
Proceedings of Machine Learning Research 103:91–101, 2019 ISIPTA 2019

The Joy of Probabilistic Answer Set Programming

Fabio Gagliardi Cozman FGCOZMAN@USP.BR

Escola Politécnica – Universidade de São Paulo, Brazil

Abstract
Probabilistic answer set programming (PASP) com-
bines rules, facts, and independent probabilistic facts.
Often one restricts such programs so that every query
yields a sharp probability value. The purpose of this
paper is to argue that a very useful modeling language
is obtained by adopting a particular credal semantics
for PASP, where one associates with each consistent
program a credal set. We examine the basic properties
of PASP and present an algorithm to compute (upper)
probabilities given a program.
Keywords: Logic programming, Answer set program-
ming, Probabilistic programming, Credal sets.

1. Introduction

The purpose of this paper is to show that Probabilistic
Answer Set Programming (PASP) actually offers an elegant
and enjoyable modeling language. To do so, we review, and
modify slightly, the credal semantics of probabilistic logic
programming, and we use it to concoct a programming style
where one can ask questions about probability distributions
satisfying sets of constraints.

The credal semantics is based on the stable model se-
mantics. About twenty years ago it became clear that the
stable model semantics for logic programs also offered an
attractive programming paradigm. A similar perspective
is proposed in this paper: instead of looking at the credal
semantics of PASP merely as a way to lend meaning to
pathological cyclic programs, here the credal semantics is
viewed as a probabilistic programming paradigm that goes
beyond existing modeling languages.

Section 2 reviews some needed concepts, and Section 3
presents the basic syntax and semantics of PASP. Sections
4 and 5 detail the semantics and discuss the proposed pro-
gramming paradigm. Section 6 presents an algorithm that
returns (upper) probabilities given a PASP program.

2. Background: Answer Set Programming

Answer Set Programming (ASP) is a programming
paradigm that emerged from research in logic program-
ming; we here review basic syntactic and semantic no-
tions [18].

First: a literal is either an atom r(t1, . . . , tk) where r is
a predicate of arity k and each ti is either a constant or a

logical variable, or an atom preceded by ¬ (then we say the
atom is strongly negated; that is, the logical value of the
expression is given by usual Boolean negation).

Syntactically, an ASP program is a set of rules such as

H1∨·· ·∨Hm :− B1, . . . ,Bn.,

where H1∨·· ·∨Hm is the head and B1, . . . ,Bn is the body,
and where each Hi is a literal and each subgoal B j can
be either a literal A or a literal A preceded by not (that is,
not A). Here is a rule:

red(X)∨green(X)∨blue(X) :− node(X),not barred(X).,

meaning that if some individual X is a node that is not
known to be barred, then X is red or green or blue. If a
rule is such that m = 1, it is said to be nondisjunctive; a
nondisjunctive rule with n = 0 is called a fact, and instead
of writing H :− ., we just write H.. A program that is
nondisjunctive (it only contains nondisjunctive rules) and
contains no not and no ¬ is said to be definite.

A propositional atom is an atom without logical vari-
ables. The Herbrand base of a program is the set of propo-
sitional literals (propositional atoms and their strongly
negated versions) that can be produced by combining all
predicates and constants in the program. An interpretation
is a consistent subset of the Herbrand base of the program
(that is, it does not contain a literal and its strong negation).
A propositional literal is true/false with respect to an inter-
pretation when it is/isn’t in the interpretation. Similarly, a
propositional subgoal A, where A is a literal, is true/false
with respect to an interpretation when A is/isnt’t in the in-
terpretation, while not A is true/false when A isn’t/is in the
interpretation. A rule is satisfied by an interpretation iff
either some of the subgoals in the body are false or all the
subgoals in the body and some of the literals in the head
are true with respect to the interpretation. A model of a
program is an interpretation that satisfies all the rules of
the program. A model I of a program is minimal iff there
exists no model J of the program such that J ⊂I .

Every definite program has a unique minimal model;
hence it is natural to take this model as the semantics of the
program. With negation, there may be no unique minimal
model, and there are several proposed semantics [12].

The stable model semantics is based on reducts, defined
as follows. Given a program P and an interpretation I ,
their reduct PI is the propositional program obtained by

© 2019 F.G. Cozman.



THE JOY OF PASP

first removing all grounded rules with not A in their body
and A ∈I , and then by removing each subgoal not A from
all remaning grounded rules. A stable model of P is an
interpretation I that is a minimal model of the reduct PI .
The set of stable models is the semantics of P. Note that a
program may fail to have a stable model: an example is the
single-rule program A :− not A..

Intuitively: if we think of an interpretation as the set of
atoms that are assumed true/false, then the stable models
of a program are those interpretations that, once assumed,
are again obtained by applying the rules of the program.

Originally proposed for nondisjunctive programs [22],
the stable model semantics was later extended to general
programs and stable models were renamed as answer sets.
Answer sets were then used to propose a new program-
ming paradigm [37, 40], where one writes down rules and
constraints that characterize a problem in such a way that
answer sets are solutions of the problem. Solvers that find
answer sets for ASP are now popular, usually operating
within a “Guess & Check” methodology. The idea is to
use disjunctive rules to guess solutions nondeterministi-
cally, and constraints to check whether interpretations are
actually solutions [30]. An example should illustrate the
idea.

Suppose we are given a graph, encoded by a predicate
node and a predicate edge (respectively unary and binary
predicates). Suppose we assign to each node a color, as
specified by the following rule:

red(X)∨green(X)∨blue(X) :− node(X)..
Suppose also that no two adjacent nodes can be red. We
might use the rule:

auxiliar :− not auxiliar,edge(X ,Y ), red(X), red(Y )..
This rule forces auxiliar to be false and the remainder of
the body to be false. Usually such a constraint is written
simply as follows:

:− edge(X ,Y ), red(X), red(Y )..
We might then force the colors to be assigned so as to
generate a three-coloring (that is, no adjacent nodes have
the same color) by adding two more constraints:

:− edge(X ,Y ),green(X),green(Y ).
:− edge(X ,Y ),blue(X),blue(Y )..

Given a set of atoms that define a graph, say
node(n1).,node(n2)., . . . ,edge(n1,n2)., . . . , any answer
set for the latter program is a three-coloring; failure to have
an answer set signals failure to have a three-coloring. One
can think of the program as first guessing a color for each
node, and then checking whether the required constraint is
respected.

Other features of popular ASP packages are aggre-
gates [19] and numeric domains. We avoid these features
here as they would take us too far.

3. PASP: Probabilistic Answer Set
Programming

Combinations of logic programming and probabilities
have been pursued for some time [21, 34, 39, 42, 49].
Many different proposals can be found in the literature
[7, 45, 15, 14, 46]; several recent surveys cover very rel-
evant material [5, 47, 27]. A popular scheme is “Sato’s
distribution semantics”; both Sato’s original proposal [49]
and Poole’s similar Probabilistic Horn Abduction [42]
focused on particular cases (definite/acyclic programs),
and they have been greatly extended through the years
[43, 44, 50, 51]. The basic idea is to allow for probabilistic
facts.

A probabilistic fact consists of a fact A. that is associated
with a probability α , assumed to be a rational number in
[0,1]. The syntax of the ProbLog package [20] for a such a
probabilistic fact is

α :: A..

A probabilistic fact may contain logical variables; for
instance we may write 0.25 :: edge(X ,Y )... If we then
have constants node1 and node2, the latter probabilis-
tic fact can be grounded into 0.25 :: edge(node1,node1).,
0.25 :: edge(node1,node2)., 0.25 :: edge(node2,node1).,
0.25 :: edge(node2,node2)..

Probabilistic Answer Set Programming (PASP) deals
with programs consisting of probabilistic facts, facts, and
rules. Sato’s distribution semantics adopts the following
interpretation for a grounded probabilistic fact α :: A.:
• with probability α , the fact A. is kept together with all
other facs and rules;
• with probability 1−α , the fact is simply removed from
the program.
This semantics induces a probability distribution over log-
ical programs. However, a different semantics for proba-
bilistic facts is adopted in this paper: here we add A. to the
program with probability α , and we add ¬A. to the program
with probability 1−α (if necessary, ¬¬A is replaced by A).
We discuss the reason for departing from Sato’s semantics
in Section 4.

So, take the set of probabilistic facts of the program
of interest, and ground them as needed to obtain a set of
probabilistic propositional facts F = {αi :: Ai}i∈I . A total
choice θ is a subset of these latter probabilistic proposi-
tional facts. Once we collect the facts in θ and the strongly
negated facts F\θ , and add them to the facts and rules of
the original program, we obtain an ASP program. So, if
we have N probabilistic propositional facts, we have 2N

total choices, and we thus have 2N ASP programs. The re-
maining bit is to define the probability of each total choice
(hence the probability that each ASP program is generated),
but this is simple enough: probabilistic propositional facts

92



THE JOY OF PASP

0.01 :: trip.
0.5 :: smoking.
tuberculosis :− trip,a1. 0.05 :: a1.
tuberculosis :− not trip,a2. 0.01 :: a2.
cancer :− smoking,a3. 0.1 :: a3.
cancer :− not smoking,a4. 0.01 :: a4.
either :− tuberculosis.
either :− cancer.
test :− either,a5. 0.98 :: a5.
test :− either,a6. 0.05 :: a6.

trip smoking

tuberculosis cancer

either

test

P(trip = 1) = 0.01,
P(smoking = 1) = 0.5,
P(tuberculosis = 1|trip = 1) = 0.05,
P(tuberculosis = 1|trip = 0) = 0.01,
P(cancer = 1|smoking = 1) = 0.1,
P(cancer = 1|smoking = 0) = 0.01,
either = {tuberculosis = 1}∨{cancer = 1},
P(test = 1|either = 1) = 0.98,
P(test = 1|either = 0) = 0.05.

Figure 1: Left: An acyclic PASP program, based on a popular Bayesian network [31]. Middle: the acyclic graph of the
program; also the structure of the corresponding Bayesian network. Right: the probability assessments specified
by the program (they are the probabilities for the Bayesian network).

are supposed stochastically independence, hence

P(θ) =

 ∏
j′:(α j′ ::A j′ )∈θ

α j′

 ∏
j′′:(α j′′ ::A j′′ )6∈θ

(1−α j′′)

 . (1)

It is worth noting that there are other ways to combine
ASP and probabilities in the literature. The semantics of P-
log assumes a uniform distribution over answer sets given
the (equivalent of a) total choice [3], while the language
LPMLN resorts to Markov logic to distribute probabilities
over answer sets. Other proposals introduce three-valued
atoms and various logical devices so as to mix answer sets
and probabilities [6, 52]. Another relevant proposal, by
Michels et al [38], also resorts to credal sets, but not in
the same way we do here. These semantics deserve further
treatment in future work.

4. The Joy of PASP

In this section we show how PASP can be used to repre-
sent many nontrivial probabilistic problems. We start with
nondisjunctive acyclic programs, then look at nondisjunc-
tive stratified ones, and then face the general case.

4.1. Nondisjunctive Acyclic Programs

The short nondisjunctive PASP program in Figure 1 (left)
is acyclic: intuitively, no atom depends on itself. To present
a more formal definition, it is necessary to define the de-
pendency graph of the program: this is a graph where each
grounded (propositional) atom is a node, and where, for
each grounded rule, there are edges from the atoms in the
body to the atoms in the head. The graph drawn in Fig-
ure 1 (middle) is the dependency graph of the program in
the same figure. An acyclic program is a program with an
acyclic dependency graph.

Because it is acyclic, the propositional program in Fig-
ure 1 (left) is quite easy to read, as its probabilistic facts
and rules translate directly into probabilities. The proba-
bilities can be seen in Figure 1 (right); note that here we
conflate atoms and the random variables they correspond
to (random variables that are defined over the space of all
interpretations).

Any acyclic propositional program can be viewed as the
specification of a Bayesian network over binary random
variables: the structure of the Bayesian network is the de-
pendency graph; the random variables correspond to the
atoms; the probabilities can be read off of the probabilistic
facts and rules. Conversely, any Bayesian network over bi-
nary variables can be specified by an acyclic nondisjunctive
PASP program [44]. In fact, the program in Figure 1 has
been generated from a well-known Bayesian network [31].

There are several specification languages that can com-
pactly describe Bayesian network over repetitive domains,
by parameterizing random variables and resorting to var-
ious forms of quantification. For instance, the language
of plates, introduced with the BUGS package [25], uses
simple geometric figures to specify parameterized random
variables that are associated with template probability distri-
butions. Similarly, Probabilistic Relational Models resort to
diagrams containing classes and template probability distri-
butions [11, 23], and several textual languages use elements
of functional programming to code repetitive probabilistic
structures [26, 28]

Acyclic programs can be used to specify “relational
Bayesian networks” as well. For instance, here is an acyclic
PASP program that captures part of the well-known Uni-
versity World [24], where we have courses, students, and

93



THE JOY OF PASP

0.6 :: edge(1,2).
0.1 :: edge(1,3).
0.4 :: edge(2,5).
0.3 :: edge(2,6).
0.3 :: edge(3,4).
0.8 :: edge(4,5).
0.2 :: edge(5,6).

12 3

45

6

0.6 0.1

0.4

0.3

0.3

0.8

0.2

Figure 2: A random undirected graph.

grades:

apt(X) :− student(X),a1. 0.7 :: a1.
easy(Y ) :− course(X),a2. 0.4 :: a2.
pass(X ,Y ) :− student(X),apt(X),course(Y ),easy(Y ).
pass(X ,Y ) :− student(X),apt(X),

course(Y ),not easy(Y ),a3. 0.8 :: a3..
This is unrealistically simple but it conveys the idea: apt
students do well in easy courses, and even in courses that
are not easy with probability 0.8 (and a student is apt with
probability 0.7; a course is easy with probability 0.4).

4.2. Nondisjunctive Stratified Programs

A program still specifies a single probability distribution
if it is nondisjunctive and stratified — that is, if there is
no cycle in the dependency graph that contains a negative
edge (that is, an edge created by a subgoal containin not).
A nondisjunctive stratified program has a unique minimal
model [12]; consequently any total choice induces a unique
model and therefore the probabilistic program induces a
unique probability distribution over interpretations. Due to
this, most of the literature on probabilistic logic program is
restricted to this class of programs [20].

Here is a prototypical example of nondisjunctive strati-
fied program:

edge(X ,Y ) :− edge(Y,X).
path(X ,Y ) :− edge(X ,Y ).
path(X ,Y ) :− edge(X ,Z),path(Z,Y )..

These rules can be spelled out as follows: there is a path
between two nodes if there is an undirected edge between
them, or if there is an undirected edge from one of them
to some node from which there is a path to the other node.
Coupled with an explicit description of the predicate edge,
this program allows one to determine whether it is pos-
sible or not to find a path between two given nodes. For
instance, if we have a random graph specified as in Fig-
ure 2 (the drawing depicts a visual representation of the
random graph, with edges annotated with probabiliies),
then P(path(1,4)) = 0.2330016.

As illustrated by this example, stratified PASP programs
can encode recursion. This is a feature that cannot be re-
produced with Probabilistic Relational Models based on

θ2

θ1

...

Figure 3: The credal semantics. The set of total choices is
shown to the left; there is single distribution over
them. Each total choice defines a program that
maps to a set of answer sets, shown to the right:
total choice θ1 maps to three answer sets, θ2 to
two answer sets, and so on.

first-order logic, as recursion goes beyond the resources of
first-order logic [16].

4.3. The General Case

If we have a nondisjunctive and non-stratified program, or
a disjunctive program, then it may be the case that for some
total choices the program has no answer set, or that for
some total choices the program has many answer sets. Sup-
pose first that some total choice leads to a program without
any answer set; in this case we take that the whole proba-
bilistic program is inconsistent and has no semantics. Other
strategies might be possible; we might try to repair the
inconsistency [6], or perhaps resort to some three-valued
semantics that can accommodate such failures. We leave
such strategies to future work.

The more interesting case is the one in which some total
choices lead to many answer sets. Note that a total choice θ

is associated with a probability P(θ); the individual answer
sets induced by θ collectively get mass P(θ), but no other
stipulations are present. One possibility is to distribute P(θ)
over the answer sets in some prescribed way (for instance,
P-log adopts a uniform distribution over answer sets [3]).
Another possibility is to consider the set of all possible
probability distributions that can be generated by distribut-
ing P(θ) over the answer sets. This strategy, first proposed
by Lukasiewicz [35, 36], is the one we adopt. Because
the semantics is then a set of probability distributions, we
refer to it as the credal semantics, as sets of probability
distributions with epistemic import are called credal sets
[32] (Lukasiewicz referred to his proposal simply as “sta-
ble model semantics”). Figure 3 shows the structure of the
credal semantics.

94



THE JOY OF PASP

Consider as an example the three-colorability problem
for undirected graphs:

red(X)∨green(X)∨blue(X) :− node(X).
edge(X ,Y ) :− edge(Y,X).
:− edge(X ,Y ), red(X), red(Y ).
:− edge(X ,Y ),green(X),green(Y ).
:− edge(X ,Y ),blue(X),blue(Y ).

(2)

plus the probabilistic facts in Figure 2 and the facts

red(1)., green(4)., green(6).. (3)

Each total choice fixes a graph; for this particular graph,
each answer set is a three-coloring. If it so happens that
each total choice induces a single three-coloring, then the
program defines a single probability distribution over in-
terpretations. If instead some total choices induce several
three-colorings, then the program defines a non-singleton
set of probability distributions: for each total choice θ , the
probability mass P(θ) can be attached to each one of the
answer sets induced by θ . Take for instance node 3. If both
edges to 1 and 4 are present (with probability 0.03), then
all answer sets must contain blue(3). And if both edges are
absent, then there are answer sets containing either red(3)
or blue(3) or green(3). Other configurations ensue if only
one edge is absent.

Under the credal semantics we cannot necessarily asso-
ciate each propositional atom A with a sharp probability
value. Instead, we can associate A with a lower probability
P(A) and an upper probability P(A). The lower probabil-
ity is the infimum over all probability values for A, for
all possible probability distributions; likewise, the upper
probability is the supremum over these probability values.

Thus we have that, in the last example, P(blue(3)) =
0.03; P(blue(3)) = 1; P(red(3)) = 0.0; P(red(3)) = 0.9.

Suppose now that on top of probabilistic facts in Fig-
ure 2 and hard facts in Expression (3), we also have the
probabilistic fact

0.2 :: blue(5).. (4)

In this case some total choices fail to produce a three-
coloring: for instance, if all edges are present, then there is
no way to produce a three-coloring when blue(5) is set to
hold. To have a consistent program, we must work differ-
ently. Consider the PASP program:

red(X)∨green(X)∨blue(X) :− node(X).
edge(X ,Y ) :− edge(Y,X).
¬colorable :− edge(X ,Y ), red(X), red(Y ).
¬colorable :− edge(X ,Y ),green(X),green(Y ).
¬colorable :− edge(X ,Y ),blue(X),blue(Y ).
red(X) :− ¬colorable,node(X),not ¬red(X).
green(X) :− ¬colorable,node(X),not ¬green(X).
blue(X) :− ¬colorable,node(X),not ¬blue(X)..

(5)

This program is certainly non-trivial. Basically, if there is
a three-coloring for the input graph, the corresponding inter-
pretation is an answer set. But if there is no three-coloring,
then colorable is set to false, and all groundings of red,
blue and green are set to true except for those groundings
that are set to false via probabilistic facts. To guarantee the
latter behavior the program resorts to the idiom not ¬A,
where A is an atom: basically this is true whenever it is not
known explicitly that A is false. As answer sets must be
minimal, colorable is true iff there is a three-coloring. In
our example, P(colorable,blue(3)) = 0.976. In fact, we can
ask for more: we can determine the probability that there
is no coloring at all; this is precisely 0.024. As colorable
indicates the possibility of a three-coloring for each total
choice, there is a sharp value for its probability.

Thus in PASP we can formulate a combinatorial problem
and ask for the lower/upper probability of its atoms; also,
we can ask for the probability that there is a solution at all.

Using the three-coloring example we can analyze in
more detail the semantics of probabilistic facts. Recall that
Sato’s semantics takes probabilistic fact α :: A. to mean
that we should impose A. with probability α and discard it
with probability 1−α . Our approach is different in that A.
means: {

take A with probability α;
take ¬A with probability 1−α.

Of course we can do so because strong negation is avail-
able in ASP; however, mere availability of ¬ is not the key
point. To understand why we propose this departure from
Sato’s proposal, take again the three-coloring program in
Expression (5) with probabilistic facts in Expressions (3)
and (4). If we adopt our proposed semantics for the prob-
abilistic facts, the credal semantics yields P(blue(5)) =
0.2 and P(colorable,blue(5)) = 0.1856 (some probability
mass is “lost” to configurations without three-colorings).
If we adopt Sato’s semantics for the probabilistic facts,
and continue with the construction of the credal se-
mantics, we obtain P(colorable,blue(5)) = 0.1856 but
P(colorable,blue(5)) = 0.9280! This behavior of Sato’s
semantics may be manageable in acyclic programs, where
the effect of probabilistic facts is relatively easy to grasp.1

In the presence of cyclic rules and constraints, such as the
ones typically found in ASP programming, it does not seem
appropriate to leave this management to the programmer,
and it seems better to alert her about problems through
inconsistency. It may be sometimes inconvenient to get
inconsistency, but we find that it is a small price to pay to
avoid the perplexing behavior of Sato’s semantics.

To finish this section, we briefly comment on the ability
of PASP to solve complex problems.

1. Even for acyclic programs may raise difficulties. Consider the sim-
ple acyclic program consisting of 0.2 :: r(a). and 0.8 :: r(X).; then
P(r(a)) = 0.2 + 0.8− 0.2× 0.8 = 0.84 in Sato’s semantics (not
P(r(a)) = 0.2 as one might think).

95



THE JOY OF PASP

Suppose we have a collection of companies C =
{c1, . . . ,cm}, such that each company manufactures a range
of products. Each product g j is manufactured by two com-
panies, as specified by atom produce(ci1 ,ci2 ,g j). Each com-
pany c may be owed by three other companies, as specified
by control(ci1 ,ci2 ,ci3 ,c) (a company may be controlled by
more than one triple). A strategic set C ′ of companies
is a minimal subset of C (minimal with respect to inclu-
sion) such that: 1) the set of all products manufactured by
C is identical to the set of all products manufactured by
C ′; 2) if the three controlling companies of a company
c is in C ′, then c is in C ′. The question is, given a com-
pany c, is it in some strategic set? This problem is NPNP-
complete,2 hence it is widely believed to be harder than
the three-coloring problem. Amazingly, the “strategic com-
pany” problem can be solved by a short ASP program [17]:

strategic(C1)∨ strategic(C2) :− produce(C1,C2,G).
strategic(C) :− produce(C1,C2,C3,C),

strategic(C1),strategic(C2),strategic(C3).

The first rule guarantees that all products are still sold by
the strategic set. The second rule guarantees that, if three
companies are in the strategic set, then a company they
control is also in the strategic set. The minimality of answer
sets guarantees the required minimality of strategic sets.

Now suppose, as it so happens in real life, that there
is some uncertainty as to which company controls which.
We may then be interested in the probability that some
company comp is in some strategic set. We must simply
state the relevant probabilistic facts such as

0.88 :: control(comp1,comp2,comp3,comp)..

and then compute P(strategic(comp)). In so doing we must
go through the set of solutions of an NPNP-complete prob-
lem.

5. Some Comments on Interpretation

We have so far posed questions as computational exercises:
What is the probability that there is a three-coloring? That
this node is red? In the remainder of this section we focus on
the interpretation of the lower/upper probabilities obtained
in answering such questions.

So, take a PASP program like the three-coloring one
(Expression (2)). Although total choices may be associated
with non-singleton credal sets, the atom colorable has a
unique value per total choice; hence the probability of this
atom is sharp. However, probabilities on the color of par-
ticular nodes may of course fail to be sharp. What is then

2. That is, it is a representative of those computational problems whose
solution requires a nondeterministic Turing machine with a polyno-
mial time bound and access to an oracle that is also a nondeterministic
Turing machine with a polynomial time bound [41].

the import of P(red(2))? Basically, there is at least proba-
bility P(red(2)) that node 2 gets red if a three-coloring is
selected after the uncertainty is resolved (that is, after the
atoms associated with probabilities have their values set).
Similarly, we have at most probability P(red(2)) that node
2 gets red if a three-coloring is selected after the uncertainty
is resolved. We can thus take lower/upper probabilities as
values generated by decisions taken after the resolution of
uncertainty. This is certainly in contrast to most decision-
making models where decisions are made before dice are
rolled [9].

In fact we may choose to attach a more active role to
the agent, supposing that it selects a three-coloring after
uncertainty is resolved: the lower probability is the prob-
ability if the agent is adversarially working against red in
node 2, while the upper probability obtains if the agent
works on behalf of red in node 2. There is then an im-
portant point to make: lower/upper probabilities can be
viewed as sharp probabilities with respect to appropriate
questions. If one asks, “What is the probability that I will
be able to select a three-ordering where node 2 is red?”, the
answer is exactly P(red(2)). Note that the query is actu-
ally P(there is answer set such that red(2)). Similarly, the
question “What is the probability that node 2 will be red
in a three-coloring, no matter what I do?” leads to a lower
probability as it asks whether for the probability that all
answer sets have node 2 painted red.

Thus PASP indeed lets one formulate probabilities that
quantify over answer sets, disguised as lower/upper proba-
bilities.

To conclude, the program that encodes the “probabilis-
tic strategic company” problem also illustrates a situa-
tion where the computation of P(strategic(comp)) actu-
ally answers the question “What is the probability that
I will be able to place comp in a strategic set?” While
in the three-coloring problem it was necessary to intro-
duce a predicate colorable to determine when a total choice
induces a solution (a three-coloring), here determining
whether a company is in a strategic set is the problem
itself. Consequently, P(strategic(comp)) is also the proba-
bility of finding a positive solution to the problem (that is,
P(there exists an answer set such that strategic(comp)).

6. Computing (Lower/Upper) Probabilities

Obviously, a powerful programming language is only use-
ful if its instances can be run in reasonable time. As ASP
can encode problems that are NPNP-complete, we cannot
expect every PASP program to run quickly. But we must
at least know how to exploit problem descriptions to speed
up the calculation of lower/upper probabilities.

Note that a stratified nondisjunctive programs specifies a
single probability distribution and any query is answered
by a sharp probability value. The computation of probabil-

96



THE JOY OF PASP

ities for stratified programs has been explored through a
variety of counting techniques [2, 20, 47]. We thus focus
on lower/upper probabilities that arise in connection with
general programs.

The first observation we make is that conditional
lower/upper probabilities can be easily calculated from
unconditional lower/upper probabilities, due to properties
of the credal semantics that we now investigate. This is due
to the following result, alluded to before [10] in connection
with Sato’s semantics for probabilistic facts:

Theorem 1 Suppose we have a PASP program whose se-
mantics is a credal set K. Then: 1) the lower probability
with respect to K is an infinitely monotone Choquet capac-
ity; 2) K is the largest credal set dominating this capacity;
3) K is closed and convex.

To sketch the proof of this result, refer to Figure 3: we
have a space endowed with a single probability distribution,
and a multi-valued mapping into a second space. Results
from the theory of Choquet capacities then lead to the
desired representation. The importance of Theorem 1 is
that we immediately obtain expressions for lower/upper
conditional probabilities. We have, for events A and B:

P(A |B) =
P(A ∩B)

P(A ∩B)+P(A c∩B)
,

P(A |B) =
P(A ∩B)

P(A ∩B)+P(A c∩B)
.

Thus in the remainder of this section we focus on the
computation of P(A1, . . . ,An), where each Ai is a literal.
It should be clear that the computation of lower probabili-
ties follows similar lines.

As input we have a PASP program and literals {Ai}. Our
strategy is:

1. First ground the program.

2. Then the resulting propositional PASP program is
turned into a (possibly long) propositional formula.
The transformation of an ASP program into a proposi-
tional formula in Conjunctive Normal Form (CNF) is
well-known [29]; we assume that such an algorithm is
run.3 All literals that appear in probabilistic facts must
be left in the program; at the end the propositions that
are associated with those facts must be marked with
the corresponding probabilities.

3. Finally run an adapted solution counting algorithm
that computes the desired probabilities. The counting
problem for NPNP problems has received relatively

3. Propositional formulas in Conjunctive Normal Form are written as
conjunctions of clauses, where a clause is a disjunction of literals. A
package that generates a CNF formula out of an ASP program an be
found at research.ics.aalto.fi/software/asp.

little attention in the literature, but some clever algo-
rithms have been proposed [1, 2]. Our contribution in
this paper is to adapt one particular algorithm; in the
remainder of this section we do so.

We thus have a CNF formula where some propositions
are associated with probabilities; we call these the priority
propositions. The remaining propositions are referred to
as non-priority ones. We must count the satisfying assign-
ments for priority propositions (non-priority propositions
are set as needed). Such a counting problem is solved by
the DSHARPP algorithm by Aziz et al. [1]. The DSHARPP
algorithm modifies the celebrated DPLL algorithm. The
latter algorithm is, in essence, rather simple: suppose we
wish to check the satisfiability of formula φ ; then select a
proposition C; simplify φ as if C were true, and recurse un-
til it is possible to prove that the new formula is satisfiable
or not; and simplify φ as if C were false, and recurse until
it is possible to prove that the new formula is satisfiable
or not. The DPLL algorithm implicitly builds a tree that
branches on the selected propositions; there are many tech-
niques to select propositions, to detect as early as possible
when to stop recursing, to store useful information, and to
exploit problem decompositions [4]. Algorithms that count
satisfying assignments of CNF formulas are often based on
the same sort of computing tree, but instead of exploring
the tree only until a satisfying assignment is found, the
algorithms must go through the whole tree, explicitly or
implicitly.

The basic idea in the DSHARPP algorithm is to build
an implicit tree as the DPLL algorithm, but to select non-
priority propositions only when there are no priority ones
in the formula at hand. The counts associated with two
distinct assignments of the same priority proposition are
added, and at the end the number of satisfying assignments
(for the priority propositions) are obtained. Two techniques
are used to speed up the whole process. First, the algorithm
must detect as early as possible when the formula can be
satisfied; when this happens and some priority propositions
remain unassigned, the algorithm computes in closed-form
the number of assignments for those propositions (a sim-
ple calculation: 2K assignments if there are K unassigned
propositions). Second, it may be the case that a formula in
CNF may be divided into several sub-fomulas, each one
of them a conjunction of clauses, such that propositions
in one sub-formula do not appear in other sub-formulas.
In this case the number of satisfying assignments for the
original formula is the product of the number of satisfying
assignments for each one of the sub-formulas.

To illustrate this process, Aziz et al. [1] use a simple
example that we reproduce in Figure 4. The goal is to count
the number of assignments of A, B and C for the original
formula φ . Only branching on these priority propositions is
shown; when a formula contains only non-priority propo-
sitions, the branching required to determine satisfiability

97



THE JOY OF PASP

is not shown. The counts obtained by branching are the
numbers shown in the leaves. Note that when A is applied
to formula φ , the result is a formula with two “disjoint” sub-
formulas φ1 and φ2; the conjunction of these sub-formulas
is represented by the left dot. And when ¬A is applied to
φ , “disjoint” sub-formulas φ3 and φ4 are obtained; their
conjunction is represented by the right dot. Thus φ5 “gets”
1, and φ1 gets 2; similarly, φ7 gets 1 and φ8 gets 0 (at φ8
is not satisfiable), so φ2 gets 1. The left dot gets 2 and 1,
and multiplies them, “sending” 2 to φ . By the same proce-
dure, the right dot sends 2 to φ ; at φ we obtain 2+2 = 4
satisfying assignments for priority propositions.

To adapt this algorithm to our setting, note that in PASP
probabilities are directly associated with atoms. Thus we
do not have to pursue a sophisticated encoding of proba-
bility values, such as done for Bayesian networks [8, 13].
Instead we just have to take into account that each priority
proposition is associated with a probability, and all of them
are stochastically independent. What happens then is that
any leaf node sends a 1 or a 0 up (from the satisfiability
of a corresponding sub-formula). These numbers are then
sent up across the edges. When a number is sent from a
sub-formula to another one through an edge labeled with a
literal, the number is multiplied by the probability of that
literal. Also, the numbers must be added at non-leaf nodes
containing sub-formulas, and they must be multiplied at
dots that represent separation into components. It should
be noted that in our setting we do not need to mutiply these
numbers by any factor when there are unassigned priority
propositions: any such proposition would lead to branches
containing a number and 1 minus that number; as the num-
bers in these branches are to be added, the effect of the
unassigned proposition is just a factor 1.

To understand the algorithm, consider Figure 4. Suppose
that the priority propositions are actually generated from
three probabilistic facts in a PASP program:

α :: A., β :: B., γ :: C..

Node φ1 gets β and 1−β ; it adds both and sends 1 to the
left dot. Node φ2 gets γ from its left child and 0 from its
right child; thus it sends γ to the left dot. Similarly, the right
dot gets β from φ3 and 1 from φ4. Consequently φ gets αγ

from the left dot and (1−α)β from the right dot; it adds
both numbers thus producing the correct upper probability
that φ is satisfied: αγ +(1−α)β .

7. Conclusion
Hopefully the reader is convinced that PASP offers an el-
egant way to code probabilistic questions. Most of the
existing literature focuses on acyclic or definite or stratified
programs that are already quite powerful as they can cap-
ture Bayesian networks and their relational variants, and
even introduce recursive behavior. General programs, with

disjunctive heads and non-stratified behavior, have been
left aside, often viewed as pathological entities devoid of
semantics.

The point of this paper is that, once a proper credal
semantics is given, cyclic programs provide concise encod-
ings for probabilistic combinatorial problems. The seman-
tics is actually straightforward and mathematically simple
as it is based on the well-known theory of two-monotone
Choquet capacities. Many applications can be considered;
just as an example, one may be interested in the robust-
ness of planning policies to uncertainty in initial conditions,
with planning problems encoded through ASP [1].

The real challenge ahead is to build PASP solvers that
can take on practical problems. The scheme we have out-
lined in this paper has three steps: grounding, conversion
to satisfiability, and (adapted) counting techniques. Each
one of these steps deserves further analysis:
1) Many ASP solvers selectively ground rules and facts
[30]. In ASP, not all grounded rules and facts are needed in
a particular calculation; finding exactly the needed ones is
the goal of a grounder. Future work should consider tech-
niques that selectively ground PASP programs.
2) There are several ASP solvers that are based on conver-
sion to propositional satisfiability, but usually they work
by constructing formulas gradually, introducing clauses
only as needed — this is important because the size of the
whole propositional formula may be exponential on the
input program [33]. Similar techniques should be examined
for PASP in future work.
3) The adapted counting algorithm we have presented
should be refined in future work. There are many tech-
niques used in DPLL that should be tested in the context of
PASP. And there are entirely different counting techniques
that could be appropriate in various scenarios [1] and that
deserve attention.

Acknowledgments

The author has been partially supported by the Conselho
Nacional de Desenvolvimento Cientifico e Tecnológico
(CNPq), grant 312180/2018-7. The work was also sup-
ported by the Fundação de Amparo à Pesquisa do Estado
de São Paulo (FAPESP), grant 2016/18841-0, and also
by the Coordenação de Aperfeiçoamento de Pessoal de
Nivel Superior (CAPES) - finance code 001. The work
was conducted at the Center for AI and Machine Learning
(CIAAM) with funding by Itaú Unibanco.

References

[1] Rehan Abdul Aziz, Geoffrey Chu, Christian Muise,
and Peter Stuckey. #∃SAT: Projected model counting.
In International Conference on Theory and Applica-
tions of Satisfiability Testing, pages 121–137, 2015.

98



THE JOY OF PASP

φ = (¬A∨¬B∨X)∧ (¬C∨¬Y ∨Z)∧ (¬A∨C∨¬Z)∧ (¬A∨C∨Y ∨Z)∧ (¬A∨C∨¬Y ∨Z)∧ (A∨B)

φ1 = ¬B∨X
φ2 =

(¬C∨¬Y ∨Z)∧ (C∨¬Z)∧
(C∨Y ∨Z)∧ (C∨¬Y ∨Z)

φ3 = B
φ4 = (¬C∨¬Y ∨Z)

φ5 = X 1

1 φ7 = (¬Y ∨Z)

1

φ8 = (¬Z)∧ (Y ∨Z)∧ (¬Y ∨Z)

0

01

φ9 = (¬Y ∨Z) 1

1

A ¬A

B ¬B

C
¬C

B ¬B

C ¬C

Figure 4: The counting example from Aziz et al. [1].

[2] Rehan Abdul Aziz, Geoffrey Chu, Christian Muise,
and Peter Stuckey. Stable model counting and its
application in probabilistic logic programming. In
AAAI, pages 3468–3474, 2015.

[3] Chitta Baral, Michael Gelfond, and Nelson Rushton.
Probabilistic reasoning with answer sets. Theory and
Practice of Logic Programming, 9(1):57–144, 2009.

[4] Armin Biere, Marijn Heule, Hans van Maaren, and
Toby Walsh. Handbook of Satisfiability. IOS Press,
2009.

[5] Stefan Borgwardt, Ismail Ilkan Ceylan, and Thomas
Lukasiewicz. Recent advances in querying probabilis-
tic knowledge bases. International Joint Conference
on Artificial Intelligence, pages 5420–5426, 2018.

[6] Ísmail Ílkan Ceylan, Thomas Lukasiewicz, and Rafael
Penñaloza. Complexity results for probabilistic
Datalog±. In European Conference on Artificial In-
telligence, pages 1414–1422, 2016.

[7] Ísmail Ílkan Ceylan, and Rafael Penñaloza. The
Bayesian Ontology Language BEL. Journal of Auto-
mated Reasoning, 58(1): 67–95 (2017)

[8] Mark Chavira and Adnan Darwiche. On probabilis-
tic inference by weighted model counting. Artificial
Intelligence, 172(6-7):772–799, 2008.

[9] Robert T. Clemen. Making Hard Decisions: An Intro-
duction to Decision Analysis. Duxbury Press, 1997.

[10] Fabio G. Cozman and Denis D. Mauá. On the seman-
tics and complexity of probabilistic logic programs.
Journal of Artificial Intelligence Research, 60:221–
262, 2017.

[11] Fabio G. Cozman and Denis D. Mauá. The complexity
of Bayesian networks specified by propositional and

relational languages. Artificial Intelligence, 262:96–
141, 2018.

[12] Evgeny Dantsin, Thomas Eiter, and Andrei Voronkov.
Complexity and expressive power of logic program-
ming. ACM Computing Surveys, 33(3):374–425,
2001.

[13] Adnan Darwiche. Modeling and Reasoning with
Bayesian Networks. Cambridge University Press,
2009.

[14] Luc De Raedt. Logical and Relational Learning.
Springer, 2008.

[15] Luc De Raedt, Paolo Frasconi, Kristian Kersting, and
Stephen Muggleton. Probabilistic Inductive Logic
Programming. Springer, 2008.

[16] Heinz-Dieter Ebbinghaus and J. Flum. Finite Model
Theory. Springer-Verlag, 1995.

[17] Thomas Eiter, Wolfgang Faber, Nicola Leone, and
Gerald Pfeifer. Declarative problem-solving using the
DLV system. In Logic-based Artificial Intelligence,
pages 79–103. Springer, 2000.

[18] Thomas Eiter, Giovambattista Ianni, and Thomas
Krennwalner. Answer set programming: a primer.
In Reasoning Web: Semantic Technologies for Infor-
mation Systems. 2009.

[19] Wolfgang Faber, Gerald Pfeifer, and Nicola Leone.
Semantics and complexity of recursive aggregates in
answer set programming. Artificial Intelligence, 175:
278–298, 2011.

[20] Daan Fierens, Guy Van den Broeck, Joris Renkens,
Dimitar Shrerionov, Bernd Gutmann, Gerda Janssens,

99



THE JOY OF PASP

and Luc De Raedt. Inference and learning in proba-
bilistic logic programs using weighted Boolean for-
mulas. Theory and Practice of Logic Programming,
15(3):358–401, 2014.

[21] Norbert Fuhr. Probabilistic Datalog – a logic for pow-
erful retrieval methods. In Conference on Research
and Development in Information Retrieval, pages 282–
290, Seattle, Washington, 1995.

[22] Michael Gelfond and Vladimir Lifschitz. The stable
model semantics for logic programming. In Interna-
tional Logic Programming Conference and Sympo-
sium, volume 88, pages 1070–1080, 1988.

[23] Lise Getoor and Ben Taskar. Introduction to Statis-
tical Relational Learning. MIT Press, 2007. ISBN
0262072882.

[24] Lise Getoor, Nir Friedman, Daphne Koller, Avi Pf-
effer, and Ben Taskar. Probabilistic relational mod-
els. In Introduction to Statistical Relational Learning.
MIT Press, 2007.

[25] Walter R. Gilks, Andrew Thomas, and David Spiegel-
halter. A language and program for complex Bayesian
modelling. The Statistician, 43:169–178, 1993.

[26] Andrew D. Gordon, Thomas A. Henzinger, Aditya V.
Nori, and Sriram K. Rajmani. Probabilistic program-
ming. In Future of Software Engineering, pages 167–
181. ACM, 2014. doi:10.1145/2593882.2593900.

[27] Christian Theil Have, and Riccardo Zese. Probabilis-
tic logic programming. International Journal of Ap-
proximate Reasoning, 106:88, 2019.

[28] Manfred Jaeger. Complex probabilistic modeling with
recursive relational Bayesian networks. Annals of
Mathematics and Artificial Intelligence, 32:179–220,
2001.

[29] Tomi Janhunen. Representing normal programs with
clauses. In European Conference on Artificial Intelli-
gence (ECAI), page 358—362, 2004.

[30] Tomi Janhunen and Ilkka Niemelä. The answer set
programming paradigm. AI Magazine, 37(3):13–24,
2016.

[31] S. L. Lauritzen and D. J. Spiegelhalter. Local compu-
tations with probabilities on graphical structures and
their application to expert systems. Journal Royal
Statistical Society B, 50(2):157–224, 1988.

[32] Isaac Levi. The Enterprise of Knowledge. MIT Press,
Cambridge, Massachusetts, 1980.

[33] Vladimir Lifschitz and Alexander Razborov. Why are
there so many loop formulas? ACM Transactions on
Computational Logic, 7(2):261–268, 2006.

[34] Thomas Lukasiewicz. Probabilistic logic program-
ming. In European Conference on Artificial Intelli-
gence, pages 388–392, 1998.

[35] Thomas Lukasiewicz. Probabilistic description logic
programs. In European Conference on Symbolic and
Quantitative Approaches to Reasoning with Uncer-
tainty (ECSQARU 2005), pages 737–749, Barcelona,
Spain, July 2005. Springer.

[36] Thomas Lukasiewicz. Probabilistic description logic
programs. International Journal of Approximate Rea-
soning, 45(2):288–307, 2007.

[37] Victor Marek and Miroslaw Truszczynski. Sta-
ble models and an alternative logic programming
paradigm. In The Logic Programming Paradigm: a
25-Year Perspective, page 375–398. Springer Verlag,
1999.

[38] Steffen Michels, Arjen Hommersom, Peter J. F. Lucas,
and Marina Velikova. A new probabilistic constraint
logic programming language based on a generalised
distribution semantics. Artificial Intelligence Journal,
228:1–44, 2015.

[39] Raymond Ng and V. S. Subrahmanian. Probabilistic
logic programming. Information and Computation,
101(2):150–201, 1992.

[40] Ilkka Niemelä. Logic programs with stable model
semantics as a constraint programming paradigm. An-
nals of Mathematics and Artificial Intelligence, 25:
241–273, 1999.

[41] Christos H. Papadimitriou. Computational Complex-
ity. Addison-Wesley Publishing, 1994.

[42] David Poole. Probabilistic Horn abduction and
Bayesian networks. Artificial Intelligence, 64:81–129,
1993.

[43] David Poole. The Independent Choice Logic for mod-
elling multiple agents under uncertainty. Artificial
Intelligence, 94(1/2):7–56, 1997.

[44] David Poole. The Independent Choice Logic and
beyond. In Luc De Raedt, Paolo Frasconi, Kristian
Kersting, and Stephen Muggleton, editors, Probabilis-
tic Inductive Logic Programming, volume 4911 of
Lecture Notes in Computer Science, pages 222–243.
Springer, 2008.

100

http://dx.doi.org/10.1145/2593882.2593900


THE JOY OF PASP

[45] Gian Luca Pozzato. Typicalities and probabilities of
exceptions in nonmotonic description logics. Inter-
national Journal of Approximate Reasoning, 107:81–
100, 2019.

[46] Fabrizio Riguzzi. The distribution semantics is well-
defined for all normal programs. In Fabrizio Riguzzi
and Joost Vennekens, editors, International Workshop
on Probabilistic Logic Programming, volume 1413
of CEUR Workshop Proceedings, pages 69–84, 2015.

[47] Fabrizio Riguzzi, Elena Bellodi, Riccardo Zese,
Giuseppe Cota, and Evelina Lamma. A survey of
lifted inference approaches for probabilistic logic pro-
gramming under the distribution semantics. Inter-
national Journal of Approximate Reasoning, 80:313–
333, 2017.

[48] Fabrizio Riguzzi, Jan Wielemaker, and Riccardo Zese.
Probabilistic inference in SWI-Prolog. PLP at ILP,
pages 15–27, 2018.

[49] Taisuke Sato. A statistical learning method for logic
programs with distribution semantics. In Conference
on Logic Programming, pages 715–729, 1995.

[50] Taisuke Sato and Yoshitaka Kameya. Parameter learn-
ing of logic programs for symbolic-statistical model-
ing. Journal of Artificial Intelligence Research, 15:
391–454, 2001.

[51] Taisuke Sato, Yoshitaka Kameya, and Neng-Fa Zhou.
Generative modeling with failure in PRISM. In Inter-
national Joint Conference on Artificial Intelligence,
pages 847–852, 2005.

[52] Joost Vennekens, Marc Denecker, and Maurice
Bruynoogue. CP-logic: A language of causal proba-
bilistic events and its relation to logic programming.
Theory and Practice of Logic Programming, 9(3):245–
308, 2009.

101


	Introduction
	Background: Answer Set Programming
	PASP: Probabilistic Answer Set Programming
	The Joy of PASP
	Nondisjunctive Acyclic Programs
	Nondisjunctive Stratified Programs
	The General Case

	Some Comments on Interpretation
	Computing (Lower/Upper) Probabilities
	Conclusion

