
Proceedings of Machine Learning Research 215:130–140, 2023 ISIPTA 2023

Markov Conditions and Factorization in Logical Credal Networks

Fabio Gagliardi Cozman
Universidade de São Paulo, Brazil

Abstract
We examine the recently proposed language of Log-
ical Credal Networks, in particular investigating the
consequences of various Markov conditions. We in-
troduce the notion of structure for a Logical Credal
Network and show that a structure without directed
cycles leads to a well-known factorization result. For
networks with directed cycles, we analyze the differ-
ences between Markov conditions, factorization results,
and specification requirements.
Keywords: logical credal networks, probabilistic logic,
Markov condition, factorization.

1. Introduction
This paper examines Logical Credal Networks, a formalism
recently introduced by Marinescu et al. [14] to combine
logical sentences, probabilities and independence relations.
They have proposed interesting ideas and evaluated the
formalism in practical scenarios with positive results.

The central element of a Logical Credal Network (LCN) is
a collection of constraints over probabilities. Independence
relations are then extracted mostly from the logical content
of those inequalities. This scheme differs from previous
proposals that extract independence relations from explicitly
specified graphs [1, 7, 8]. Several probabilistic logics have
also adopted explicit syntax for independence relations even
when graphs are not employed [2, 9, 10].

While Logical Credal Networks have points in common
with existing formalisms, they do have novel features that
deserve attention. For one thing, they resort to directed
graphs that may contain directed cycles. Also they are
endowed with a sensible Markov condition that is distinct
from previous ones. Little is known about the consequences
of these features, and how they interact with the syntactic
conventions that turn logical formulas into edges in graphs.
In particular, it seems that no study has focused on the
consequences of Markov conditions on factorization results;
that is, how such conditions affect the factors that constitute
probability distributions.

In this paper we seek a deeper understanding of Logical
Credal Networks, looking at their specification, their Markov
conditions, their factorization properties. We introduce the
notion of “structure” for a LCN. We then show that the
local Markov condition proposed by Marinescu et al. [14]

collapses to the usual local Markov condition applied to
chain graphs when the structure has no directed cycles. We
analyze the behavior of the former Markov condition in
the presence of directed cycles, in particular investigating
factorization properties and discussing the semantics of the
resulting language. We also suggest novel semantics for
LCNs and examine related factorization results.

2. Graphs and Markov Conditions

In this section we present the necessary concepts related to
graphs and graph-theoretical probabilistic models (Bayesian
networks, Markov networks, and chain graphs). Definitions
and notation vary across the huge literature on these topics;
we rely here on three sources. We use definitions by Mari-
nescu et al. [14] and by Spirtes [18] in their work on LCNs
and on directed graphs respectively; we also use standard
results from the textbook by Cowell et al. [5].

A graph is a triple (V, E𝐷 , E𝑈), where V is a set of
nodes, and both E𝐷 and E𝑈 are sets of edges. A node is
always labeled with the name of a random variable; in fact,
we do not distinguish between a node and the corresponding
random variable. The elements of E𝐷 are directed edges. A
directed edge is an ordered pair of distinct nodes, denoted
by 𝐴 → 𝐵. The elements of E𝑈 are undirected edges.
An undirected edge is a pair of distinct nodes, denoted by
𝐴 ∼ 𝐵; note that nodes are not ordered in an undirected edge,
so there is no difference between 𝐴 ∼ 𝐵 and 𝐵 ∼ 𝐴. Note
that E𝐷 and E𝑈 are sets, so there are no multiple copies
of elements in them (for instance, there are no multiple
undirected edges between two nodes). Note also that there
is no loop from a node to itself.

If there is a directed edge from 𝐴 to 𝐵, the edge is said
to be from 𝐴 to 𝐵, and then 𝐴 is a parent of 𝐵 and 𝐵 is a
child of 𝐴. The parents of 𝐴 are denoted by pa(𝐴). If there
are directed edges 𝐴 → 𝐵 and 𝐵 → 𝐴 between 𝐴 and 𝐵,
we say there is bi-directed edge between 𝐴 and 𝐵 and write
𝐴 � 𝐵. If 𝐴 ∼ 𝐵, then both nodes are said to be neighbors.
The neighbors of 𝐴 are denoted by ne(𝐴). The boundary of
a node 𝐴, denoted by bd(𝐴), is the set pa(𝐴) ∪ ne(𝐴). The
boundary of a set B of nodes is bd(B) = ∪𝐴∈Bbd(𝐴)\B.
If we have a set B of nodes such that, for all 𝐴 ∈ B, the
boundary of 𝐴 is contained in B, then B is an ancestral set.

© 2023 F.G. Cozman.

Markov Conditions and Factorization in Logical Credal Networks

𝐴 𝐵

𝐶 𝐷

(a)

𝐴 𝐵

𝐶 𝐷

(b)

𝐴 𝐵

𝐶 𝐷

(c)

𝐴 𝐵

𝐶 𝐷

(d)

𝐴 𝐵

𝐶 𝐷

(e)

Figure 1: Graphs (directed/directed/undirected/directed/
chain). We have pa(𝐵) = {𝐴} in Figures 1.a
and 1.e, pa(𝐵) = {𝐴, 𝐷} in Figures 1.b and 1.d,
and pa(𝐵) = ∅ in Figure 1.c.

𝐴 𝐵

𝐶 𝐷

(a)

𝐴 𝐵

𝐶 𝐷

(b)

𝐴 𝐵

𝐶 𝐷

(c)

𝐴 𝐵

𝐶 𝐷

(d)

𝐴 𝐵

𝐶 𝐷

(e)

Figure 2: The moral graphs of the graphs in Figure 1.

A path from 𝐴 to 𝐵 is a sequence of distinct edges, the
first one between 𝐴 and some node 𝐶1, then between 𝐶1
and 𝐶2 and so on, until an edge between 𝐶𝑘 and 𝐵, where
all nodes are distinct with the exception that the first and
last nodes may be identical, and such that for each pair
(𝐷1, 𝐷2) of consecutive nodes in the path we have either
𝐷1 → 𝐷2 or 𝐷1 ∼ 𝐷2 but never 𝐷2 → 𝐷1. If 𝐴 and 𝐵

are in fact identical, the path is a cycle. If there is at least
one directed edge in a path, the path is a directed path; if
that path is a cycle, then it is a directed cycle. If a path is
not directed, then it is undirected (hence all edges in the
path are undirected ones). A directed/undirected graph is a
graph that only contains directed/undirected edges. A graph
without directed cycles is a chain graph (note that such a
graph may have a cycle consisting only of undirected edges).
Figure 1 depicts a number of graphs.

If there is a directed path from 𝐴 to 𝐵, then 𝐴 is an
ancestor of 𝐵 and 𝐵 is a descendant of 𝐴. For instance, in
Figure 1.a, 𝐴 is the ancestor of 𝐵 and 𝐷 is the descendant
of 𝐵; in Figure 1.c, there are no ancestors nor descendants
of 𝐵; in Figure 1.e, 𝐴 is the ancestor of 𝐵, and there are no
descendants of 𝐵. As a digression, note that Cowell et al. [5]
define “ancestor” and “descendant” somewhat differently,
by asking that there is a path from 𝐴 to 𝐵 but not from 𝐵

to 𝐴; this definition is equivalent to the previous one for
graphs without directed cycles, but it is different otherwise
(for instance, in Figure 1.b the node 𝐵 has descendants
{𝐴,𝐶, 𝐷} in the previous definition but no descendant in
the sense of Cowell et al. [5]). We stick to our former
definition, a popular one [13] that seems appropriate in the
presence of directed cycles [18].

We will need the following concepts:

• Suppose we take graph G and remove its directed
edges to obtain an auxiliary undirected graph G′. A

set of nodes B is a chain multi-component of G iff
every pair of nodes in B is connected by a path in G′.
And B is a chain component iff it is either a chain
multi-component or a single node that does not belong
to any chain multi-component.

• Suppose we take graph G and add undirected edges
between each two nodes nodes that have a children in a
common chain component of G and that are not already
joined in G. Suppose we then take the resulting graph
and transform every directed edge into an undirected
edge (if 𝐴 � 𝐵, then both transformed directed edges
collapse into 𝐴 ∼ 𝐵). The final result is the moral
graph of G, denoted by G𝑚.

• Suppose we take a graph G and a triple (N1,N2,N3)
of disjoint subsets of nodes, and we build the moral
graph of the smallest ancestral set containing the nodes
in N1 ∪ N2 ∪ N3. The resulting graph is denoted by
G𝑚𝑎 (N1 ∪ N2 ∪ N3).

Figure 2 depicts the moral graphs that correspond respec-
tively to the five graphs in Figure 1.

There are several formalisms that employ graphs to rep-
resent stochastic independence (and dependence) relations
among the random variables associated with nodes. In
this paper we focus only on discrete random variables, so
the concept of stochastic independence is quite simple:
random variables 𝑋 and 𝑌 are (conditionally) indepen-
dent given random variables 𝑍 iff ℙ(𝑋 = 𝑥,𝑌 = 𝑦 |𝑍 = 𝑧) =
ℙ(𝑋 = 𝑥 |𝑍 = 𝑧) ℙ(𝑌 = 𝑦 |𝑍 = 𝑧) for every possible 𝑥 and 𝑦

and every 𝑧 such that ℙ(𝑍 = 𝑧) > 0. In case 𝑍 is absent,
we have independence of 𝑋 and 𝑌 iff ℙ(𝑋 = 𝑥,𝑌 = 𝑦) =
ℙ(𝑋 = 𝑥) ℙ(𝑌 = 𝑦) for every possible 𝑥 and 𝑦.

A Markov condition explains how to extract independent
relations from a graph; there are many such conditions in
the literature [5].

Consider first an undirected graph G with set of nodes N .
The local Markov condition states that a node 𝐴 is indepen-
dent of all nodes in N other than 𝐴 itself and 𝐴’s neighbors,
ne(𝐴), given ne(𝐴). The global Markov condition states
that, given any triple (N1,N2,N3) of disjoint subsets of N ,
such thatN2 separatesN1 andN3, then nodesN1 andN3 are
independent given nodes N2.1 If a probability distribution
over all random variables in G is everywhere larger than
zero, then both conditions are equivalent and they are equiv-
alent to a factorization property: for each configuration of
variables 𝑋 = 𝑥, where 𝑋 denotes the random variables
in G, we have ℙ(𝑋 = 𝑥) = ∏

𝑐∈C 𝜙𝑐 (𝑥𝑐), where C is the
set of cliques of G, each 𝜙𝑐 is a function over the random

1In an undirected graph, a set of nodes separates two other sets iff, by
deleting the separating nodes, we have no connecting path between a node
in one set and a node in the other set.

131

Cozman

variables in clique 𝑐, and 𝑥𝑐 is the projection of 𝑥 over the
random variables in clique 𝑐.2

Now consider an acyclic directed graph G with set of
nodes N . The local Markov condition states that a node
𝐴 is independent, given 𝐴’s parents pa(𝐴), of all its non-
descendants non-parents except 𝐴 itself. The factorization
produced by the local Markov condition is

ℙ(𝑋 = 𝑥) =
∏
𝑁 ∈N

ℙ
(
𝑁 = 𝑥𝑁 |pa(𝑁) = 𝑥pa(𝑁)

)
, (1)

where 𝑥𝑁 is the value, in 𝑥, of random variable 𝑁 and
𝑥pa(𝑁) is the projection of 𝑥 over the parents of 𝑁 .

Finally, consider a chain graph G with set of nodes N .
The local Markov condition for chain graphs is:

Definition 1 (LMC(C)) A node 𝐴 is independent, given its
boundary, of all nodes that are not 𝐴 itself nor descendants
nor boundary nodes of 𝐴.

The global Markov condition for chain graphs is significantly
more complicated:

Definition 2 (GMC(C)) Given any triple (N1,N2,N3) of
disjoint subsets of N , if N2 separates N1 and N3 in the
graph G𝑚𝑎 (N1 ∪ N2 ∪ N3), then nodes N1 and N3 are
independent given nodes N2.

If a probability distribution over all random variables in G
is everywhere larger than zero, then both Markov conditions
are equivalent and they are equivalent to a factorization
property as follows. Take the chain components 𝑇1, . . . , 𝑇𝑛
ordered so that nodes in 𝑇𝑖 can only be at the end of directed
edges starting from chain components before 𝑇𝑖; this is al-
ways possible in a chain graph. Then the factorization has the
form ℙ(𝑋 = 𝑥) =

∏𝑛
𝑖=1 ℙ

(
N𝑖 = 𝑥N𝑖

| bd(N𝑖) = 𝑥bd(N𝑖)
)

where N𝑖 is the set of nodes in the 𝑖th chain component;
𝑥N𝑖

and 𝑥bd(N𝑖) are respectively the projection of 𝑥 over
N𝑖 and bd(N𝑖). Moreover, each factor in the product it-
self factorizes accordingly to an undirected graph that
depends on the corresponding chain component [5]. More
precisely, for each chain component 𝑇𝑖 , build an undirected
graph consisting of the nodes in N𝑖 and bd(N𝑖) with all
edges between these nodes in G turned into undirected
edges in this new graph, and with new undirected edges
connecting each pair of nodes in bd(N𝑖) that were not
joined already; then each ℙ(N𝑖 | bd(N𝑖)) equals the ra-
tio 𝜙𝑖 (N𝑖 , bd(N𝑖))/𝜙𝑖 (bd(N𝑖))) for positive function 𝜙𝑖 ,
where 𝜙𝑖 (bd(N𝑖))) =

∑
𝜙𝑖 (N𝑖 , bd(N𝑖)) with the sum ex-

tending over all configurations of N𝑖 .

2A clique is a maximal set of nodes such that each pair of nodes in
the set is joined.

3. Logical Credal Networks
A Logical Credal Network (LCN) consists of a set of
propositions N and two sets of constraints T𝑈 and T𝐷 .
The set N is finite with propositions 𝐴1, . . . , 𝐴𝑛. Each
proposition 𝐴𝑖 is associated with a random variable 𝑋𝑖 that
is an indicator variable: if 𝐴𝑖 holds in an interpretation of
the propositions then 𝑋𝑖 = 1; otherwise, 𝑋𝑖 = 0. From now
on we simply use the same symbol for a proposition and its
corresponding indicator random variable. Each constraint
in T𝑈 and in T𝐷 is of the form

𝛼 ≤ ℙ(𝜙 |𝜑) ≤ 𝛽,

where each 𝜙 and each 𝜑 is a formula. In this paper, formulas
are propositional (with propositions in N and connectives
such as negation, disjunction, conjunction). The definition
of LCNs by Marinescu et al. [14] allows for relational
structures and first-order formulas; however, their semantics
is obtained by grounding on finite domains, so we can focus
on a propositional language for our purposes here.

Note that 𝜑 can be a tautology >, in which case we
can just write the “unconditional” probability ℙ(𝜙). One
can obviously use simple variants of constraints, such as
ℙ(𝜙|𝜑) = 𝛽 or ℙ(𝜙 |𝜑) ≥ 𝛼 or ℙ(𝜙) ≤ 𝛼, whenever needed.

The semantics of a LCN is given by a translation from the
LCN to a directed graph where each proposition/random
variable is a node (we often refer to them as proposition-
nodes). Each constraint is then processed as follows. First,
a node labeled with formula 𝜙 is added and, in case 𝜑 is not
>, another node labeled with 𝜑 is added (we often refer to
them as formula-nodes), with a directed edge from 𝜑 to 𝜙.
Then an edge is added from each proposition in 𝜑 to node
𝜑 in case the latter is in the graph, and an edge is added
from node 𝜙 to each proposition in 𝜙.3 Finally, in case the
constraint is in T𝑈 , an edge is added from each proposition
in 𝜙 to node 𝜙. We do not distinguish between two logically
equivalent formulas (the original proposal by Marinescu
et al. [14] focused only on syntactic operations).

The graph just described is referred to as the primal
graph of the LCN. As shown in the next example, in our
drawings formulas appear inside dashed rectangles. For the
sake of simplicity, we remove such a rectangle whenever
the corresponding formula contains a single proposition
and its connections to surrounding nodes can be inferred
from context; in such cases we can just connect edges from
and to the corresponding proposition-nodes.

Example 1 Consider the following LCN, based on the
Smokers and Friends example by Marinescu et al. [14]. We

3We note that the original presentation of LCNs is a bit different from
what we just described, as there are no edges added for a constraint in T𝐷
for which 𝜑 is >. But this does not make any difference in the results and
simplifies a bit the discussion.

132

Markov Conditions and Factorization in Logical Credal Networks

𝐹2 ∧ 𝐹3 𝐹1 ∧ 𝐹3 𝐹1 ∧ 𝐹2

𝐹1 𝐹2 𝐹3

𝑆1 ∨ 𝑆2 𝑆2 ∨ 𝑆3 𝑆1 ∨ 𝑆3

𝑆1 𝑆2 𝑆3

¬𝑆1 ¬𝑆2 ¬𝑆3

𝐶1 𝐶1 𝐶1

Figure 3: The primal graph of the LCN in Example 1.

have propositions 𝐶𝑖 , 𝐹𝑖 , 𝑆𝑖 for 𝑖 ∈ {1, 2, 3}. All constraints
belong to T𝑈 (that is, T𝐷 is empty), with 𝑖, 𝑗 ∈ {1, 2, 3}:

0.5 ≤ ℙ
(
𝐹𝑖 |𝐹𝑗 ∧ 𝐹𝑘

)
≤ 1, 𝑖 ≠ 𝑗 , 𝑖 ≠ 𝑘, 𝑗 ≠ 𝑘;

0 ≤ ℙ
(
𝑆𝑖 ∨ 𝑆 𝑗 |𝐹𝑖

)
≤ 0.2, 𝑖 ≠ 𝑗 ;

0.03 ≤ ℙ(𝐶𝑖 |𝑆𝑖) ≤ 0.04;
0 ≤ ℙ(𝐶𝑖 |¬𝑆𝑖) ≤ 0.01.

The primal graph of this LCN is depicted in Figure 3. Note
that there are several directed cycles in this primal graph.

Marinescu et al. [14] then define:

Definition 3 A lcn-parent of a proposition 𝐴 is a propo-
sition such that there exists a directed path in the primal
graph from it to 𝐴 in which all intermediate nodes are
formulas.

The set of lcn-parents of 𝐴 is denoted by lcn-pa(𝐴).

Definition 4 A lcn-descendant of a proposition 𝐴 is a
proposition such that there exists a directed path in the
primal graph from 𝐴 to it in which no intermediate node is
a lcn-parent of 𝐴.

The set of lcn-descendants of 𝐴 is denoted by lcn-de(𝐴).
The connections between these concepts and the defini-

tions of parent and descendant in Section 2 will be clear in
the next section.

In any case, using these definitions Marinescu et al. [14]
propose a Markov condition:

Definition 5 (LMC(LCN)) A node 𝐴 is independent,
given its lcn-parents, of all nodes that are not 𝐴 itself
nor lcn-descendants of 𝐴 nor lcn-parents of 𝐴.

The Markov condition in Definition 5 is:

𝑋 |= N\{{𝐴}∪ lcn-de(𝐴) ∪ lcn-pa(𝐴)} | lcn-pa(𝐴), (2)

where we use |= here, and in the remainder of the paper, to
mean “is independent of”.

We will often use the superscript 𝑐 to mean complement,
hence A𝑐 � N\A.

Marinescu et al. [14] have derived inference algorithms
(that is, they consider the computation of conditional prob-
abilities) that exploit such independence relations, and they
examine applications that demonstrate the practical value
of LCNs.

It seems that a bit more discussion about the meaning
of this Markov condition, as well as its properties and
consequences, would be welcome. To do so, we find it
useful to introduce a novel concept, namely, the structure
of a LCN.

4. The Structure of a LCN
The primal graph of a LCN is rather similar in spirit to
the factor graph of a Bayesian network [13], where both
random variables and conditional probabilities are explicitly
represented. This is a convenient device when it comes
to message-passing inference algorithms, but perhaps it
contains too much information when one wishes to examine
independence relations.

We introduce another graph to be extracted from the
primal graph of a given LCN, that we call the structure of
the LCN, as follows:

1. For each formula-node 𝜙 that appears as a conditioned
formula in a constraint in T𝑈 , place an undirected edge
between any two propositions that appear in 𝜙.

2. For each pair of formula-nodes 𝜑 and 𝜙 that appear in
a constraint, add a directed edge from each proposition
in 𝜑 to each proposition in 𝜙.

3. If, for some pair of proposition-nodes 𝐴 and 𝐵, there
is now a pair of edges 𝐴 � 𝐵, then replace both edges
by an undirected edge.

4. Finally, remove the formula-nodes and all edges in
and out of them; and if there are identical edges left,
remove duplicates.

Example 2 Figures 4.a and 4.b depict the structure of the
LCN in Example 1.

We have:

Lemma 6 The set of lcn-parents of a proposition 𝐴 in a
LCN is identical to the boundary of 𝐴 with respect to the
structure of the LCN.

Proof Consider a LCN with a primal graph D. If 𝐵 is a
lcn-parent of 𝐴 with respect to D, then constructs such as
𝐵 → 𝜑 → 𝜙 → 𝐴 or 𝐵 � 𝜙 � 𝐴 must be present, leading

133

Cozman

𝐹2 ∧ 𝐹3 𝐹1 ∧ 𝐹3 𝐹1 ∧ 𝐹2

𝐹1 𝐹2 𝐹3

𝑆1 ∨ 𝑆2 𝑆2 ∨ 𝑆3 𝑆1 ∨ 𝑆3

𝑆1 𝑆2 𝑆3

¬𝑆1 ¬𝑆2 ¬𝑆3

𝐶1 𝐶1 𝐶1

(a)

𝐹1 𝐹2 𝐹3

𝑆1 𝑆2 𝑆3

𝐶1 𝐶1 𝐶1(b)

𝐹1,2,3

𝑆1,2,3

𝐶1 𝐶2 𝐶3

(c)

𝐹1,2 𝐹2,3

𝑆1,2,3

𝐶1 𝐶2 𝐶3

(d)

Figure 4: (a) The primal graph for the LCN in Example 1, together with the edges in the structure of the LCN. Edges in the
structure are solid (the ones added in the process are in blue); edges in and out of formula-nodes are dotted. (b)
The structure of the LCN, by removing the formula-nodes and associated edges. (c) A directed acyclic graph with
the chain components of the chain graph that represents the structure. (d) A variant discussed in Example 3.

either to direct or undirected edges in the structure; hence 𝐵
appears either as a parent of 𝐴 or a neighbor in the structure
of the LCN. Conversely, if 𝐵 is a parent or a neighbor of 𝐴
in the structure of the LCN, then one of the sequences of
edges already mentioned must be in D, so 𝐵 is a lcn-parent
of 𝐴 in D.

The natural candidate for the concept of “descendant” in
a structure, so as to mirror the concept of lcn-descendant,
is as follows:

Definition 7 If there is a directed path from 𝐴 to 𝐵 such
that no intermediate node is a boundary node of 𝐴, then 𝐵

is a strict descendant of 𝐴.

Using the previous definitions, we can state a local
Markov condition that works for any graph:

Definition 8 (LMC(C-STR)) A node 𝐴 is independent,
given its boundary, of all nodes that are not 𝐴 itself nor
strict descendants of 𝐴 nor boundary nodes of 𝐴.

In symbols,

𝑋 |= N\{{𝐴} ∪ sde(𝐴) ∪ bd(𝐴)} | bd(𝐴), (3)

where sde(𝐴) denotes the set of strict descendants of 𝐴.
It is not immediately clear that LMC(LCN) and LMC(C-

STR) are equivalent when applied to a structure, because
the lcn-descendants of a node in a primal graph are not the
strict descendants of the same node in the corresponding

structure. To see this, consider Figure 1.b: if we think of
this graph as containing the proposition nodes and their
connections from the primal graph, then 𝐴 and 𝐷 are the
lcn-descendants of 𝐵; in the corresponding structure, given
by Figure 1.c, 𝐵 has no strict descendants as there are no
directed paths.

In fact, the set of lcn-descendants of a proposition node 𝐴,
lcn-de(𝐴), can be divided in two sets of nodes, lcn-de1 (𝐴)
and lcn-de2 (𝐴). Take a node 𝐵 to be in lcn-de1 (𝐴) if and
only if there is at least one directed path from 𝐴 to 𝐵 that
starts with a directed edge and such that no intermediate
node is a lcn-parent of 𝐴. All of those nodes are strict
descendants of 𝐴 because the directed paths that exist in
the primal graph are translated verbatim to directed paths
in the corresponding structure. And take a node 𝐵 to be
in lcn-de2 (𝐴) if and only if all directed paths from 𝐴 to
𝐵 that have no lcn-parent of 𝐴 as an intermediate node
start with a bi-directed edge. By construction, lcn-de1 (𝐴)
and lcn-de2 (𝐴) are disjoint. Now note that any node 𝐵 in
lcn-de2 (𝐴) must be a lcn-parent of 𝐴 (if there is 𝐵 that is
not a lcn-parent of 𝐴, we have a situation where all paths
from 𝐴 to 𝐵 go through a lcn-parent of 𝐴, and by definition
this is not possible). Note also that nodes in lcn-de2 (𝐴)
appear as neighbors of 𝐴 in the corresponding structure of
the LCN.

Consequently, the nodes that are lcn-descendants of 𝐴
are either strict descendants of 𝐴 or neighbors of 𝐴 with
respect to the structure.

134

Markov Conditions and Factorization in Logical Credal Networks

Using these insights, we can show that the LMC(LCN)
and the LMC(C-STR) do have the same effect when applied
to the structure:

Theorem 9 Given a LCN, the Markov condition
LMC(LCN) in Definition 5 is identical, with respect to
the independence relations it imposes, to the local Markov
condition LMC(C-STR) in Definition 8 applied to the struc-
ture of the LCN.

Proof To prove that Expressions (2) and (3) are equivalent,
consider first the following equalities with respect to sets of
nodes:

lcn-de(𝐴) ∪ lcn-pa(𝐴) = lcn-de1 (𝐴) ∪ lcn-de2 (𝐴)
∪ lcn-pa(𝐴)

= sde(𝐴) ∪ ne(𝐴)
∪ pa(𝐴) ∪ ne(𝐴)

= sde(𝐴) ∪ pa(𝐴) ∪ ne(𝐴)
= sde(𝐴) ∪ bd(𝐴),

and consequently {𝐴} ∪ lcn-de(𝐴) ∪ lcn-pa(𝐴) is equal to
{𝐴} ∪ sde(𝐴) ∪ bd(𝐴), hence

{{𝐴}∪lcn-de(𝐴)∪lcn-pa(𝐴)}𝑐 = {{𝐴}∪sde(𝐴)∪bd(𝐴)}𝑐 .

Now note that lcn-pa(𝐴) = bd(𝐴), by Lemma 6, to obtain
the desired result.

Note that, in the presence of directed cycles, we may have
lcn-parents that are lcn-descendants, and similarly we may
have parents and neighbors that are strict descendants. The
only real difference between lcn-descendants and strict
descendants is this: for a given node 𝐴, there may be a node
𝐵 that is a neighbor of 𝐴 and that is not reached through
any directed cycle emanating from 𝐴; this node 𝐵 is a
lcn-descendant of 𝐴, but not a strict descendant of 𝐴. This
difference however does not lead to a difference between
LMC(LCN) and LMC(C-STR), as shown by Theorem 9.

5. Chain Graphs and Factorization
If the structure of a LCN is a directed acyclic graph, the
LMC(LCN) mimics the usual local Markov conditions for
Bayesian networks (also adopted in credal networks [6, 15]).
If instead all constraints in a LCN belong to T𝑈 and all
of them only refer to “unconditional” probabilities (that is,
𝜑 = > in every constraint), then the structure of the LCN is
an undirected graph endowed with the usual local Markov
condition for undirected graphs.

These previous points can be generalized in a satisfying
way whenever the structure contains no directed cycle:

𝐴

bd(𝐴)

sde(𝐴) wde(𝐴)

Figure 5: Proposition nodes of a LCN whose structure is a
chain graph. The dotted area contains the nodes
that are not descendants. In a chain graph, the
strict descendants cannot be in the boundary.

Theorem 10 If the structure of a LCN is a chain graph,
and probabilities are positive, then the Markov condition
LMC(LCN) in Definition 5 is identical, with respect to the
independence relations it imposes, to the LMC(C) applied
to the structure.

Before we prove this theorem, it should be noted that
sets of descendants and of strict descendants are not iden-
tical. This is easy to see in graphs with directed cycles: in
Figure 1.b, node 𝐵 has descendants {𝐴,𝐶, 𝐷} and strict
descendants {𝐴, 𝐷}. But even in chain graphs we may have
differences: for instance, suppose that in Figure 1.e we add
a single directed edge from 𝐷 to a new node 𝐸; then 𝐸 is
the only descendant of 𝐵, but 𝐵 has no strict descendants.

In fact, the descendants of a node 𝐴 can be divided
into two sets, much as we did in connection with the lcn-
descendants of a node. A node 𝐵 is in the first set if and
only if there is at least one directed path from 𝐴 to 𝐵 that
starts with a directed edge. All of those nodes are strict
descendants of 𝐴. A node 𝐶 is in the second set if and only
if all directed paths from 𝐴 to 𝐶 start with an undirected
edge. Then all directed paths from 𝐴 to 𝐶 first reach a
node that is in the boundary of 𝐴 and consequently 𝐶 is
not a strict descendant of 𝐴. The first set is thus exactly
sde(𝐴), and we migh refer to the second set as wde(𝐴),
the set of “weak” descendants of 𝐴. By construction we
have sde(𝐴) ∩ wde(𝐴) = ∅. Moreover, we conclude (see
Figure 5) that

(sde(𝐴))𝑐 = (de(𝐴))𝑐 ∪ wde(𝐴),

from which we have that N\({𝐴} ∪ sde(𝐴) ∪ bd(𝐴)) =

{𝐴}𝑐 ∩ ((de(𝐴))𝑐 ∪ wde(𝐴)) ∩ (bd(𝐴))𝑐 . Note that
({𝐴}𝑐 ∩ wde(𝐴) ∩ (bd(𝐴))𝑐) = wde(𝐴) by construction,
hence N\({𝐴} ∪ sde(𝐴) ∪ bd(𝐴)) is the union of two
disjoint sets:

({𝐴}𝑐 ∩ (de(𝐴))𝑐 ∩ (bd(𝐴))𝑐) ∪ wde(𝐴). (4)

Proof Suppose we have the LMC(C-STR); so, for any
node 𝐴, we have Expression (3). Using Expression (4), we

135

Cozman

have 𝐴 |= (({𝐴}𝑐∩(de(𝐴))𝑐∩(bd(𝐴))𝑐)∪wde(𝐴)) |bd(𝐴);
using the Decomposition property of probabilities,4 we
obtain 𝐴 |= {𝐴}𝑐 ∩ (de(𝐴))𝑐 ∩ (bd(𝐴))𝑐 |bd(𝐴). Thus the
LMC(C) holds.

Suppose the LMC(C) holds; given the positivity condi-
tion, the GMC(C) holds [5]. Take a node 𝐴 and suppose
there is a node 𝐵 ∈ N\({𝐴} ∪ sde(𝐴) ∪ bd(𝐴)). We now
prove that 𝐵 is separated from 𝐴 by bd(𝐴) in

G∗
𝐴 � G𝑚𝑎 ({𝐴}∪({𝐴}𝑐∩(sde(𝐴))𝑐∩(bd(𝐴))𝑐)∪bd(𝐴))
= G𝑚𝑎 ((sde(𝐴))𝑐),

and consequently the GMC(C) leads to 𝐴 |= ({𝐴}𝑐 ∩
(sde(𝐴))𝑐 ∩ (bd(𝐴))𝑐) |bd(𝐴) as desired. Note that, by
construction, nodes in sde(𝐴) cannot be in the ancestral
set of any node in wde(𝐴), so sde(𝐴) is not in G∗

𝐴
. Conse-

quently, G∗
𝐴

is the moral graph of the graph consisting of
nodes in (sde(𝐴))𝑐 and edges among them in the structure.
In the moral graph, paths from 𝐴 to 𝐵 may start by moving
from 𝐴 to a parent or a neighbor of 𝐴 in the original struc-
ture of the LCN, and those paths are blocked by bd(𝐴). The
only other way to reach 𝐵 from 𝐴 in G∗

𝐴
would be to follow

a path G∗
𝐴

starting with an edge connecting 𝐴 and some
node 𝐶 such that 𝐴 and 𝐶 are both parents of a common
chain component; however this cannot happen as all direct
children of 𝐴 are in sde(𝐴), and G∗

𝐴
does not contain nodes

in sde(𝐴). Hence we must have separation of 𝐴 and 𝐵 by
bd(𝐴) in G∗

𝐴
, and therefore we have separation of 𝐴 and

N\({𝐴} ∪ sde(𝐴) ∪ bd(𝐴)) by bd(𝐴) as desired.

The significance of the previous theorem is that, assuming
that all probabilities are positive, the local Markov condition
for a chain graph is equivalent both to the global Markov
condition and to the factorization property of chain graphs.
This allows us to break down the probability distribution
over all random variables in a LCN in hopefully much
smaller pieces that require less specification effort.

Example 3 Figure 4.b depicts a structure that is in fact
a chain graph. We can group variables to obtain chain
components 𝐹1,2,3 and 𝑆1,2,3 and draw a directed acyclic
graph with the chain components, as in Figure 4.c. The
joint probability distribution factorizes as Expression (1):

ℙ
(
𝐹1,2,3 = 𝑓 , 𝑆1,2,3 = 𝑠, 𝐶1=𝑐1, 𝐶2=𝑐2, 𝐶3=𝑐3

)
=

ℙ
(
𝐹1,2,3 = 𝑓

)
ℙ
(
𝑆1,2,3 = 𝑠 |𝐹1,2,3 = 𝑓

)
ℙ
(
𝐶1 = 𝑐1 |𝑆1,2,3 = 𝑠

)
ℙ
(
𝐶2 = 𝑐2 |𝑆1,2,3 = 𝑠

)
ℙ
(
𝐶3 = 𝑐3 |𝑆1,2,3 = 𝑠

)
,

where 𝑓 is a configuration of the random variables in 𝐹1,2,3,
while 𝑠 is a configuration of the random variables in 𝑆1,2,3.

4The Decomposition property states that 𝑋 |=𝑌 ∪ 𝑊 |𝑍 implies
𝑋 |=𝑌 |𝑍 for sets of random variables 𝑊 , 𝑋,𝑌 , 𝑍 [13].

Because there are no independence relations “inside” the
chain components, this factorization is guaranteed even if
some probability values are equal to zero [5].

Suppose that the three constraints 0.5 ≤
ℙ
(
𝐹𝑖 |𝐹𝑗 ∧ 𝐹𝑘

)
≤ 1 are replaced so that, instead of

a single chain component with 𝐹1, 𝐹2, 𝐹3, we have two
chain components, one with 𝐹1 and 𝐹2, the other with
𝐹2 and 𝐹3. The chain components might be organized
as in Figure 4.d. If all probabilities are positive, that
chain graph leads to a factorization of the joint proba-
bility distribution similar to the previous one, but now
ℙ
(
𝐹1,2,3 = 𝑓1 𝑓2 𝑓3

)
= 𝜙1 (𝐹1,2 = 𝑓1 𝑓2)𝜙2 (𝐹2,3 = 𝑓2 𝑓3),

where 𝜙1 and 𝜙2 are positive functions, and the values of
𝐹1, 𝐹2 and 𝐹3 are indicated by 𝑓1, 𝑓2, 𝑓3 respectively.

The assumption that probabilities are positive is impor-
tant: when some probabilities are zero, there is no guarantee
that a factorization actually exists [16]. This is unfortu-
nate as a factorization leads to valuable computational
simplifications. One strategy then is to guarantee that all
configurations do have positive probability, possibly by
adding language directives that bound probabilities from
below. This solution may be inconvenient if we do have
some hard constraints in the domain. For instance, one may
wish to impose that 𝐴∨𝐵 (in which case ℙ(¬𝐴 ∧ ¬𝐵) = 0).

However, is is still possible to obtain a factorization even
when hard constraints are imposed. Say we have a formula,
for instance 𝐴 ∨ 𝐵, that must be satisfied. We treat it as
a constraint 1 ≤ ℙ(𝐴 ∨ 𝐵) ≤ 1 in T𝑈 , thus guaranteeing
that there is a clique containing its propositions/random
variables. Then we remove the impossible configurations
of these random variables (in our running example, we
remove 𝐴 = 𝐵 = 0), thus reducing the number of possible
configurations for the corresponding clique. A factorization
is obtained again in the reduced space of configurations,
provided the remaining configurations do have positive
probabilities.

Finally, an entirely different strategy may be pursued:
adopt a stronger Markov condition that guarantees factor-
ization (and hence global independence relations) in all
circumstances. Moussouris [16] has identified one such
condition, where a system is strongly Markovian in case
a Markov condition holds for the system and suitable sub-
systems. That (very!) strong condition forces zero probabil-
ities to be, in a sense, localized, so that probabilities satisfy
a nice factorization property. Alas, the condition cannot be
guaranteed for all graphs, and its consequences have not
been explored in depth so far.

6. Directed Cycles
As noted already, existence of a factorization is a very
desirable property for any probabilistic formalism: not only

136

Markov Conditions and Factorization in Logical Credal Networks

it simplifies calculations, but it also emphasizes modularity
in modeling and ease of understanding. In the previous
section we have shown that LCNs whose structure is a chain
graph do have, under a positivity assumption, a well-known
factorization property. We now examine how that result
might be extended when structures have directed cycles.

The LMC(LCN) is a local condition that can be applied
even in the presence of directed cycles. However, local
Markov conditions may not be very satisfactory in the
presence of directed cycles, as a simple yet key example
suggests:

Example 4 Take a LCN whose primal graph is a long
cycle 𝐴1 → 𝐴2 → . . . 𝐴𝑘 → 𝐴1, for some large 𝑘 . No 𝐴𝑖

has any non-descendant non-parent. And no 𝐴𝑖 has any non-
strict-descendant non-parent distinct from 𝐴𝑖 . The local
Markov conditions we have contemplated do not impose
any independence relation.

Local conditions seem too weak when there are long
directed cycles. On the other hand, a global condition
may work fine in those settings. For instance, apply
the GMC(C) to the graph in Example 4; the condi-
tion does impose non-trivial independence relations such
as 𝐴1 |= 𝐴3, . . . , 𝐴𝑘−1 |𝐴2, 𝐴𝑘 and 𝐴2 |= 𝐴4, . . . , 𝐴𝑘 |𝐴1, 𝐴3
(and more generally, for any 𝐴𝑖 with 2 < 𝑖 < 𝑘 − 2, we have
𝐴𝑖 |= 𝐴1, . . . , 𝐴𝑖−2, 𝐴𝑖+2, 𝐴𝑘 |𝐴𝑖−1, 𝐴𝑖+1).

At this point it is mandatory to examine results by Spirtes
[18], as he has studied local and global conditions for
directed graphs, obtaining factorization results even in the
presence of directed cycles. Spirtes examines the same local
Markov condition [18] usually applied to directed acyclic
graphs (Section 2):

Definition 11 (LMC(D)) A node 𝐴 is independent, given
its parents, of all nodes that are not 𝐴 itself nor descendants
nor parents of 𝐴.

Spirtes then notes that this local condition is not equivalent
to the GMC(C) in Definition 2, and decides to adopt the
latter global condition so as to obtain a factorization [18].
He shows [18, Lemma 3] that, for a directed graph that
may have directed cycles, a positive probability distribution
over the random variables is a product of factors, one per
random variable, iff the distribution satisfies the GMC(C)
for the graph.

The following example shows that indeed the LMC(D)
and the GMC(C) are different in the presence of directed
cycles and, more importantly for us, that the GMC(C) for
structures is not the same as the GMC(C) that one might
adapt to primal graphs so as to obtain Spirtes’ results on
factorization.

Example 5 Suppose we have a LCN whose primal graph
is depicted in Figure 1.d. For instance, we might have

0.1 ≤ ℙ(𝑋 |𝑌) ≤ 0.2 whenever 𝑌 → 𝑋 is an edge in that
figure. Assume all configurations have positive probability.

For the primal graph depicted in Figure 1.d, the
LMC(LCN) yields only 𝐴 |=𝐶, 𝐵 |=𝐶 |𝐴, 𝐷 and 𝐴 |= 𝐷 |𝐵,𝐶.
These are the same independence relations produced by
the LMC(D) on that graph. However, if we apply the
GMC(C) directly to that same graph, we do not get the
same independence relations: then we only obtain 𝐴 |=𝐶
and 𝐴 |=𝐶 |𝐵, 𝐷, perhaps a surprising result (in this case,
the graph G𝑚𝑎 ({𝐴, 𝐵, 𝐶, 𝐷}) is depicted in Figure 2.d).

Now consider the structure of the LCN; this is the chain
graph in Figure 1.e. The LMC(C), and also the LMC(C-
STR), yield only 𝐴 |=𝐶, 𝐵 |=𝐶 |𝐴, 𝐷 and 𝐴 |= 𝐷 |𝐵,𝐶 when
applied to the structure. Moreover, the GMC(C) applied
to the structure yields these same independence relations.
Clearly this is not the same set of independence relations
imposed by the GMC(C) applied to the primal graph. There
is a difference between undirected and bi-directed edges
when it comes to the GMC(C).

It is worth summarizing the discussion so far. First, it is
well-known that the LMC(C) and the GMC(C) are equiva-
lent, under a positivity assumption, in chain graphs. Both
conditions may differ in the presence of directed cycles.
Second, we know that the LMC(LCN) for primal graphs is
equivalent to the LMC(C-STR) with respect to the corre-
sponding structures. And if the structure is a chain graph,
then the LMC(C-STR) and the LMC(C) are equivalent
when applied to the structure. But for general primal graphs
any local condition seems quite weak. We might move to
general primal graphs by adapting the GMC(C) to them,
so as to look for a factorization result (following Spirtes);
however, we saw that the result is not equivalent to what
we obtained by applying the GMC(C) to structures (and
not equivalent to the original semantics for LCNs when the
structure is a chain graph).

In the next section we examine alternative semantics that
are based on applying the GMC(C) to structures (possi-
bly with directed cycles). Before we jump into that, it is
worth noticing that there are many other relevant results
in the literature besides the ones by Spirtes. For instance,
dependency networks [11] allow for directed cycles and do
have a modular specification scheme; they have only an
approximate factorization, but that may be enough in appli-
cations. Another proposal has been advanced by Schmidt
and Murphy [17], where directed cycles are allowed and
the adopted Markov condition looks only at the Markov
blanket of nodes; it does not seem that a factorization has
been proven for that proposal, but it is attractive in its sim-
plicity. There are also many kinds of graphs that have been
contemplated to handle causal loops and dynamic feedback
systems [3, 4, 12]. This is indeed a huge literature, filled
with independence conditions and factorization properties,
to which we cannot do justice in the available space. It is

137

Cozman

necessary to examine whether we can bring elements of
those previous efforts into LCNs. We leave a more detailed
study for the future.

7. New Semantics for LCNs
In this section we explore new semantics for LCNs by
applying the GMC(C) to structures. This is motivated by the
weakness of local conditions as discussed in the previous
section, and also by the fact that a condition based on
moralized graphs is the most obvious route to factorization
properties (as the Hammersley-Clifford theorem can then
be invoked under a positivity assumption [16]).

Here is a (new) semantics: a LCN represents the set
of probability distributions over its nodes such that all
constraints in the LCN are satisfied, and each distribution
satisfies the GMC(C) with respect to the structure. Note
that the GMC(C) is equivalent to the LMC(LCN) when a
structure is a chain graph, but these conditions may differ
in the presence of directed cycles (Example 4).

The path to a factorization result is then as follows. Take
the structure and, for each node 𝐴, build a set C𝐴 with all
nodes that belong to directed cycles starting at 𝐴. If there is
a directed cycle in a set C𝐵 such that 𝐵 is in C𝐴, then merge
C𝐴 and C𝐵 into a set C𝐴,𝐵; repeat this until there are no more
sets to merge (this must stop, in the worst case with a single
set containing all nodes). For each set, replace all nodes
in the set by a single “super”-node, directing all edges in
and out of nodes in the set to this super-node. The resulting
graph has no directed cycles, so the GMC(C) applied to it
results in the usual factorization over chain components of
the resulting graph. Now each super-node is in fact a set
of nodes that can be subject to further factorization, even
though it is an open question whether a decomposition can
be obtained with factors that are directly related to graph
properties.

To continue, we suggest that, instead of using structures
as mere secondary objects that help us clarify the meaning
of primal graphs, structures should be the primary tools in
dealing with LCNs. That is, we should translate every LCN
to its structure (without going through the primal graph)
and then apply appropriate Markov conditions there. Given
a LCN, with the same sets of constraints as specified previ-
ously, we can build its structure by taking every proposition
as a node and then:

1. For each constraint 𝛼 ≤ ℙ(𝜙|𝜑) ≤ 𝛽 in T𝑈 , add an
undirected arrow between each pair of proposition-
nodes in 𝜙.

2. For each constraint 𝛼 ≤ ℙ(𝜙|𝜑) ≤ 𝛽 add a di-
rected edge from each proposition-node in 𝜑 to each
proposition-node in 𝜙 (if 𝜑 is >, there is no such edge
to add).

𝐹1 𝐹2 𝐹3

𝑆1 𝑆2 𝑆3

𝐶1 𝐶1 𝐶1

Figure 6: The mixed-structure for the LCN in Example 1.

𝐴 𝐵

𝐶

𝐸 𝐷

(a)
𝐴 𝐵

𝐶

𝐸 𝐷

(b)

Figure 7: Structures and mixed-structures in Example 6.

3. Remove multiple identical edges.

4. For each pair of nodes 𝐴 and 𝐵, if there is a bi-directed
edge 𝐴 � 𝐵 between them, replace the two edges by
a single undirected edge 𝐴 ∼ 𝐵.

For instance, the procedure above goes directly from the
LCN in Example 1 to the structure in Figure 4.b.

When we think of structures this way, we might wish to
differentiate the symmetric connections that surface when
a pair of propositions appear in a formula 𝜙 from mutual
influences when one proposition is conditioned on the other
and vice-versa. An alternative semantics would then be as
follows. Take a LCN and build a mixed-structure by going
through the first three steps above. That is, create a node
per proposition that appears in the LCN; then take each
constraint in T𝑈 and add undirected edges between any two
propositions in 𝜙, and finally take each constraint and add
a directed edge from each proposition that appears in 𝜑

to each proposition that appears in the corresponding 𝜙.
Figure 6 depicts the mixed-structure for Example 1.

Now adopt: a LCN represents the set of probability
distributions over its nodes such that all constraints in
the LCN are satisfied, and each distribution satisfies the
GMC(C) with respect to the mixed-structure.

The next example emphasizes the differences between
semantics.

Example 6 Suppose we have a LCN with constraints
ℙ(𝐵 |𝐴) = 0.2, ℙ(𝐷 |𝐸) = 0.3, ℙ(𝐵 ∨ 𝐶) = 0.4,
ℙ(𝐶 ∨ 𝐷) = 0.5. Both the structure and the mixed-structure
of this LCN is depicted in Figure 7.a. Consider another LCN
with constraints ℙ(𝐵|𝐴 ∧ 𝐶) = 0.2, ℙ(𝐶 |𝐵 ∧ 𝐷) = 0.3,
and ℙ(𝐷 |𝐶 ∧ 𝐸) = 0.4. This second LCN has the same
structure as the first one, but the mixed-structure are de-
picted in Figure 7.b. The GMC(C) produces quite different

138

Markov Conditions and Factorization in Logical Credal Networks

sets of independence relations when applied to these distinct
mixed-structures; for instance, 𝐴, 𝐵 |= 𝐷 |𝐶, 𝐸 in the first
LCN, but not necessarily in the second; 𝐴, 𝐵 |= 𝐸 |𝐶, 𝐷 in
the second LCN, but not necessarily in the first. This seems
appropriate as the LCNs convey quite distinct scenarios,
one related to the symmetry of logical constraints, the other
related to the links induced by directed influences.

We hope to pursue a comparison between the theoretical
and pragmatic aspects of these semantics in future work.

8. Conclusion

In this paper we visited many Markov conditions that can
be applied, if properly adapted, to Logical Credal Networks
[14]. We reviewed existing concepts and introduced the
notion of structure of a LCN, showing that the original local
condition LMC(LCN) can be viewed as a local condition on
structures. We then showed that the LMC(LCN) is equiva-
lent to a usual local condition when the structure is a chain
graph, and this leads to a factorization result. Moreover,
we introduced a new semantics based on structures and a
global Markov condition — a semantics that agrees with
the original one when the structure is a chain graph but that
offers a possible path to factorization properties.

There are many issues left for future work. LCNs stress
the connection between the syntactic form of constraints and
the semantic consequences of independence assumptions, a
theme that surfaces in many probabilistic logics. We must
investigate more carefully the alternatives when extracting
independence relations from constraints, in particular to
differentiate ways in which bi-directed edges are created.

We must also examine positivity assumptions. What is
the best way to guarantee a factorization? Should we require
the user to explicitly express positivity assumptions? Should
we allow for logical constraints that assign probability zero
to some configurations; if so, which kinds of configurations?
How to make such constraint-induced zero probabilities
compatible with factorization properties?

It is also important to study a large number of Markov
conditions that can be found in the literature but that we have
skipped here, both conditions connected with chain graphs
and conditions connected with causal and feedback models.
We must verify which conditions lead to factorization results,
and which conditions are best suited to capture the content
of logical formulas, causal influences, feedback loops.

In a more applied perspective, we must investigate
whether the ideas behind LCNs can be used with prac-
tical specification languages such as Probabilistic Answer
Set Programming, and we must test how various semantics
for LCNs fare in realistic settings.

Acknowledgements
This work was carried out at the Center for Artificial
Intelligence (C4AI - USP/IBM/FAPESP), with support
by the São Paulo Research Foundation (FAPESP grant
2019/07665-4) and by the IBM Corporation. The author
was partially supported by CNPq grants 312180/2018-7
and 305753/2022-3. We acknowledge support by CAPES -
Finance Code 001.

References
[1] Kim A. Andersen and John N. Hooker. A linear

programming framework for logics of uncertainty.
Decision Support Systems, 16:39–53, 1996.

[2] Fahiem Bacchus. Representing and Reasoning with
Probabilistic Knowledge: A Logical Approach. MIT
Press, Cambridge, 1990.

[3] Christel Baier, Clemens Dubslaff, Holger Hermanns,
and Nikolai Kafer. On the foundations of cycles in
Bayesian networks. In J. F. Raskin, K. Chatterjee,
L. Doyen, and R. Majumdar, editors, Principles of
Systems Design, volume 13660 of Lecture Notes in
Computer Science. Springer, 2022.

[4] Stephan Bongers, Patrick Forré, Jonas Peters, and
Joris M. Mooij. Foundations of structural causal
models with cycles and latent variables. Annals of
Statistics, 49(5):2885–2915, 2021.

[5] Robert G. Cowell, A. Philip Dawid, Steffen L. Lau-
ritzen, and David J. Spiegelhalter. Probabilistic Net-
works and Expert Systems. Springer-Verlag, New York,
1999.

[6] Fabio G. Cozman. Credal networks. Artificial Intelli-
gence, 120:199–233, 2000.

[7] Fabio Gagliardi Cozman and Rodrigo Bellizia Polas-
tro. Complexity analysis and variational inference for
interpretation-based probabilistic description logics.
In Conference on Uncertainty in Artificial Intelligence,
pages 117–125, Corvallis, Oregon, 2009. AUAI Press.

[8] José Carlos Ferreira da Rocha and Fabio Gagliardi
Cozman. Inference in credal networks: branch-and-
bound methods and the A/R+ algorithm. International
Journal of Approximate Reasoning, 39(2-3):279–296,
2005.

[9] D. Doder and Z. Ognjanovic. Probabilistic logics with
independence and confirmation. Studia Logica, 105:
943–969, 2017.

139

Cozman

[10] Joseph Y. Halpern. Reasoning about Uncertainty.
MIT Press, Cambridge, Massachusetts, 2003.

[11] David Heckerman, David Maxwell Chickering,
Christopher Meek, Robert Rounthwaite, and Carl
Kadie. Dependency networks for inference, collab-
orative filtering, and data visualization. Journal of
Machine Learning Research, 1:49–75, 2000.

[12] A. Hyttinen, F. Eberhardt, and P. Hoyer. Learning lin-
ear cyclic causal models with latent variables. Journal
of Machine Learning Research, 13:3387–3439, 2012.

[13] Daphne Koller and Nir Friedman. Probabilistic Graph-
ical Models: Principles and Techniques. MIT Press,
2009.

[14] Radu Marinescu, Haifeng Qian, Alexander Gray, De-
barun Bhattacharjya, Francisco Barahona, Tian Gao,
Ryan Riegel, and Pravinda Sahu. Logical credal net-
works. In Advances in Neural Information Processing
Systems (NeurIPS), 2022.

[15] Denis Deratani Mauá and Fabio Gagliardi Cozman.
Thirty years of credal networks: Specification, al-
gorithms and complexity. International Journal of
Approximate Reasoning, 126:133–157, 2020.

[16] John Moussouris. Gibbs and Markov random systems
with constraints. Journal of Statistical Physics, 10
(1):11–33, January 1974. ISSN 0022-4715 (Print)
1572-9613 (Online).

[17] Mark Schmidt and Kevin Murphy. Modeling discrete
interventional data using directed cyclic graphical
models. In Conference on Uncertainty in Artificial
Intelligence, 2009.

[18] Peter Spirtes. Directed cyclic graphical representa-
tions of feedback models. In Conference on Uncer-
tainty in Artficial Intelligence, pages 491–498, 1995.

140

	Introduction
	Graphs and Markov Conditions
	Logical Credal Networks
	The Structure of a LCN
	Chain Graphs and Factorization
	Directed Cycles
	New Semantics for LCNs
	Conclusion

