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Abstract
We examine the inferential complexity of Bayesian net-
works specified through logical constructs. We first con-
sider simple propositional languages, and then move to
relational languages. We examine both the combined
complexity of inference (as network size and evidence
size are not bounded) and the data complexity of infer-
ence (where network size is bounded); we also examine
the connection to liftability through domain complex-
ity. Combined and data complexity of several inference
problems are presented, ranging from polynomial to ex-
ponential classes.

Introduction
A Bayesian network over categorical variables is often spec-
ified through a set of conditional probability distributions
that induce a directed acyclic graph (Pearl 1988). Once dis-
tributions are specified, an inference can be computed; that
is, the probability of a variable given fixed values for other
variables can be calculated. The complexity of such in-
ferences is affected by the topology of the induced graph
(Kwisthout, Bodlaender, and Van der Gaag 2010).

We can contemplate many ways to specify conditional
probabilities that go beyond flat conditional probability ta-
bles. There are indeed many specification languages in the
literature. In this paper we wish to study the complexity of
inferences not as dependent on graph topology, but rather
as dependent on the underlying specification language. We
note that the relationship between expressivity and inferen-
tial complexity has been studied in depth for logical lan-
guages, but existing results do not exhaust the parallel study
for Bayesian networks.

In this paper we propose a simple strategy to relate ex-
pressivity and inferential complexity in Bayesian networks
with binary variables. We consider a syntax where each vari-
able X is either associated with a probability, or logically
equivalent to a formula (our syntax is clearly inspired by ex-
isting specification schemes (Poole 1993; Sato and Kameya
2001)). Our specification framework allows us to move from
sub-Boolean languages to relational ones, and to obtain lan-
guages whose inferential complexity ranges from FP to
#EXP-complete problems.
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In our study of complexity induced by relational lan-
guages, we distinguish three concepts. We have complex-
ity with no bounds on specification, evidence, domain: the
combined complexity. We then have complexity where spec-
ification is bounded: the data complexity. Finally, we have
complexity with specification and evidence bounded: the do-
main complexity. These concepts are directly related to dqe-
liftability and liftability (Jaeger and Van den Broeck 2012).
We show that interesting conclusions can be obtained by
looking at data complexity; in particular we present a prob-
abilistic variant of the description logic DL-Lite with poly-
nomial inference when conditioning on binary relations (de-
parting from non-polynomial behavior expected in general
with such evidence (Jaeger and Van den Broeck 2012)).

The paper is organized as follows. We first review some
concepts; then, as a warm-up discussion to fix notation and
basic ideas, we introduce our framework in the propositional
case. We then move to relational languages; we first examine
combined complexity, then data and domain complexity.

Basic Concepts
A Bayesian network consists of a directed acyclic graph
where each node is a variable Vi (and we denote by pa(Vi)
the parents of Vi), and where each random variable Vi is
associated with a conditional probability distribution with
probability values P(Vi = vi|pa(Vi) = πi), where vi and
πi denote respectively the values of Vi and of pa(Vi). We
assume throughout that each specified probability value is
a nonnegative rational. We only consider finite objects in
this paper; there are no measurability concerns, and every
function can be taken as a random variable, hence we sim-
ply use the term “variable” to refer to a random variable
(the latter are clearly different from the logical variables
we employ later). The set of variables (nodes) is denoted
by V. A Markov condition then implies that the joint dis-
tribution for all variables factorizes such that P(V = v) =∏n

i=1 P(Vi = vi|pa(Vi) = πi), where vi and πi are induced
by v. We refer to an event {Vi = vi} as an assignment.
A conditional probability table explicitly contains all prob-
ability values for a conditional distribution (that is, each
P(Vi = vi|pa(Vi) = πi)). If a Bayesian network is specified
through conditional probability tables, we say the network
is extensively specified.

A language is simply a set of well-formed formulas.
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We use well-known complexity classes P, NP, FP,
PSPACE, EXP, NEXP, and #P (Papadimitriou 1994). Re-
call that #P is the class of functions computed by count-
ing Turing machines in polynomial time; a counting Turing
machine is a standard nondeterministic Turing machine that
prints in binary notation, on a separate tape, the number of
accepting computations induced by the input (Valiant 1979).
And we adopt #EXP as the class of functions computed
by counting Turing machines in exponential time; note that
the number of accepting paths may have exponential size
(Papadimitriou 1986). Finally, FPSPACE(P) is the class of
integer-valued functions computed by a standard nondeter-
ministic Turing machine in polynomial space, with a poly-
nomially long output (Ladner 1989). If a problem is #P-hard
and belongs to FP#P[1] (that is, it can be solved with a call
to a #P oracle and then polynomially many computations),
we follow de Campos, Stamoulis, and Weyland (2013) and
call it #P[1]-equivalent. We introduce the same terminology
for exponential problems: if a problem is #EXP-hard and
belongs to FP#EXP[1], we call it #EXP[1]-equivalent.

Specification Scheme:
Propositional Languages

Consider a set of atomic propositions, A1, A2, . . . , An, and
the set Ω of 2n truth assignments. We can associate a binary
variable Vi with atomic proposition Ai, such that Vi(ω) = 0
when Ai is false, and Vi(ω) = 1 when Ai is true, for ω ∈ Ω.

We are interested in specifying Bayesian networks over
these variables V1, . . . , Vn. In fact, from now on we simply
conflate atomic propositions and their associated variables;
we may write propositional sentences containing variables,
or probability values over atomic propositions.

We thus assume that a directed acyclic graph is given,
where each node is an atomic proposition. We consider
a specification strategy that moves away from tables, di-
rectly inspired by probabilistic rules (Poole 1993; Sato and
Kameya 2001) and structural models (Pearl 2000). We as-
sume that every variable X is associated with either
• a logical equivalence X ⇔ F (Y1, . . . , Ym), or
• a probabilistic assessment P(X = 1) = α,
where F is a formula on propositions Y1, . . . , Ym and α is a
nonnegative rational.

Note that we avoid direct assessments such as P(X|Y ) =
α, because one can essentially create negation using
such an assessment (by adopting P(X = 1|Y = 1) =
P(X = 0|Y = 0) = 0); in our scheme, the use of negation
is a decision about the language.

Denote by B(L) the class of Bayesian networks specified
by taking each F (·) as a formula from a language L. Dif-
ferent languages yield different classes of networks. Note
that a logical specification can exploit structures that exten-
sional specifications cannot; for instance, to create a Noisy-
Or gate (Pearl 1988), we simply say that X ⇔ (Y1 ∧ Z1) ∨
(Y2 ∧ Z2), where Z1 and Z2 are inhibitor variables. On the
other hand, we can specify any Bayesian network as long as
F (Y1, . . . , Ym) is allowed to be any propositional sentence.
To see that, consider a conditional distribution for X given

Y1 and Y2; we can specify this distribution through

X ⇔ (¬Y1 ∧ ¬Y2 ∧ Z00) ∨ (¬Y1 ∧ Y2 ∧ Z01) ∨
(Y1 ∧ ¬Y2 ∧ Z10) ∨ (Y1 ∧ Y2 ∧ Z11) ,

where Zab are fresh binary variables (that do not appear
anywhere else), associated with assessments P(Zab) :=
P(X|Y1 = a, Y2 = b). This can be extended to any set
Y1, . . . , Ym of conditioning variables, demanding the same
space as a conditional probability table.

Given a Bayesian network B, an assignment Q and a set
of assignments E, we are interested in P(Q|E). The set E is
called the evidence. Whenever clear we denote assignments
by literals; that is, X and ¬X respectively denote {X = 1}
and {X = 0}. Similarly, whenever clear we simply write
P(X|¬Y ) instead of P(X = 1|Y = 0), and so on.

Denote by INF(B, Q,E) the calculation of P(Q|E) with
respect to B. Denote by INF(L), where L is a particular lan-
guage (a set of formulas), the set of INF(B, Q,E) for the
class of Bayesian networks B(L).

Note that one might contemplate sophisticated forms of
evidence, say disjunction of assignments. We only con-
sider conjunctions of assignments. However, in some sub-
Boolean languages one does not have negation, and in those
cases it may not make sense to allow negated assignments as
evidence. Whenever we want to restrict the language of ev-
idence so that only positive evidence is allowed, we denote
the inference problem by INF+(L).

In short, our strategy is to use this specification scheme to
“parameterize” complexity by the adopted language.

Simple languages, and the power of evidence As any
Bayesian network can be specified in our syntax us-
ing propositional sentences, INF+(Prop(∧,¬)) is #P[1]-
equivalent (where Prop(∧,¬) is the set of well-formed
propositional sentences with propositions and the usual
negation and conjunction (de Campos, Stamoulis, and Wey-
land 2013)).1 Later we will also use languages Prop(∧),
Prop(∧,∨), and Prop(∧, (¬)), where the latter consists of
formulas with propositions, conjunction and atomic nega-
tion (defined as follows: only an atomic proposition directly
associated with a probabilistic assessment can be negated).

There is obvious interest in finding simple languages L
with tractable INF(L), so as to facilitate elicitation, decision-
making and learning (Darwiche and Provan 1996; Domin-
gos and Webb 2012; Jaeger 2004; Poon and Domingos 2011;
Sanner and MacAllester 2005). However, even simple lan-
guages lead to hard counting problems (Roth 1996). For
example, take the rather simple language Mon2CNF, the
set of propositional sentences in CNF (Conjunctive Nor-
mal Form) where each clause has two non-negated atomic
propositions: because counting satisfying assignments of
sentences in Mon2CNF is a #P-hard problem (Valiant 1979),
INF+(Prop(∧,∨)) is #P[1]-equivalent.

1The #P-hardness result is by Roth (1996); there is a technical
obstacle to declaring pertinence to #P in that any problem in the
latter class yields integers, while Bayesian network inference yields
rationals under our assumptions (so polynomially many operations
are needed to process the counting output).
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So, is there a tractable sub-Boolean class B(L)? Consider
the following result, that shows that matters can change dra-
matically depending of the type of evidence we allow:

Theorem 1 INF+(Prop(∧, (¬))) belongs to FP, and
INF(Prop(∧)) is #P[1]-equivalent.

Proof. First consider INF+(Prop(∧, (¬))). To run inference
with positive evidence, just run d-separation to collect the set
of atomic propositions that must be true given the evidence
(note: as soon as a node is set to true, its parents must be
true, and so on recursively). Then the probability ofQ∧E is
just the product of probabilities for these latter atomic propo-
sitions to be true, and these probabilities are given in the
network specification. Now consider INF(Prop(∧)). Perti-
nence to #P follows from the fact that the language is a sub-
set of Prop(∧,¬). To prove hardness, consider a sentence
φ that is in antimonotone 2-CNF (that is, CNF where each
clause has two negated atomic propositions) withm clauses;
for the ith clause, ¬Ai1 ∨ ¬Ai2, introduce the assessment
Bi ⇔ Ai1 ∧ Ai2, where Bi is a fresh atomic proposition.
Now if E = {¬B1 ∧ ¬B2 ∧ ¬ · · · ∧ ¬Bm}, then 2mP(E)
is the number of satisfying assignments of φ (the solution
to a counting problem in #P). Now P(E) is not an inference
in our scheme, but it can be written (by the Chain Rule) as
the product of m probabilities that can be individually pro-
duced by inferences; because each one of these inferences
is independent of the others, we can create a single network
by combining these inferences in parallel, and extract the
product of inferences in polynomially many operations.2 To
create this combined network we only need conjunction, so
everything can be built with Prop(∧). �

Note that the complexity of inference in extensionally
specified Bayesian networks is #P[1]-equivalent with or
without evidence (de Campos, Stamoulis, and Weyland
2013; Kwisthout 2011). Theorem 1 shows that once we
move to sub-Boolean specifications, evidence has power on
its own. Indeed, the effect of evidence has been noted in
connection with first-order probabilistic models (Van den
Broeck and Darwiche 2013); we return to this later.

One might try to concoct additional languages by using
specific syntactic forms in the literature (Darwiche and Mar-
quis 2002). We leave this to future work; instead of pursuing
various possible sub-Boolean languages, we wish to move to
relational languages, where more structure is available. We
do so in the next section, after a quick detour.

A detour into polynomial space As a curiosity,
here is a language for which (logical) satisfiabil-
ity and (probabilistic) inference have similar be-
havior. Suppose each F (Y1, . . . , Ym) is written as
Q1Z1 . . . QMZMF

′(Y1, . . . , Ym, Z1, . . . , ZM ), where
each Qi is either ∃ or ∀, and where F ′ is a propositional
sentence such that bound propositions Zi do not appear
anywhere else. That is, each formula is a Quantified
Boolean Formula with free variables Yi. Denote the re-
sulting language by QBFf; satisfiability in this language is

2We thank Cassio Polpo de Campos for alerting us to the fact
that the m needed inferences can be combined in a single inference.

PSPACE-complete (Papadimitriou 1994). Easily, we have:
Proposition 1 INF(QBFf) is FPSPACE(P)-complete.
Proof. Counting satisfying assignments of a QBFf is
#PPSPACE-complete (Bauland et al. 2010); also, we have
FPSPACE(P) = #PPSPACE (Ladner 1989). �

Relational Languages: Combined Complexity
Recent years have seen enormous interest in combinations
of probability and logic, often to specify Bayesian networks
(Getoor and Taskar 2007; Raedt 2008). Here we extend our
previous specification scheme in a simple manner, again fol-
lowing previous proposals (Poole 1993; Sato and Kameya
2001), and in particular our specification scheme follows the
semantics of Jaeger’s relational Bayesian networks (Jaeger
1997; 2001), and produces a sub-class of those networks.

Consider a vocabulary V consisting of names of rela-
tions and individuals. For a k-ary relation r ∈ V , denote
by r(x1, . . . , xk) an atom where each xj is either a logical
variable or an individual. An atom with no logical variable
is a ground atom.

We assume that a directed acyclic graph is given, where
each node is a relation. We assume that every relation r is
associated with either
• a logical equivalence r(x1, . . . , xk)⇔

F (x1, . . . , xk, s1, . . . , sm′ , a1, . . . , am′′), or
• a probabilistic assessment P(r(x1, . . . , xk) = 1) = α,
where F is a formula, and α is a nonnegative rational. We
need to impose some conditions on F . First, F contains free
logical variables from {x1, . . . , xk}, and may contain ad-
ditional logical variables that must be bound to quantifiers.
Second, F contains relations s1, . . . , sm′ that are parents of
r in the graph, and individuals a1, . . . , am′′ . Our formulas
are always assumed to be well-formed formulas that belong
to function-free first-order logic (FFFOL).

We refer to a graph and associated logical equivalences
and assessments as a relational Bayesian network. Note that
we are mimicking our propositional specification scheme, as
here again we have a restricted form of probabilistic assess-
ment. This allows one to control the kind of negation that
can be used, thus allowing sub-Boolean constructs together
with relations and quantification.

The semantics is always based on a setD, the domain, and
a mapping I, the interpretation; the latter takes each indi-
vidual to an element of the domain, and each k-ary relation
to a set of k-tuples of the domain. We assume that the in-
terpretation of individuals is constant across interpretations,
a common assumption of rigidity from probabilistic logic
(Bacchus 1990). We assume that every domain is finite, with
size given by input N ; we simply assume the domain to be
{1, 2, . . . , N}. Once a domain (that is, N ) is fixed, we de-
fine a random variable for each grounded relation. The idea
is similar to the propositional case: a variable corresponding
to a grounded relation is a function over all the possible in-
terpretations, that yields 1 when the grounded relation is true
in an interpretation, and 0 otherwise. And again, we conflate
grounded relations and their corresponding variables.

A relational Bayesian network is interpreted through its
grounding: the semantics consists of grounding every rela-
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Figure 1: A relational Bayesian network and its grounding with D = {1, 2}.

tion, grounding every logical equivalence and every prob-
abilistic assessment, and associating every individual with
an element of D. Every relational Bayesian network is so
grounded into an extensionally specified Bayesian network
(Figure 1). This is identical to grounding in most Probabilis-
tic Relational Models (Getoor and Taskar 2007); we there-
fore do not discuss this semantics further, as relevant details
can be found in previous literature (Jaeger 1997).

Our evidence is now a set of assignments such as
{r(a, b, c) = 1} and {s(b) = 0}, denoted respectively
by {r(a, b, c)} and {¬s(b)}. Evidence is positive when no
negation appears in the assignments. We do not consider
more sophisticated languages for evidence specification.

Domain size in binary notation An important issue is
whether the input N is given in binary or unary notation. At
first it may seem that binary notation is the natural option.
In this case we have:

Lemma 1 When N is given in binary notation,
INF(FFFOL) is in FP#EXP[1].

Proof. Ground the relational Bayesian network into a
Bayesian network of exponential size (each existential quan-
tifier can be written using O(N) nodes, each one of them a
disjunction on two parents; likewise, each universal quan-
tifier can be written as O(N) nodes, each one of them a
conjunction on two parents). Inference on this grounded net-
work can be done with a call to a #EXP oracle, plus some
operations to produce a (rational) probability. �

We now consider the inferential complexity of two rela-
tively simple fragments of FFFOL.

Suppose first that F can be a formula in the monadic frag-
ment of FFFOL, denoted by MF (that is, FFFOL restricted to
unary relations). For instance, the right hand side of the first
sentence in Figure 1 is in MF. Satisfiability in MF is NEXP-
complete (Lewis 1980); hence, it is not surprising that

Theorem 2 When N is given in binary notation, INF(MF)
is #EXP[1]-equivalent.

Proof (sketch). As stated by Grove, Halpern, and Koller
(1996, Theorem 4.14), counting the number of (suitably
defined) distinct model descriptions in monadic first-order
logic, without any bound on domain size, is #EXP-hard.3

3Grove, Halpern, and Koller (1996) use #EXP-completeness to
mean #EXP[1]-equivalence.

The same argument applies here: just turn Lewis’ reduction
(Lewis 1980, Theorem 4.1) into a parsimonious reduction by
reducing the number of counters in his reduction, and repro-
duce counting by assigning probability 1/2 to any relation
(and by computing a single query). Pertinence comes from
Lemma 1. �

Consider now a language inspired by the popular descrip-
tion logicALC (Baader and Nutt 2002). Denote by ALC the
language consisting of the set of formulas recursively de-
fined so that any unary relation is a formula, ¬φ is a for-
mula when φ is a formula, φ ∧ ϕ is a formula when both
φ and ϕ are formulas, and ∃y : r(x, y) ∧ s(y) is a formula
when r is a binary relation and s is a unary relation. For
instance, the right hand side of the second sentence in Fig-
ure 1 is in ALC. Even though satisfiability in ALC belongs
to PSPACE, inference is #EXP[1]-equivalent. This fact can
be derived from a proof of hardness by Cozman and Po-
lastro (2009), where Turing machines for NEXP-hard prob-
lems are explicitly encoded in appropriate variants of ALC.
Here we present a short proof, derived from results above:

Theorem 3 When N is given in binary notation, INF(ALC)
is #EXP[1]-equivalent.

Proof. To prove hardness, note that by imposing an assess-
ment P(r(x, y)) = 1, we transform ∃y : r(x, y) ∧ s(y) into
∃y : s(y). Now in Lewis’ proof of hardness for monadic
logic (used in the proof of Theorem 2), we only need to
code a sentence of the form (∃x : F1(x)) ∧ (¬∃y1 : ¬∃y2 :
F2(y1, y2)) ∧ (¬∃z1 : ∃z2 : F3(z1, z2)): such a sentence
can be clearly coded within ALC, using P(r(x, y)) = 1 as
indicated. Pertinence comes from Lemma 1. �

The message of these results is that even relatively mod-
est fragments of FFFOL take us to #EXP complexity as
long as the input N is given in binary notation. In fact, it
is not surprising that such encoding moves us away from
tractability, for then the size of the input is actually logN ,
and there may be inferences whose result can only be writ-
ten using exponential space on that input size. For instance,
if a language allows existential quantification, one can state
P(r(x)) = 1/2 and compute P(∃x : r(x)); the latter is sim-
ply 1−1/2N , but this number requiresN bits (exponentially
larger than the input of size logN ).

Domain size in unary notation So, suppose the domain
size is given in unary notation (that is, N requires input size
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N ). This is actually the sort of assumption implicit in exist-
ing work on liftability (Jaeger and Van den Broeck 2012). In-
deed, liftability looks at complexity as a function of N , and
it would not be reasonable to worry about polynomial com-
plexity in N if one were to assume an input of size logN .

The difference between binary and unary notation for N
is captured by the following analogy. Suppose we are inter-
ested in the inhabitants of a city. Their behavior is modeled
by a relational Bayesian network. And we have evidence on
a few people. By adopting binary notation for N , we just
wish to study the consequences of a particular city size; we
may say that N is a million, or fifty million, but perhaps this
is not even the number of real people in the city. Unary no-
tation for N means that we have a directory, say a telephone
catalog, with the names of all inhabitants; even if we do not
care about many of them, each one of them exists concretely
in our modeled reality.

Now we have:
Lemma 2 WhenN is given in unary notation, INF(FFFOL)

is in FP#P[1].
Proof. Ground the relational specification into a Bayesian
network of polynomial size in extensional form (add auxil-
iary variables to bound the in-degree of nodes if necessary,
as in the proof of Lemma 1). Inference on this grounded
network can be done with a call to a #P oracle, plus some
operations to produce a (rational) probability. �

Of course, even very simple sub-Boolean combinations of
operators yield #P-hardness for inference, given our previ-
ous results. For instance, denote by QFMF(∧) the quantifier-
free subset of MF where only conjunction can be used. For
evidence that can be negated, Theorem 1 already yields #P-
hardness (since all grounded relations for an individual are
d-separated from the grounded relations for the other indi-
viduals, the complexity of the relational language collapses
to complexity of the propositional case).

Combined complexity and its discontents As can be
noted from previous results, for N in unary notation we ob-
tain #P[1] for the combined complexity of inferences in al-
most any language we can think of. By combined complex-
ity we mean complexity as we place no bound on the size
of the relational Bayesian network, no bound on the size of
evidence, and no bound on the size of the domain. Now com-
bined complexity is not very informative, for it has little to
say when N is given in unary notation, and not much to say
either when N is given in binary notation (where we know
that exponential behavior is to be expected).

We need finer notions of complexity to capture the behav-
ior of inference for relational specifications. The work on
liftability looks in this direction (Jaeger and Van den Broeck
2012). We propose next an analysis that includes liftability.

Data and Domain Complexity, and Liftability
Consider again that we are reasoning about inhabitants of
a city. Combined complexity is very demanding: it cap-
tures the inferential complexity as we can vary the relational
model of inhabitants, the evidence, and the number of inhab-
itants. We might be interested in fixing a bound on the size

of the (supposedly concise) relational model, and studying
the complexity of inferences as the evidence accumulates,
without any bound on the number of inhabitants. Borrowing
from database theory and description logics (Hustadt, Motik,
and Sattler 2005; Schaerf 1994), we call the latter notion the
data complexity of a language. Note that dqe-liftability ba-
sically means that data complexity is polynomial in N (Van
den Broeck 2011; Jaeger and Van den Broeck 2012); clearly,
for dqe-liftability to be meaningful there is an implicit as-
sumption that N is given in unary notation, for otherwise
polynomial in N means exponential in the input. Data com-
plexity allows one to go beyond the dichotomy given by
dqe-liftability: instead of just asking about polynomial time
behavior or not, questions may be asked about pertinence
and hardness to various complexity classes. Data complex-
ity is based on an assumption that we can force ourselves to
develop a relatively small model for the inhabitants of the
city, but the number of observations we collect cannot be
bounded beforehand.

However, there is yet another dimension in which to ana-
lyze complexity. We may be interested in imposing bounds
on the size of the relational representation and on the size of
evidence, and study the complexity of inferences solely as a
function ofN . We call the latter notion the domain complex-
ity of a language. The concept of liftability basically means
that domain complexity is polynomial inN (Van den Broeck
2011; Jaeger and Van den Broeck 2012).

In the remainder of this section we focus on data com-
plexity. As far as domain complexity is concerned, we limit
ourselves to reproduce later some recent deep results, and to
leave more investigation to the future.

Data complexity Denote by DINF(L) the inference prob-
lem where the size of the relational Bayesian network is
fixed, while the evidence and N are left free, with N in
unary notation. Similarly denote by DINF+(L) the same
problem when only positive evidence is allowed. These
problems characterize data complexity.

Of course, data complexity would be of little value if no
useful insight came out of it. We now show this not to be the
case.

Consider the following very simple relational language,
obtained by restricting the popular description logic DL-Lite
(Calvanese et al. 2005). Denote by DLDiet the language con-
sisting of the set of formulas recursively defined so that any
unary relation is a formula, ¬r(x) is a formula for any unary
relation r, φ ∧ ϕ is a formula when both φ and ϕ are for-
mulas, and ∃y : r(x, y) is a formula for any binary relation.
Directly from Theorem 1 and Lemma 2, we have that

Proposition 2 INF(DLDiet) is #P[1]-equivalent.

However,

Theorem 4 DINF(DLDiet) belongs to FP.

Proof (sketch). Without loss of generality, consider a query
on some unary relation q(1) grounded on individual 1 and
evidence E on arbitrary individuals. By using d-separation,
one can verify that the grounded network containing vari-
ables relevant to the query include only unary atoms of the
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form si(x), atoms corresponding to grounded existential for-
mulas ∃y : rj(1, y) and binary atoms rj(1, 1), . . . , rj(1, N).
By construction, the existential formulas have only the cor-
responding binary atoms as parents, and these are all root
nodes. Moreover, the in-degree of nodes can be made small
(e.g., binary) by inserting new variables corresponding to
partial evaluations of the formulas. This way, we can convert
the relevant network into an extensional specification form
such that the treewidth is smaller than n, the number of re-
lations in the relational Bayesian network. Because this is
assumed bounded, inference can be performed, for instance
by variable elimination, in polynomial time. �

To further understand the border of tractability, consider
a very simple language inspired by the popular description
logic EL (Baader 2003). Denote by EL the language con-
sisting of the set of formulas recursively defined so that any
unary relation is a formula, φ ∧ ϕ is a formula when both φ
andϕ are formulas, and ∃y : r(x, y)∧s(y) is a formula when
r is a binary relation and s is a unary relation. We have:
Theorem 5 DINF(EL) is #P[1]-equivalent.
Proof. Pertinence follows from Lemma 2. To show hardness,
consider an antimonotone 2-CNF formula φ(Z1, . . . , Zn) =
(¬Zi1 ∨ ¬Zi2) ∧ · · · ∧ (¬Zi2m−1

∨ ¬Zi2m). Construct the
relational Bayesian network

P(d(x, y)) = 1 ,P(t(x)) = P(`(x)) = P(r(x)) = 1/2 ,

c(x)⇔ (∃y : `(x, y) ∧ t(y)) ∧ (∃y : r(x, y) ∧ t(y)) ,

f(x)⇔ ∃y : d(x, y) ∧ c(y) .

The relations `(x, y) and r(x, y) represent the left and right
literals, respectively, of each clause; `(x, y) is true iff vari-
able Zy is the first literal of the x-th clause, r(x, y) is true iff
Zy is the second literal of the x-th clause. The relation t(x)
denotes the evaluation of each literal: t(x) is true iff ¬Zx

evaluates to true. Relation c(x) represents unsatisfiability
of each clause: c(x) is true iff the x-th clause evaluates
to false. The relation d(x, y) induce dummy variables. Fi-
nally, f(x) denotes the satisfiability of the formula φ. Let
N = max(n,m). We solve the counting problem by com-
puting P(f(1)|E), where E is the conjunction of

`(x, y) ∀x, y s.t. Zy is the left literal of clause x ,
¬`(x, y) ∀x, y s.t. Zy is not the left literal of clause x ,
r(x, y) ∀x, y s.t. Zy is the right literal of clause x ,
¬r(x, y) ∀x, y s.t. Zy is not the right literal of clause x .

As P(¬f(1)|E) = 2−n
∑

z1,...,zn
φ(z1, . . . , zn), the num-

ber of models of φ is 2n(1− P(f(1)|E)). �
In the proof above we make use of negated evidence on bi-

nary relations; data complexity in EL with negated evidence
only on unary relations, or with positive evidence, are open
questions with potential impact on probabilistic description
logics (Lukasiewicz and Straccia 2008).

Discussion We have visited many languages so far. The
following table captures some interesting facts about com-
bined and data complexity (always assuming N in unary
notation). Here #P[1] denotes #P[1]-equivalence. Here,
QFMF(∧,¬) is similar to QFMF(∧), but with negation.

L INF+/INF(L) DINF+/DINF(L)

QFMF(∧, (¬)) FP/#P[1] FP/FP
QFMF(∧,¬) #P[1]/#P[1] FP/FP

DLDiet #P[1]/#P[1] FP/FP
EL #P[1]/#P[1] ?/#P[1]
ALC #P[1]/#P[1] ?/#P[1]
MF #P[1]/#P[1] 2-variable frag.: FP/FP

Data complexity of QFMF(∧) and QFMF(∧,¬) follows
from the fact that the relational representation for one in-
dividual can be compiled beforehand (Darwiche and Mar-
quis 2002); all other relations are d-separated and can be
discarded. The data complexity for the two-variable frag-
ment of MF follows from results on conditioning by Van
den Broeck and Darwiche (2013); the general case seems to
be open. The data complexity of EL and of ALC for positive
evidence is open.

Domain complexity for many languages lies in FP, from
results on liftability by Van den Broeck, Wannes, and Dar-
wiche (2014). We should note that existing results also
show fundamental limits on liftability for various languages
(Jaeger and Van den Broeck 2012).

Conclusion

We have presented a framework for specification and anal-
ysis of Bayesian networks. Our conventions are inspired
by existing proposals, with a few changes that allow us
to go from sub-Boolean languages to various fragments of
function-free first-order logic. In particular, the ability to ex-
amine languages without negation allows us to bypass in-
herent limits imposed by treewidth (Kwisthout, Bodlaender,
and Van der Gaag 2010). In our analysis, we have displayed
specification languages with (combined) complexity ranging
from FP to #P[1] to #EXP[1].

We have also introduced the three dimensional framework
of combined/data/domain complexity. We have investigated
data complexity, and shown that it can capture subtle dis-
tinctions between specification languages. Concerning do-
main complexity, we only note that it subsumes liftability,
and leave further investigation to the future.

As far as future work is concerned, the goal must be
to obtain an understanding of expressivity/complexity in
Bayesian networks as rich as the understanding that we now
have about logical languages. For instance, we might con-
sider Bayesian networks specified by operators from de-
scription and modal logics, or look at languages that allow
variables to have more than two values. In a different direc-
tion, we might look at parameterized counting classes (Flum
and Grohe 2004), so as to refine the analysis even further.
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