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Abstract. A popular family of probabilistic logic programming lan-
guages combines logic programs with independent probabilistic facts.
We study the complexity of marginal inference, most probable explana-
tions, and maximum a posteriori calculations for propositional/relational
probabilistic logic programs that are acyclic/definite/stratified/normal/
disjunctive. We show that complexity classes Σk and PPΣk (for various
values of k) and NPPP are all reached by such computations.

1 Introduction

The goal of this paper is to shed light on the computational complexity of in-
ference for probabilistic logic programs interpreted in the spirit of Sato’s dis-
tribution semantics [25]; that is, we have logic programs where some facts are
annotated with probabilities, so as to define probability distributions over mod-
els. This framework has been shown to be quite useful in modeling practical
problems [15, 24].

The distribution defined by a probabilistic logic program can be used to
answer many queries of interest. Two common queries are to compute the prob-
ability of some ground atom given evidence (inference), and to find a (partial)
interpretation that maximizes probability while being consistent with evidence
(MPE/MAP).

We present results on the complexity of acyclic, definite, stratified, normal
and disjunctive probabilistic logic programs; these results are summarized by
Table 1. While most semantics agree on stratified programs, there is less con-
sensus on non-stratified programs. Here we examine two semantics: the credal
semantics, based on stable models, and the well-founded semantics.

We start in Sections 2 and 3 by reviewing relevant background on proba-
bilistic logic programs and on complexity theory. Our contributions appear in
Section 4. These results are further discussed in the concluding Section 5.

2 Background

The results in this paper depend on an understanding of logic and answer set
programming; the topic is dense and cannot be described in detail in the space



Propositional Bounded arity
Inferential MPE MAP Inferential MPE MAP

Acyclic normal PP NP NPPP PPNP ΣP
2 NPPP

Definite (positive query) PP NP NPPP PPNP ΣP
2 NPPP

Stratified normal PP NP NPPP PPNP ΣP
2 NPPP

Normal, credal PPNP ΣP
2 NPPP PPΣ

P
2 ΣP

3 NPPP

Normal, well-founded PP NP NPPP PPNP ΣP
2 NPPP

Disjunctive, credal PPΣ
P
2 ΣP

3 NPPP PPΣ
P
3 ΣP

4 NPPP

Table 1. Summary of complexity results presented in this paper (all entries indi-
cate completeness with respect to many-one reductions). Entries containing previously
known results have orange background (grey background if printed in black-and-white).

we have here. We just mention the main concepts, and refer the reader to any
in-depth presentation in the literature [9, 14].

We have a vocabulary consisting of predicates, constants, and logical variables;
a term is a constant or logical variable, and an atom is a predicate of arity k
associated with k terms; a ground atom is an atom without logical variables. We
often resort to grounding to produce ground atoms. A disjunctive logic program
(dlp) consists of a set of rules written as

A1 ∨ . . . ∨Ah :− B1, . . . , Bb′ ,not Bb′+1, . . . ,not Bb .

where each Ai and Bi is an atom. The lefthand side is the head of the rule; the
remainder is its body. A rule without disjunction (i.e., h = 1) and with empty
body, written simply as A1., is a fact. A program without disjunction is a normal
logic program; a normal logic program without negation is a definite program;
finally, a program without variables is a propositional program. The dependency
graph of a program is the graph where each atom is a vertex and there are arcs
from atoms in the bodies to atoms in the heads of a same rule; a normal logic
program is acyclic when the dependency graph of its grounding is acyclic. A
normal logic program is (locally) stratified when the dependency graph of its
grounding has no cycles containing an arc involving a negated literal.

The Herbrand base of a program is the set of all ground atoms built from
constants and predicates in the program. An interpretation is a set of ground
literals mentioning exactly once each atom in the Herbrand base. A model is
an interpretation that satisfies every grounding of a rule (a rule is satisfied iff
the interpretation contains all of B1, . . . , Bb′ , none of Bb′+1, . . . , Bb, and some
of A1, . . . , Ah). A minimal model minimizes the number of non-negated literals.

The most common semantics for dlps is the stable model semantics. Given
program and interpretation, define their reduct to be program obtained by re-
moving every rule whose body is not satisfied. An interpretation is a stable model
if it is a minimal model of its reduct. A normal program may have zero, one or
several stable models. Brave reasoning asks whether there is a stable model



containing a specific literal (possibly returning one). Cautious reasoning asks
whether a specific literal appears in all stable models (possibly listing all).

An alternative semantics for normal logic programs is the well-founded se-
mantics; a model under this semantics might fix only a truth-value for some
of the atoms (levaing the remaining atoms undefined) [31]. One way to define
the well-founded semantics is as follows [4]. Write LFTP(I) to mean the least
fixpoint of TPI , where TP is a transformation such that: atom A is in TP(I) iff
there is grounded rule with head A with the whole body true in interpretation
I. Then the well-founded semantics of P consists of those atoms A that are in
the least fixpoint of LFTP(LFTP(·)) plus the literals ¬A for those atoms A that
are not in the greatest fixpoint of LFTP(LFTP(·)).

Here is an example: Several robots can perform, each, one of three operations,
called “red”, “green”, “yellow”. A robot placed in a site also covers adjacent sites,
so there is no need to place same-color robots on adjacent sites. There is a list of
robots and a list of (one-way) connections between sites; the goal is to distribute
the robots and verify whether the sites are connected. This disguised 3-coloring
problem can be encoded as [14]:

color(X, red) ∨ color(X, green) ∨ color(X, yellow) :− site(X).
clash :− not clash, edge(X,Y ), color(X,C), color(Y,C).

path(X,Y ) :− edge(X,Y ). path(X,Y ) :− edge(X,Z), path(Z, Y ).

We might have a database of facts, consisting of a list of sites and their connec-
tions, say site(s1), site(s2), . . . , edge(s1, s4), and so on. Each stable model of this
program is a possible placement (a 3-coloring) and a list of paths between sites.

We also need standard concepts from complexity theory: languages (sets of
strings), decision problems (deciding whether input is in language), complex-
ity classes (sets of languages), many-one reductions [22]. We use well-known
complexity classes such as P, NP, PP. We also consider oracle machines and
corresponding complexity classes such as ΠP

i and ΣP
i (the so-called polynomial

hierarchy). We also use Wagner’s polynomial counting hierarchy defined as the
smallest set of classes containing P and, recursively, for any class C in the poly-
nomial counting hierarchy, the classes PPC, NPC, and coNPC [29, 32].

3 Probabilistic logic programming

In this paper we focus on a particularly simple combination of logic programming
and probabilities [23, 25]. A probabilistic disjunctive logic program, abbreviated
pdlp, is a pair 〈P,PF〉 consisting of a disjunctive logic program P and a set
of probabilistic facts PF. A probabilistic fact is a pair consisting of an atom
A and a probability value α, written as α :: A. [15]. Note that we allow a
probabilistic fact to contain logical variables. As an instance of pdlp, take our
running example on robots and sites: to generate a random graph over a set of
five sites add the rules: 0.5 :: edge(X,Y )., site(s1)., site(s2)., site(s3)., site(s4).,
site(s5).. If P is a normal logic program, we just write probabilistic logic program,



abbreviated plp. If P is normal and acyclic/definite/stratified, we say the plp
is acyclic/definite/stratified.

To build the semantics of a pdlp, we first take its grounding. Suppose we
have a pdlp with n ground probabilistic facts. From this we can generate 2n

dlps: for each probabilistic fact α :: A., either keep fact A. with probability α,
or erase A. with probability 1−α. A total choice is a subset of the set of ground
probabilistic facts that is selected to be kept (other grounded probabilistic facts
are discarded). For any total choice θ we obtain a dlp P∪PF↓θ with probability∏
Ai∈θ αi

∏
Ai 6∈θ(1 − αi). Hence the distribution over total choices induces a

distribution over dlps.

We first define a semantics proposed by Lukasiewicz [18, 19]. A probability
model for a pdlp 〈P,PF〉 is a probability measure P over interpretations, such
that (i) every interpretation I with P(I) > 0 is a stable model of P ∪ PF↓θ

for the total choice θ that agrees with I on the probabilistic facts; and (ii) the
probability of a total choice θ is P(θ) =

∏
Ai∈θ αi

∏
Ai 6∈θ(1 − αi). The set of all

probability models for a pdlp is the semantics of the program; note that if a
pdlp does not have stable models for some total choice, there is no semantics for
it (the program is inconsistent). Because a set of probability measures is often
called a credal set [2]; we adopt the term credal semantics.

If P is definite, then P ∪ PF↓θ is definite for any θ, and P ∪ PF↓θ has a
unique minimal model that is also its unique stable/well-founded model. Thus
the distribution over total choices induces a single probability model. This is
Sato’s distribution semantics [25]. Similarly, suppose that P is acyclic or strati-
fied; then P∪PF↓θ is respectively acyclic or stratified for any θ, and P∪PF↓θ

has a unique stable model that is also its unique well-founded model [1].

Given a consistent pdlp whose credal semantics is the credal set K, we may
be interested in computing lower conditional probabilities, defined as P(Q|E) =
infP∈K:P(E)>0 P(Q|E) or upper conditional probabilities, defined as P(Q|E) =
supP∈K:P(E)>0 P(Q|E), where Q and E are consistent set of literals. Note that

we leave conditional lower/upper probabilities undefined when P(E) = 0 (that
is, when P(E) = 0 for every probability model).

Consider again our running example. Suppose we have a graph over five sites,
with edges (to save space, e means edge):
0.5 :: e(s4, s5). e(s1, s3). e(s1, s4). e(s2, s1). e(s2, s4). e(s3, s5). e(s4, s3)..
That is, we have an edge e(s4, s5) which appears with probability 0.5. If this edge
is kept, there are 6 stable models; if it is discarded, there are 12 stable models.
If additional facts color(s2, red). and color(s5, green). are given, then there is a
single stable model if edge(s4, s5) is kept, and 2 stable models if it is discarded.
Then, P(color(s4, green)) = 0 and P(color(s4, green)) = 1/2.

A different semantics is defined by Hadjichristodoulou and Warren [17] for
plps (note the restriction to normal logic programs!): they allow probabilities
directly over well-founded models, thus allowing probabilities over atoms that
are undefined. That is, given a plp 〈P,PF〉, associate to each total choice θ the
unique well-founded model of P ∪PF↓θ to θ; the unique distribution over total
choices induces a unique distribution over well-founded models. One can find



other semantics that deserve future study, by Sato et al. [26], by Lukasiewicz
[18, 19], by Baral et al. [3], by Michels et al. [21], and by Ceylan et al. [5].

4 Complexity results

We consider three different problems in this paper: (marginal) inference, most
probable explanation (MPE), and maximum a posteriori (MAP).

In the following problem definitions a pdlp 〈P,PF〉 is always specified using
rational numbers as probability values, and with a bound on the arity of pred-
icates (so the Herbrand base is always polynomial in the input size). A query
(Q,E) is always a pair of sets of consistent literals (consistent here means that
the set does not contain both a literal and its negation). The set E is called evi-
dence. The symbol M denotes a set of atoms in the Herbrand base of the union
of the program P and all the facts in PF. The symbol γ is always a rational
number in [0, 1].

The inferential complexity of a class of pdlps is the complexity of the fol-
lowing decision problem: with input equal to a pdlp 〈P,PF〉, a query (Q,E),
and a number γ, the output is whether or not P(Q|E) > γ; by convention, the
input is rejected if P(E) = 0.

The MPE complexity of a class of pdlps is the complexity of the following
decision problem: with input equal to a pdlp 〈P,PF〉, evidence E, and a number
γ, the output is whether or not there is an interpretation I that agrees with E
and satisfies P(I) > γ.

The MAP complexity of a class of pdlps is the complexity of the following
decision problem: with input equal to a pdlp 〈P,PF〉, a set M, and a number
γ, the output is whether or not there is a consistent set of literals Q mentioning
all atoms in M such that P(Q|E) > γ; by convention, the input is rejected if
P(E) = 0.

The contributions of this paper are summarized by Table 1. Darker entries are
already known [6–8], and the some entries on acyclic plps can be found in work
by Ceylan et al. [5]. All entries in this table indicate completeness with respect
to many-one reductions. In this section we prove these facts through a series of
results. In all proofs the argument for membership depends on the complexity of
logical reasoning on logic programs that are obtained by fixing all total choices;
this suffices to even make decisions concerning conditional probabilities (using
for instance techniques by Park [10, Theorem 11.5]).

Theorem 1 The MPE complexity of acyclic propositional plps is NP-hard, and
the MPE complexity of stratified propositional plps is in NP. The MPE com-
plexity of acyclic plps is ΣP

2 -hard, and the MPE complexity of stratified plps is
in ΣP

2 .

Proof. Membership in NP for stratified propositional plps is shown by “guess-
ing” a polynomial-sized interpretation consistent with evidence, and then de-
ciding if its probability exceeds a given threshold in polynomial time. This in-
volves producing the reduct, obtaining the stable model, and verifying whether it



matches the fixed interpretation. Each of these steps takes polynomial effort [12,
Table 4]. To obtain NP-hardness, note that acyclic propositional plps can encode
Bayesian networks with binary variables (where MPE is NP-complete [11]).

To prove membership for stratified plps, note that deciding whether a given
interpretation is a stable model of a stratified logic program can be reduced to
an instance of cautious reasoning as follows: fix the total choice according to
the interpretation, and include a rule with a fresh atom in the head and with
the literals in the interpretation as the body. The interpretation is then a stable
model iff there is (exactly) one stable model, and it contains the fresh atom.
Hence, we can “guess” an interpretation consistent with evidence, then decide
whether it is a stable model using a PNP oracle in constant time PNP-complete
[12, Table 5], and finally compute its probability in polynomial time. To obtain
ΣP

2 -hardness, we use an encoding employed by Eiter et al. [12]. Suppose we have
formula φ = ∃X : ¬∃Y : ϕ(X,Y), where ϕ(X,Y) is a propositional formula
in 3CNF with sets X and Y of propositional variables. Deciding satisfiability
of such formulas is a ΣP

2 -complete problem [27]. Introduce a probabilistic fact
0.5 :: x. with predicate x for each propositional variable x in X. A clause c in ϕ
contains k ∈ {0, . . . , 3} propositional variables from Y. Introduce a predicate c
of arity k, and for each predicate c introduce a set of rules as follows. For each
one of the 2k groundings y′ of the logical variables Y′ in c, if y′ satisfies c (for
all assignments of X), introduce a fact c(y′).; if y′ does not satisfy c (for some
assignment of X), introduce 3− k rules of the form c(y′) :− [not] x., where not
appears in the rule depending on whether x is preceded by negation or not in
the clause c. The formula ϕ is then encoded by the rule cnf :− c1, c2, . . . ., where
the conjunction extends over all clauses. Then the MPE with evidence {¬cnf}
and threshold γ = 0 decides whether φ is satisfiable. �

As definite programs are stratified, they are already covered by previous
results. However, it makes sense to assume that any query with respect to such
a program will also be positive in the sense that it only contains non-negated
literals. Even then we have the same complexity as stratified programs:

Theorem 2 Assume all queries are positive. The inferential complexity of defi-
nite propositional plps is PP-complete, and the inferential complexity of definite
plps is PPNP-complete. The MPE complexity of definite propositional plps is
NP-complete, and the MPE complexity of definite plps is ΣP

2 -complete.

Proof. Membership follows from results for stratified plps [7].
To show hardness for propositional programs, consider a 3CNF formula ϕ

over variables x1, . . . , xn, and obtain a new monotone formula ϕ̃ by replacing
every literal ¬xi by a fresh variable yi. Now the formula ϕ has M satisfying
assigments iff the formula ϕ̃∧(

∧
i xi∨yi)∨

∨
i(xi∧yi) has M+22n−3n satisfying

assignments [16, Proposition 4]. The latter formula is monotone (i.e., contains no
negated variables), so we can encode it as a definite program using probabilistic
facts 0.5 :: x to represent each logical variable, ci to represent clauses, and cnf to
represent the value of the formula. To decide whether the number of solutions of



ϕ exceeds M , verify whether P(cnf) > (22n − 3n + M)/22n. To decide whether
there is a solution, decide the MPE with evidence {cnf} and threshold 22n− 3n.

The same reasoning applies to definite plps, by building existential quantifi-
cation over part of the variables as in the proof of Theorem 1. �

Non-stratified programs climb one step up in the polynomial hierarchy:

Theorem 3 Assume the credal semantics for plps. The MPE complexity of
propositional plps is ΣP

2 -complete. The MPE complexity of plps is ΣP
3 -complete.

Proof. Membership for propositional plps follows as we can “guess” an inter-
pretation consistent with evidence, and then verify whether it is a stable model
(cautious reasoning) with an oracle coNP [12, Table 2]. To pose the latter prob-
lem as cautious reasoning, include a rule with a fresh atom in the head and with
the body encoding the interpretation, and ask whether all stable models include
the head. To obtain ΣP

2 -hardness, consider a formula φ = ∃X : ∀Y : ϕ(X,Y),
where ϕ(X,Y) is a propositional formula in 3DNF with conjuncts dj and sets
of propositional variables X and Y. Introduce a predicate xi for each proposi-
tional variable xi in X, associated with probabilistic fact 0.5 :: xi., and introduce
predicates yi and nyi for each propositional variable yi in Y, together with rules
yi :− not nyi. and nyi :− not yi. (the intuition behind these rules is simple:
they produce a stable model for each truth assignment of propositional variables
in Y). Introduce a predicate dj to represent a conjunct dj , with associated rule
dj :− L1

j , L
2
j , L

3
j ., where Lrj is x or not x or y or not y depending on whether

the rth literal of dj is x, ¬x, y, ¬y (where x indicates a propositional variable in
X and y indicates a propositional variable in Y). Then build ϕ by introducing
dnf :− dj. for each dj. Then the MPE of this program with evidence {dnf} and
threshold 0 decides whether φ is satisfiable (the “inner” universal quantifier is
“produced” by going over all stable models when doing cautious reasoning).

Membership for plps follows since once an interpretation consistent with ev-
idence is guessed, the cost of checking whether it holds in all stable models is
in ΠP

2 [12, Table 5]. To obtain ΣP
3 -hardness, we use a combination of strate-

gies used in the proof of Theorem 1 and in the proof for propositional plps
(previous paragraph). So, consider a formula φ = ∃X : ∀Y : ∃Z : ϕ(X,Y,Z),
where ϕ(X,Y,Z) is a propositional formula in 3CNF with clauses cj and sets
of propositional variables X, Y, and Z. Deciding satisfiability of such formulas
is a ΣP

3 -complete problem [27]. Again, introduce a predicate xi for each proposi-
tional variable xi in X, associated with probabilistic fact 0.5 :: xi., and introduce
predicates yi and nyi for each propositional variable yi in Y, together with rules
yi :− not nyi. and nyi :− not yi. (thus generating a stable model per config-
uration of Y). A clause c contains k propositional variables from Z; as in the
proof of Theorem 1, introduce a predicate c for each clause c; the arity of c
is k and for each one of the 2k configurations of logical variables from Z in c,
introduce 3− k rules c(z′) :− L. so as to encode the clause, where L depends on
the corresponding literal Lj in the clause c (L might be empty if z′ satisfies the
formula). Finally build the formula ϕ by introducing cnf :− c1, c2, . . . ., where



the conjunction extends over all clauses. Then the MPE of this program with
evidence {cnf = true} and threshold 0 decides whether φ is satisfiable. �

Now consider inferential complexity under the credal semantics, for pdlps.
The credal semantics of a pdlp is a credal set that dominates an infinite mono-
tone Choquet capacity [6]. This result is important because it implies that
P(M) =

∑
θ∈Θ:Γ (θ)⊆M P(θ) and P(M) =

∑
θ∈Θ:Γ (θ)∩M6=∅ P(θ), where Θ is the

set of total choices and Γ maps a total choice to the set of resulting stable mod-
els. Also, we have that P(A|B) = P(A ∩B) /(P(A ∩B) + P(Ac ∩B)) whenever
P(A ∩B) + P(Ac ∩B) > 0; otherwise, either P(A|B) = 1 when P(A ∩B) +
P(Ac ∩B) = 0 and P(A ∩B) > 0, or P(A|B) is undefined. Similarly, P(A|B) =
P(A ∩B) /(P(A ∩B) + P(Ac ∩B)), when P(A ∩B) + P(Ac ∩B) > 0, with sim-
ilar special cases. Using these results we see that computing lower and upper
probabilities can be reduced to going through the total choices and running
brave/cautious inference for each total choice [6].

Theorem 4 Assume the credal semantics for pdlps. The inferential complexity

of propositional pdlps is PPΣ
P
2 -complete. The inferential complexity of pdlps

is PPΣ
P
3 -complete.

Proof. To prove membership for propositional pdlps, note that once a total
choice is guessed, the cost of checking whether a set of literals holds under cau-
tious reasoning is in ΠP

2 [12, Table 2]; inference is obtained by going through
all these total choices, running cautious inference for each one of them. To ob-

tain PPΣ
P
2 -hardness, consider a formula φ(X) = ∀Y : ¬∀Z : ϕ(X,Y,Z), where

ϕ(X,Y,Z) is a propositional formula in 3DNF with conjuncts dj and sets of
propositional variables X, Y, and Z. Deciding whether the number of truth as-
signments to X that satisfy the formula is strictly larger than an integer M is

a PPΣ
P
2 -complete problem [32, Theorem 7]. To emulate counting, introduce a

predicate xi for each propositional variable xi in X, associated with a probabilis-
tic fact 0.5 :: xi.. And to encode φ(X), we combine the use of stable sets as in
the proof of Theorem 3 with an adapted version of a proof by Eiter and Gottlob
[13] on disjunctive programming. So, to go over truth assignments of Y, intro-
duce predicates yi and nyi for each propositional variable yi in Y, together with
rules yi :− not nyi. and nyi :− not yi.. And to encode the “innermost” universal
quantifier, introduce predicates zi and nzi for each propositional variable zi in Z,
and auxiliary predicate w, together with the rules

zi ∨ nzi. zi :− w. nzi :− w.

for each zi in Z, plus the rule w :− L1
j , L

2
j , L

3
j . for each conjunct dj , where

Lrj is obtained from L, the rth literal of dj , as follows: (1) if L = zi, then
Lrj = zi; (2) if L = ¬zi, then Lrj = nzi; (3) if L = xi, then Lrj = xi; (4) if
L = ¬xi, then Lrj = not xi; (5) if L = yi, then Lrj = yi; (6) if L = ¬yi,
then Lrj = not yi. Finally, introduce nw :− not w.. Now reason as follows. To
decide whether P(nw = true) > γ, we must go through all possible total choices;



each one of them has probability 2−n where n is the length of X. For each
total choice, we must run cautious inference; this is done by going through all
stable models, and verifying whether nw is true in all of them. For each truth
assignment of Y, the program has a stable model where w is true iff for all truth
assignments of Z we have that ϕ holds [13, Theorem 3.2]. That is, for fixed y,
all resulting stable models have nw as true iff ∀Z : ϕ(x,y,Z) is false (note that
x is fixed by the selected total choice). Thus if we take γ = M/2−n, we obtain
that P(nw = true) > γ decides whether φ(X) has a number of satisfying truth
assignments of X that is strictly larger than M .

To prove membership for pdlps, note that once a total choice is guessed, the
cost of checking whether a set of literals holds under cautious reasoning is in
ΠP

3 [12, Table 5]; inference is obtained by going through all these total choices,

running cautious inference for each one of them. To obtain PPΣ
P
3 -hardness, we

use a combination of strategies used in the proof of Theorem 1 and in the proof
for propositional plps (previous paragraph). So, consider a formula φ(X) =
∀Y : ¬∀Z : ∃V : ϕ(V,X,Y,Z), where ϕ(V,X,Y,Z) is a propositional formula
in 3CNF with clauses cj and sets of propositional variables V, X, Y, and Z.
Deciding whether the number of truth assignments to X that satisfy the formula

is strictly larger than an integer M is a PPΣ
P
3 -complete problem [32, Theorem 7].

Again, introduce a predicate xi for each propositional variable xi in X, associated
with probabilistic fact 0.5 :: xi., and introduce predicates yi and nyi for each
propositional variable yi in Y, together with rules yi :− not nyi., nyi :− not yi..
and zi ∨ nzi.. We encode the clauses by adapting the construction in the proof
of Theorem 1. A clause c contains k propositional variables from V; introduce
a predicate cj for each clause cj ; the arity of cj is k and for each one of the 2k

configurations of logical variables from V in cj , introduce 3−k rules cj(v
′) :− Lrj.

so as to encode the clause, where Lrj is obtained from the corresponding literal L
from cj as follows: (1) if L = vi, then Lrj = vi; (2) if L = ¬vi, then Lrj = nvi; (3)
if L = zi, then Lrj = zi; (4) if L = ¬zi, then Lrj = nzi; (5) if L = xi, then Lrj = xi;
(6) if L = ¬xi, then Lrj = not xi; (7) if L = yi, then Lrj = yi; (8) if L = ¬yi, then
Lrj = not yi. Finally build the formula ϕ by introducing w :− c1, c2, . . . ., where
the conjunction extends over all clauses. So we have the “innermost” existential
quantifier; to create the “middle” universal quantifier, introduce

yk :− w. nyk :− w. zi :− w. nzi :− w.

for each yk in Y and each zi in Z. Finally add the rule nw :− not w.. If we
take γ = M/2−n, we obtain that P(nw = true) > γ decides whether φ(X) has a
number of satisfying truth assignments of X that is strictly larger than M . �

Theorem 5 Assume the credal semantics for pdlps. The MPE complexity of
propositional pdlps is ΣP

3 -complete. The MPE complexity of pdlps is ΣP
4 -

complete.

Proof. To prove membership for propositional pdlps, note that once an in-
terpretation is guessed, the cost of checking whether it holds under cautious



reasoning is in ΠP
2 [12, Table 2]. To obtain ΣP

3 -hardness, consider a formula
φ = ∃X : ∀Y : ¬∀Z : ϕ(X,Y,Z), where ϕ(X,Y,Z) is a propositional formula
in 3DNF with conjuncts dj and sets of propositional variables X, Y, and Z.
Deciding whether φ is satisfiable is a ΣP

3 -complete problem [27]. So, build the
program described in the propositional part of the proof of Theorem 4. Then
the MPE of the resulting program with evidence {nw = true} and threshold 0
decides whether φ is satisfiable.

To prove membership for pdlps, note that once an interpretation is guessed,
the cost of checking whether it holds under cautious reasoning is in ΠP

3 [12,
Table 5]. To obtain ΣP

4 -hardness, consider a formula φ = ∃X : ∀Y : ¬∀Z : ∃V :
ϕ(V,X,Y,Z), where ϕ(V,X,Y,Z) is a propositional formula in 3CNF with
clauses cj and sets of propositional variables V, X, Y, and Z. Deciding whether
φ is satisfiable is a ΣP

4 -complete problem [27]. So, build the program described
in the bounded-arity part of the proof of Theorem 4. Then the MPE of the
resulting program with evidence {nw = true} and threshold 0 decides whether φ
is satisfiable. �

Theorem 6 Assume the well-founded semantics for plps. The MPE complex-
ity of propositional plps is NP-complete. The MPE complexity of plps is ΣP

2 -
complete.

Proof. Hardness follows from Theorem 1 (in both cases). Membership for the
propositional case can be proved using the corresponding argument in the proof
of Theorem 1, only noting that logical inference with propositional plps under
the well-founded semantics is in P [9]. Similarly, membership for the relational
bounded-arity case uses the corresponding argument in the proof of Theorem 1,
noting that logical inference with bounded-arity plps is PNP-complete [8]. �

Theorem 7 Assume the credal semantics both for plps and for pdlps. The
MAP complexity of propositional plps is NPPP-hard. The MAP complexity of
pdlps is in NPPP.

Proof. Hardness is simple: a propositional plp can encode a Bayesian network
with binary variables, and MAP in such networks is NPPP-complete [11]. To
prove membership, reason in two steps. First note that one can solve MAP by
first guessing literals for the MAP-predicates that are not fixed by evidence, and

then running inference in an PPΣ
P
3 oracle. That is, the decision problem is in

NPPPΣ
P
3

. Now resort to a theorem by Toda and Watanabe [28] that shows that,

for any k, PPPΣ
P
k collapses to PPP, to note that the decision problem of interest

is in NPPP. �

Theorem 8 Assume the credal semantics for plps and positive queries The
MAP complexity of definite propositional plps is NPPP-hard, and of plps is in
NPPP.

Proof. Membership follows from Theorem 7. Hardness follows from the fact
that MAP for Bayesian networks described without negation is already NPPP-
hard [20, Theorem 5]. �



5 Conclusion

As conveyed by Table 1, we have presented a number of novel results concerning
the complexity of probabilistic logic programming — the complexity of comput-
ing conditional probabilities (inferences) and two kinds of explanations (MPE
and MAP). These computations go up several layers within the counting hier-
archy, reaching some interesting complexity classes that are rarely visited. Note
in particular that MAP is always NPPP-complete, an interesting result.

A future step is to obtain the complexity of relational programs without
bounds on arity (exponential complexity is sure to appear), and perhaps the
complexity of programs with functions (with suitable restrictions to guarantee
decidability). The complexity of other constructs, such as aggregates, should
also be explored. Future work should look at “query” complexity; that is, the
complexity of computing inferences when the program is fixed and the query
varies — this is akin to data complexity as studied in database theory [7].
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6. F. G. Cozman and D. D. Mauá. The structure and complexity of credal semantics.
In Workshop on Probabilistic Logic Programming, pages 3–14, 2016.
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