7]; that is, we may find that X and
(W,Y ) are independent but still X and W are not
independent. An even stronger concept of indepen-
dence has been proposed [7]: X and Y are indepen-
dent when [f1(X) �B f2(X)] ⇔ [f1(X) � f2(X)] for
any f1, f2, and any set B of values of Y , and second,
the same condition with X and Y exchanged. But
this fails the Contraction property [7]: we may have
X and Y independent, and W and X independent
given any value of Y , and yet X and (W,Y ) fail to be
independent. Failure of these properties reveal weak-
nesses of existing concepts and deserve further debate.
Moreover, such concepts of independence do not guar-
antee a unique joint lexicographic measure for given
marginals (consider again Example 8; X and Y are in-
dependent and there is no uniqueness). However, the
purpose of this section is not to insist on these facts,
but rather to examine a point that seems particularly
hard to handle.

Example 11 Suppose we have three binary vari-
ables, W , X and Y , and joint lexicographic proba-
bilities in Table 2. If we look at the marginal proba-
bilities for (X,Y ), we see that X and Y are indepen-
dent according to all definitions above. Indeed, the
preferences on (X,Y ) are represented by:

Y = 0 Y = 1
X = 0 (1)0 (1)2
X = 1 (1)1 (1)3

However, there is something intuitively strange about
this independence. If we observe {Y = 0}, the differ-
ence between {X = 0} and {X = 1} is a single “jump”
between layers. We might interpret that {X = 1}
is infinitesimally smaller than {X = 0}. But given
{Y = 1}, the jump between them is twice as big as we
go down two layers of the joint distribution. The in-
terpretation should be that, given {Y = 1}, {X = 1}
is infinitesimally smaller than some event that is in-
finitesimally smaller than {X = 0}. In a sense, one
feels that the marginal for (X,Y ) should be

Y = 0 Y = 1
X = 0 (1)0 (1)2
X = 1 (1)1 (1)4

Now if all we had were these marginal lexicographic
probabilities, it would be difficult to argue that X and
Y should be considered independent, because there
are different jumps given distinct conditioning events.
But lexicographic probabilities do not let us keep the
jumps between layers intact. In fact there seems to be
no way to extract such differences in relative depth of
layers by looking at preferences that only involve X
and Y ; by the same token, there seems to be no way
to extract such differences from the corresponding set
of desirable gambles. �

7 Discussion

This paper discussed properties of sets of lexico-
graphic probability measures and sets of desirable
gambles. Most of the discussion actually dealt with
lexicographic probabilities and sets of them. However,
any conclusions we reach for these objects should be
easily transferred to the equivalent language of sets
of desirable gambles. Even though sets of desirable
gambles avoid some of the non-uniqueness inherent
to lexicographic probabilities, most examples in this
paper could also be expressed through sets of desir-
able gambles. Moreover, even if one wishes to focus
on sets of desirable gambles, at some point their natu-
ral representation as lexicographic probabilities must
be considered, and then the features of lexicographic
probabilities must be properly understood.

In many ways, sets of desirable gambles offer an at-
tractive formalism to handle uncertainty. We basi-
cally have to deal with cones of gambles; these are
linear structures with clear geometric appeal. But this
simplicity may be illusory; even though the geometry
is simple, matters get complicated when we wish to
represent in detail operations such as marginalization
and conditioning. By playing with sets of desirable
gambles and sets of lexicographic probabilities, we can
better understand both operations.

To summarize, we have started by emphasizing the
link between lexicographic probabilities and sets of
desirable gambles. We have then examined the con-
nection between lexicographic probabilities and full
conditional probabilities; this connection seems to be
weaker than sometimes assumed in the literature. We
have emphasized the fact that modeling with full
conditional probabilities and lexicographic probabil-



ity measures leads one to deal with non-uniqueness
of probability values. The move to non-uniqueness
led us to consider differences between full conditional
probabilities and lexicographic probabilities concern-
ing convexity. And we have examined some challenges
in interpreting independence for lexicographic proba-
bilities (and consequently for sets of desirable gam-
bles).
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