
The Descriptive Complexity
of Bayesian Network Specifications

Fabio G. Cozman1 and Denis D. Mauá2

1 Escola Politécnica, Universidade de São Paulo - Brazil
2 Instituto de Matemática e Estatística, Universidade de São Paulo - Brazil

Abstract. We adapt the theory of descriptive complexity to Bayesian
networks, by investigating how expressive can be specifications based on
predicates and quantifiers. We show that Bayesian network specifications
that employ first-order quantification capture the complexity class PP;
that is, any phenomenon that can be simulated with a polynomial time
probabilistic Turing machine can be also modeled by such a network. We
also show that, by allowing quantification over predicates, the resulting
Bayesian network specifications capture the complexity class PPNP, a
result that does not seem to have equivalent in the literature.

1 Introduction

One can find a variety of “relational” Bayesian networks in the literature, where
constructs from first-order logic are used to represent whole populations and
repetitive patterns [7, 15, 16]. Such networks may be specified by diagrams or
by text; typically they are viewed as templates that can be grounded into finite
propositional Bayesian networks whenever needed.

It is only natural to ask what is the expressivity of Bayesian network specifi-
cations based on predicates and quantifiers. That is, what can and what cannot
be modeled by these specifications, and at what computational costs. To address
these questions, we are inspired by the well-known theory of descriptive complex-
ity for logical languages [4, 9]. It does not seem that the descriptive complexity
of Bayesian networks has been investigated in previous work, and to do so we
adapt existing insights and results. Because the topic is novel, most of this paper
consists of building a framework in which to operate.

In fact, one should expect “relational” Bayesian network specifications to
exhibit properties that cannot be matched by propositional networks — much
as first-order logic goes beyond propositional logic. This sort of phenomenon has
been already noted in connection with lifted inference algorithms [18, 10], but
has not been characterized in terms of descriptive complexity.

We define precisely what we mean by “Bayesian network specifications” in
Section 2, and present some necessary background in Section 3. We then move
to our main results in Sections 4 and 5.

We show that Bayesian network specifications that employ first-order quan-
tification capture the complexity class PP. That is, a language is in PP if and



only if its strings encode valid inferences in a Bayesian network specified with
predicates and first-order quantifiers. Note that this is a much stronger statement
than PP-completeness. And then we look at specifications that allow quantifi-
cation over predicates, and show that such “second-order” Bayesian networks
capture the complexity class PPNP. It does not seem that previous results on
descriptive theory have reached this latter complexity class.

Intuitively, these results can be interpreted as follows: suppose we have a
(physical, social, economic) phenomenon that can be simulated by a probabilis-
tic Turing machine in polynomial time: given an input, the machine will run for
a number of steps that is polynomial in the length of the input, and the machine
will stop with the same YES-NO answer as produced by the phenomenon. Our
results show that the phenomenon can be modeled by a Bayesian network speci-
fication based on predicates and first-order quantification in the sense that, given
the input as evidence, an inference with the network will produce the same result
as the phenomenon. But what happens if the phenomenon is so complex that it
requires even more computation to be simulated? For instance, what happens if
the phenomenon requires a polynomial time probabilistic Turing machine with
another nondeterministic Turing machine as oracle? This phenomenon cannot
be modeled by a “relational” Bayesian network specification, unless widely ac-
cepted assumptions about complexity classes collapse. However, our results show
that this phenomenon can be modeled by a Bayesian network specification that
allows quantification over predicates.

We further discuss the intellectual significance of these results in the con-
cluding Section 6.

2 Specifying Bayesian networks with logical constructs

In the Introduction we loosely mentioned “relational” Bayesian networks. To
make any progress, we must precisely define what is here allowed in specifying
Bayesian networks. Our strategy, described in this section, is to adopt a proposal
by Poole [14] to mix probabilistic assessments and logical equivalences [2].

2.1 Preliminaries

First, to recap: a Bayesian network is a pair consisting of a directed acyclic
graph G whose nodes are random variables, and a joint probability distribution
P over the variables in the graph, so that G and P satisfy the Markov condition
(a random variable is independent of its nondescendants given its parents). The
Markov condition induces a factorization of probabilities [11].

In this paper every random variable is binary with values 0 and 1, respectively
signifying false and true.

We only consider textual specifications, mostly relying on formulas of function-
free first-order logic with equality (denoted by FFFO). That is, most formulas we
contemplate are well-formed formulas of first-order logic with equality but with-
out functions, containing predicates from a finite relational vocabulary, nega-
tion (¬), conjunction (∧), disjunction (∨), implication (⇒), equivalence (⇔),



existential quatification (∃) and universal quantification (∀). Later we discuss
second-order quantification over predicates.

First-order theories are interpreted as usual [5], using domains, that are just
sets, and interpretations that associate predicates with relations, and constants
with elements; that is, an interpretation is a truth assignment for every grounding
of every predicate. A pair domain/interpretation is a structure. We only deal with
finite domains in this paper.

Throughout the paper it will be convenient to view each grounded predicate
r(
→
a ), for a fixed vocabulary/domain, as a random variable over interpretations

(note: an overline arrow denotes a tuple). That is, given a domain D, we under-
stand r(

→
a ) as a function over all possible interpretations of the vocabulary, so

that r(
→
a )(I) yields 1 if r(

→
a ) is true in interpretation I, and 0 otherwise.

For instance, say we have two unary predicates r and s, and we are given a
domain D = {a, b}. Then we have groundings {r(a), r(b), s(a), s(b)}, and there
are 24 possible interpretations. Each interpretation assigns true or false to r(a),
and similarly to every grounding. So r(a) can be viewed as a random variable
over the possible interpretations.

2.2 Relational Bayesian network specifications

A relational Bayesian network specification, abbreviated relBN, is a directed
acyclic graph where each node is a predicate (from a finite relational vocabulary),
and where

1. each root node r is associated with a probabilistic assessment

P
(
r(
→
x ) = 1

)
= α, (1)

2. while each non-root node s is associated with a formula (called the definition
of s)

s(
→
x )⇔ φ(

→
x ), (2)

where φ(
→
x ) is a formula in FFFO with free variables

→
x .

Given a domain, a relBN can be grounded into a unique Bayesian network:

1. by producing every grounding of the predicates;
2. by associating with each grounding r(

→
a ) of a root predicate the grounded

assessment P
(
r(
→
a ) = 1

)
= α;

3. by associating with each grounding s(
→
a ) of a non-root predicate the grounded

definition s(
→
a )⇔ φ(

→
a ), and by replacing univeral/existential quantification

by conjunction/disjunction over the domain;
4. finally, by drawing a graph where each node is a grounded predicate and

where there is an edge into each grounded non-root predicate s(
→
a ) from

each grounding of a predicate that appears in the grounded definition of
s(
→
a ).



fan(a) fan(b) fan(c)

friends(a, b) friends(a,c) friends(b, a) friends(b, c) friends(c, a) friends(c, b)

other(a, b) other(a, c) other(b, a) other(b, c) other(c, a) other(c, b)

friends(a, a)

other(a, a)

friends(b, b) other(b, b) friends(c, c)

other(c, c)

Fig. 1. The Bayesian network generated by Expression (3) and domain D = {a, b, c}.

Consider, as an example, the following model of asymmetric friendship, where
an individual is always a friend of herself, and where two individuals are friends
if they are both fans (of a writer, say) or if there is some “other” reason for it:

P(fan(x )) = 0.2, P
(
other(x , y)

)
= 0.1,

P
(
friends(x , y)

)
⇔ (x = y) ∨ (fan(x ) ∧ fan(y)) ∨ other(x , y), (3)

Suppose we have domain D = {a, b, c}. Figure 1 depicts the Bayesian network
generated by D and Expression (3).

For a given relBN τ and a domain D, denote by B(τ,D) the Bayesian
network obtained by grouning τ with respect to D. The set of all relational
Bayesian network specifications is denoted by B(FFFO).

3 A bit of descriptive complexity

We employ several concepts from finite model theory [4, 8, 12] and complexity
theory [13]. We consider input strings in the alphabet {0, 1}; that is, a string is
a sequence of 0s and 1s. A language is a set of strings; a complexity class is a set
of languages. A language is decided by a Turing machine if the machine accepts
each string in the language, and rejects each string not in the language. The
complexity class NP contains each language that can be decided by a nonde-
terministic Turing machine with a polynomial time bound. If a Turing machine
is such that, whenever its transition function maps to a non-singleton set, the
transition is selected with uniform probability within that set, then the Turing
machine is a probabilistic Turing machine. The complexity class PP is the set
of languages that are decided by a probabilistic Turing machine in polynomial
time, with an error probability strictly less than 1/2 for all input strings. This
complexity class can be equivalently defined as follows: a language is in PP if
and only if there is a polynomial nondeterministic Turing machine such that a
string is in the language if and only if more than half of the computation paths
of the machine end in the accepting state when the string is the input.

If a formula φ(
→
x ) has free logical variables

→
x , then structure A is a model of

φ(
→
a ) iff φ(

→
x ) is true in structure A when the logical variables

→
x are replaced by

elements
→
a of the domain.



A formula φ in existential function-free second-order logic (denoted by ESO)
is a formula of the form ∃r1 . . . ∃rmφ′, where φ′ is a sentence of FFFO contain-
ing predicates r1, . . . , rm. Such a sentence allows existential quantification over
the predicates themselves. Note that again we have equality in the language
(that is, the built-in predicate = is always available). Here a structure A is a
pair domain/interpretation, but the interpretation does not touch predicates
that are existentially quantified (that is, if φ contains predicates r1, . . . , rm and
s1, . . . , sM , but r1, . . . , rm are all existentially quantified, then a model for φ
contains an intepretation for s1, . . . , sM ).

As an example, consider the following formula of ESO [8]:

∃partition : ∀x : ∀y :
(
edge(x , y)⇒ (partition(x )⇔ ¬partition(y))

)
. (4)

Here a domain can be viewed as a set of nodes, and an interpretation can be
viewed as a set of edges; the formula is satisfied if and only if it is possible to
partition the vertices into two subsets such that if a node is in one subset, it is
not in the other (that is, the graph is bipartite).

There is an isomorphism between structures A1 and A2 when there is a
bijective mapping g between the domains such that if r(a1, . . . , ak) is true in A1,
then r(g(a1), . . . , g(ak)) is true in A2, and moreover if r(a1, . . . , ak) is true in A2,
then r(g−1(a1), . . . , g−1(ak)) is true in A1 (where g−1 denotes the inverse of g).
A set of structures is isomorphism-closed if whenever a structure is in the set,
all structures that are isomorphic to it are also in the set.

We assume that every structure is given as a string, encoded as follows for a
fixed vocabulary (encoding from Ref. [12, Section 6.1]). First, if the domain con-
tains elements a1, . . . , an, then the string begins with n symbols 0 followed by 1.
The vocabulary is fixed, so we take some order for the predicates, r1, . . . , rm. We
then append, in this order, the encoding of the interpretation of each predicate.
Focus on predicate ri of arity k. To encode it with respect to a domain, we need
to order the elements of the domain, say a1 < a2 < · · · < an. This total ordering
is assumed for now to be always available; it will be important later to check
that the ordering itself can be defined. In any case, with a total ordering we
can enumerate lexicographically all k-tuples over the domain. Now suppose

→
a j

is the jth tuple in this enumeration; then the jthe bit of the encoding of ri is 1
if r(

→
a j) is true in the given interpretation, and 0 otherwise. Thus the encoding

is a string containing n+ 1 +
∑m
i=1 n

arity(ri) symbols (either 0 or 1).
We can now state the celebrated theorem by Fagin on descriptive complexity:

Theorem 1 Let S be an isomorphism-closed set of finite structures of some
non-empty finite vocabulary. Then S is in NP if and only if S is the class of
finite models of a sentence in ESO.

The significance of Fagin’s theorem is that it offers a definition of NP that is
not tied to any computational model; rather, it is tied to the expressivity of the
language that is used to specify problems. The surprising part of Fagin’s theorem
is that every language in NP can be exactly encoded by an ESO sentence.



4 B(FFFO) captures PP

Given a relBN and a domain, an evidence piece E is a partial interpretation;
that is, an evidence piece assigns a truth value to some groundings of predicates.

We encode a pair domain-evidence (D,E) with the same strategy used in
the previous section to encode a structure; however, we must take into account
the fact that a particular grounding of a predicate can be either assigned true
or false or be left without assignment. So we use a pair of symbols in {0, 1} to
encode each grounding; we assume that 00 means false and 11 means true, while
say 01 means lack of assignment.

Say there is an isomorphism between pairs (D1,E1) and (D2,E2) when there
is a bijective mapping g between the domains such that if r(a1, . . . , ak) is true in
E1, then r(g(a1), . . . , g(ak)) is true in E2, and moreover if r(a1, . . . , ak) is true
in E2, then r(g−1(a1), . . . , g−1(ak)) is true in E1 (where again g−1 denotes the
inverse of g). A set of pairs domain-evidence is isomorphism-closed if whenever
a pair is in the set, all pairs that are isomorphic to it are also in the set.

Suppose a set of pairs domain-evidence is given with respect to a fixed vo-
cabulary σ. Once encoded, these pairs form a language L that can for instance
belong to NP or to PP. One can imagine building a relational Bayesian network
specification τ on an extended vocabulary consisting of σ plus some additional
predicates, so as to decide this language L of domain-evidence pairs. For a given
input pair (D,E), the Bayesian network specification and the domain lead to a
Bayesian network B(τ,D); this network can be used to compute the probability
of some groundings, and that probabiility in turn can be used to accept/reject
the input. This is the sort of strategy we pursue.

The point is that we must determine some prescription by which, given a
Bayesian network and an evidence piece, one can generate an actual decision
so as to accept/reject the input pair domain/evidence. We adopt the following
strategy. Assume that in the extended vocabulary of τ there are two sets of dis-
tinguished auxiliary predicates A1, . . . , Am′ and B1, . . . , Bm′′ that are not in σ.
We can use the Bayesian network B(τ,D) to compute the probability P(A|B,E)
where A and B are interpretations of A1, . . . , Am′ and B1, . . . , Bm′′ respectively.
And then we might accept/reject the input on the basis of P(A|B,E). However,
we cannot specify particular intepretations A and B as the related predicates
are not in the vocabulary σ. Thus the sensible strategy is to fix attention to
some selected, fixed, pair of intepretations for these predicates; we simply take
the interpretations that assign true to every grounding.

In short: use the Bayesian network B(τ,D) to determine whether or not
P(A|B,E) > 1/2, where A assigns true to every grounding of A1, . . . , Am′ , and
B assigns true to every grounding of B1, . . . , Bm′′ . If this inequality is satisfied,
the input pair is accepted; if not, the input pair is rejected.

We refer to A1, . . . , Am′ as the conditioned predicates, and to B1, . . . , Bm′′ as
the conditioning predicates.

Here is the main result:



Theorem 2 Let S be an isomorphism-closed set of pairs domain-evidence of
some non-empty finite vocabulary, where all domains are finite. Then S is in PP
if and only if S is the class of domain-evidence pairs that are accepted by a fixed
relBN with fixed conditioned and conditioning predicates.

Proof. First, if S is a class of domain-query pairs that are accepted by a fixed
relBN, they can be decided by a polynomial time probability Turing machine.
To see that, note that we can build a nondeterministic Turing machine that
guesses the truth value of all groundings that do not appear in the query (that
is, not in A∪B∪E), and then verifies whether the resulting complete interpre-
tation is a model of the relBN. Recall that model checking of a fixed first-order
sentence is in P [12].

To prove the other direction, we adapt the proof of Fagin’s theorem as de-
scribed by Grädel [8], along the same lines as the proof of Theorem 1 by Saluja
et al. [17]. So, suppose that L is a language decided by some probabilistic Turing
machine. Equivalently, there is a nondeterministic Turing machine that deter-
mines whether the majority of its computation paths accept an input, and ac-
cepts/rejects the input accordingly. By the mentioned proof of Fagin’s theorem,
there is a first-order sentence φ′ with vocabulary consisting of the vocabulary of
the input plus additional auxiliary predicates, such that each interpretation of
this joint vocabulary is a model of the sentence if it is encodes a computation
path of the Turing machine, as long as there is an available additional predicate
that is guaranteed to be a linear order on the domain. Due to the lack of space,
details of the construction are omitted; suffice to say that the same predicates Xq

(one per state), Yσ (one per symbol), and Z, employed by Grädel, are to be used
here, with the same associated definitions. Denote by A the zero arity predicate
with associated definition A⇔ φ′ ∧φE , where φE is satisfied when an accepting
state is reached. Suppose a linear order is indeed available; then by creating a
relBN where all groundings are associated with probability 1/2, and where a
non-root node is associated with the sentence in the proof of Fagin’s theorem,
we have that the probability of the query is larger than 1/2 iff the majority of
computation paths accept. The challenge is to encode a linear order. To do so,
introduce a new predicate < and the first-order sentence φ′′ that forces < to
be a total order, and a zero arity predicate B that is associated with definition
B ⇔ φ′ ∧ φ′′. Now an input domain-pair (D,E) is accepted by the majority of
computation paths in the Turing machine if and only if we have P(A|B,E) > 1/2.
Note that there are actually n! linear orders that satisfy B, but for each one of
these linear orders we have the same assignments for all other predicates, hence
the ratio between accepting computations and all computations is as desired. �

We might picture this as follows. There is always a Turing machine TM and
a corresponding triplet (τ,A,B) such that for any pair (D,E), we have

(D,E) as input to TM with output given by P(TM accepts (D,E)) > 1/2,

if and only if

(D,E) as “input” to (τ,A,B) with “output” given by Pτ,D(A|B,E) > 1/2,



where Pτ,D(A|B,E) denotes probability with respect to B(τ,D). (Of course, there
is no even need to be restricted to zero-arity predicates A and B, as Theorem 2
allows for sets of predicates.)

Note that the same result could be proved if every evidence piece was taken
to be a complete interpretation for the vocabulary σ. In that case we could
directly speak of structures as inputs, and then the result would more closely
mirror Fagin’s theorem. However it is very appropriate, and entirely in line with
practical use, to take the inputs to a Bayesian network as the groundings of a
partially observed interpretation. Hence we have preferred to present our main
result as stated in Theorem 2.

5 Moving to second-order

Suppose we have a phenomenon whose simulation requires computational powers
that go beyond a polynomial time probabilistic Turing machine. There are in
fact description languages whose inferences require exponential time probabilistic
Turing machines [2, 3], but we need not go to such extremes. We might for
instance have a phenomenon that requires a polynomial time probabilistic Turing
machine to use as oracle a polynomial time nondeterministic Turing machine.
That is, we might have a phenomenon with requirements within PPNP, a level
above PP in the polynomial counting hierarchy [19]. Given current beliefs about
complexity classes, Theorem 2 shows that such a phenomenon cannot be modeled
with a relBN. Can we find a “reasonable” specification language that allows one
to model such a phenomenon?

Indeed we can, by putting together Fagin’s theorem and Theorem 2. Consider
a specification language as follows: we have a directed acyclic graph where nodes
are predicates, and where as before root and non-root nodes are respectively
associated with assessments P(r(

→
x ) = 1) = α and definitions s(

→
x )⇔ φ(

→
x ), but

the latter are now enlarged so that φ is a formula in ESO. A directed graph
associated with such assessments and formulas is referred to as a existential
second-order Bayesian network specification, abbreviated esoBN.

For instance, consider the model of friendship presented in Expression (3),
and suppose we add a variable that indicates whether the graph of friends can
be partitioned, using Expression (4) as follows:

partitioned⇔ ∃partition : ∀x :∀y :
(
edge(x , y)⇒(partition(x )⇔¬partition(y))

)
.

The presence of probabilities and second-order quantification gives us the
desired modeling power:

Theorem 3 Let S be an isomorphism-closed set of pairs domain-evidence of
some non-empty finite vocabulary, where all domains are finite. Then S is in
PPNP if and only if S is the class of domain-evidence pairs that are accepted by
a fixed esoBN with fixed conditioned and conditioning predicates.

Proof. To prove that a class of domain-query pairs that are accepted by a fixed
esoBN can be decided within PPNP, put together the argument in the first



paragraph of the proof of Theorem 2 and the fact that an ESO sentence can be
evaluated within NP by Theorem 1.

To prove the other direction, the corresponding part of the proof of Theo-
rem 2 must be enlarged. We introduce again the same predicates Xq, Yσ and
Z for the base machine, together with the whole machinery in Grädel’s proof
of Fagin’s theorem [8], and we also introduce predicates Xo

q , Y oσ , Zo for the
oracle machine (the superscript o refers to the “oracle”). Additionally, in the
proof of Theorem 2 it is necessary to introduce logical variables that “mark the
steps” of the Turing machine (these steps are ordered by the introduced linear
order). Here we need two sets of such logical variables and associated machin-
ery; one set “marks the steps” of the base machine, while the other “marks the
steps” of the oracle machine. And of course a linear order must also be built
as in the proof of Theorem 2. Again, due to lack of space the details of the
construction are omitted. And again, an input domain-query is accepted by the
majority of computation paths in the (base) Turing machine if and only if we
have P(A|B,E) > 1/2, where A, B and E are as in the proof of Theorem 2. �

6 Conclusion: A finite model theory of Bayesian
networks?

We have introduced a theory of descriptive complexity for Bayesian networks, a
topic that does not seem to have received due attention so far. Our results can
be extended in a variety of directions, for instance to various fixpoint logics that
are the basis of logic programming [4, 12]. To summarize, we have shown that
relational Bayesian network specifications capture PP, and we have indicated
how we can go beyond PP in our modeling tools. Specifically, we added existential
second-order quantification to capture the complexity class PPNP.

These results can be better appreciated by taking a broader perspective.
For several decades now, there has been significant study of models that arise
from combinations of probability and logic [1, 6]. However, by dealing with do-
mains of arbitrary cardinality, and with logics that include too many constructs
(for instance, functions) and that exclude valuable techniques (for instance, the
modularity introduced by independence relations), these previous investigations
arrive at results that are often too weak — for instance, almost always obtaining
undecidability or very high computational complexity. By focusing on modular
tools such as Bayesian networks, and by focusing on finite domains, we are able
to obtain much sharper results, nailing down specific complexity classes such as
PP and PPNP. In fact, the purpose here is to initiate a “finite model theory of
Bayesian network specifications” that can pin down the expressivity and com-
plexity of Bayesian networks, not only when they are propositional objects, but
particularly when they are specified using logical constructs.

Our results are also interesting from a point of view centered on complexity
theory. There has been little work on capturing counting/probabilistic classes;
the most significant previous results capture #P using counting [17]. We offer
a more concrete modeling language that captures PP, and we move into the



counting hierarchy, up to PPNP — we are not aware of any similar result in the
literature. Our results show that classes in the counting hierarchy can be tied to
the expressivity of modeling tools, not to any particular computational model
(much as Fagin’s theorem does for NP).

Acknowledgements
The first author is partially supported by CNPq, grant 308433/2014-9. This
paper was partially funded by FAPESP grant #2015/21880-4 (project Proverbs).

References

1. M. Abadi and J. Y. Halpern. Decidability and expressiveness for first-order logics
of probability. Information and Computation, 112(1):1–36, 1994.

2. F. G. Cozman and D. D. Mauá. Bayesian networks specified using propositional
and relational constructs: Combined, data, and domain complexity. In AAAI Con-
ference on Artificial Intelligence, 2015.

3. F. G. Cozman and R. B. Polastro. Complexity analysis and variational inference
for interpretation-based probabilistic description logics. In Conf. on Uncertainty
in Artificial Intelligence, pages 117–125, 2009.

4. H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Springer-Verlag, 1995.
5. H. B. Enderton. A Mathematical Introduction to Logic. Academic Press, 1972.
6. H. Gaifman. Concerning measures on first-order calculi. Israel Journal of Mathe-

matics, 2:1–18, 1964.
7. L. Getoor and B. Taskar. Introduction to Statistical Relational Learning. MIT

Press, 2007.
8. E. Grädel. Finite model theory and descriptive complexity. In Finite Model Theory

and its Applications, pages 125–229. Springer, 2007.
9. E. E. Grädel, P. G. Kolaitis, L. Libkin, M. Marx, J. Spencer, M. Y. Vardi, Y.

Venema, S. Weinstein. Finite Model Theory and its Applications. Springer, 2007.
10. M. Jaeger. Lower complexity bounds for lifted inference. Theory and Practice of

Logic Programming, 15(2):246–264, 2014.
11. D. Koller and N. Friedman. Probabilistic Graphical Models: Principles and Tech-

niques. MIT Press, 2009.
12. L. Libkin. Elements of Finite Model Theory. Springer, 2004.
13. C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
14. D. Poole. Probabilistic programming languages: Independent choices and deter-

ministic systems. In R. Dechter, H. Geffner, and J. Y. Halpern, editors, Heuristics,
Probability and Causality — A Tribute to Judea Pearl, pages 253–269. College Pub-
lications, 2010.

15. L. De Raedt. Logical and Relational Learning. Springer, 2008.
16. L. De Raedt, P. Frasconi, K. Kersting, and S. Muggleton. Probabilistic Inductive

Logic Programming. Springer, 2010.
17. S. Saluja and K. V. Subrahmanyam. Descriptive complexity of #P functions.

Journal of Computer and Systems Sciences, 50:493–505, 1995.
18. G. Van den Broeck. On the completeness of first-order knowledge compilation

for lifted probabilistic inference. In Neural Processing Information Systems, pages
1386–1394, 2011.

19. K. W. Wagner. The complexity of combinatorial problems with succinct input
representation. Acta Informatica, 23:325–356, 1986.


