
Specifying Probabilistic Relational Models with
Description Logics

Fabio G. Cozman
Escola Politécnica

Universidade de São Paulo, Brazil

Denis D. Mauá
Instituto de Matemática e Estatística
Universidade de São Paulo, Brazil

Abstract—In this paper we propose a modeling process for
probabilistic relational models (PRMs), based on description
logics and recursive relational Bayesian networks. A unified set of
logical constructs is used both to specify the template skeleton of
a PRM (that is, to carry out conceptual modeling) and to specify
dependences and template probabilities. We also discuss inference
problems: logical inference, elementary probabilistic inference,
and global consistency checking.

I. INTRODUCTION

A Bayesian network represents probabilities over a set
of variables, as well as independence relations among them.
In practice many applications display repetitive structures;
accordingly, there are several extensions of the Bayesian net-
work language that represent relational patterns. In this paper
we propose a modeling process for probabilistic relational
models (PRMs), where we employ constructs from description
logics to carry out both conceptual modeling and probabilistic
specification. Two benefits accrue from this strategy. First, we
have at our disposal well studied inference services and solid
results concerning decidability, complexity, and expressivity.
Second, we can use existing powerful knowledge representa-
tion packages to specify PRMs with little effort.

We start by summarizing relevant formalisms, so as to em-
phasize the challenges one faces when specifying probabilistic
relational models (Sections II and III). We dedicate significant
space to literature review and discussion, as we wish to develop
a different way of looking at challenges raised by previous
work. We then show, in Section IV, that a unified scheme
can be produced by combining description logic sentences
with simple probabilistic assessments. We examine the effect
of various constructs in conceptual modeling; we then look
at specification of template probabilities, and at inference
problems. Section V summarizes our contributions and looks
at possible future work.

II. PLATES AND PROBABILISTIC RELATIONAL MODELS

In this section we fix some important notation and termi-
nology; we also summarize the main ideas, and some of the
challenges, behind probabilistic relational models.

A Bayesian network uses a directed acyclic graph to
represent dependences among variables [38]. For instance, an
example is the “University World” [18], where a student’s
grade in a course depends on the student’s tenacity and the
course’s level of difficulty:

GradeDifficulty Tenacity

Formally: we have a set of random variables, X1, . . . , Xn,
and a directed acyclic graph where each node is a variable;
the variables satisfy a Markov condition (Xi is indepen-
dent of its nondescendants in the graph, given its parents
PA[Xi] in the graph). Hence, P(X1 = x1, . . . , Xn = xn) =∏n

i=1 P(Xi = xi|PA[Xi] = πi), where πi is the projection of
[x1, . . . , xn] onto PA[Xi]. Each variable Xi is associated with
probabilities P(Xi = x|PA[Xi] = π), so unique joint probabil-
ities can be calculated.

Often it is important to manipulate a set of random vari-
ables together. To do so, we define a parvariable to be a
function that yields a random variable for each element of
a set (called the domain of the parvariable) [41]. For instance,
a parvariable X(x) with domain {a, b} yields variables X(a)
or X(b), depending on the value of x . We refer to each index
of a parvariable as a logical variable, abbreviated logvar, and
to each variable produced by substituting logvars by elements
of given domains as a grounding of the parvariable.

One successful extension of Bayesian networks is the plate
model [21]. Each plate consists of a set of parvariables that
share the same logvars (hence the same domains). A plate is
typically depicted as a rectangle containing its parvariables,
and information about its domain. The intersection of plates
contains parvariables associated with logvars in all intersecting
plates. For instance, consider again the University World, now
with several students and several courses:

Course x

Student y

Grade(x , y)Difficulty(x) Tenacity(y)

With each parvariable X we must associate
a template probability distribution P(X|PA[X]);
in our example, we would have for instance
P
(
Grade(x , y)|Difficulty(x),Tenacity(y)

)
. By grounding

all parvariables, we obtain a possibly large Bayesian network
(details on how to ground template probability distributions
can be found in the literature [27]).

Originally plates were constrained so that a parvariable
could only have children in the same plate or in the intersection
of its current plate and other plates (with the understanding
that a parvariable outside of all plates could have children
everywhere). One can also find enhanced plate models in the
literature, where a parvariable can have children everywhere.
This requires one to specify template probability distributions

Registration z

Grade(z)

Course x

Difficulty(x)

Student y

Tenacity(y)

Fig. 1. PRM for the University World. We show logvars explicitly, even
though they are not always used in PRMs.

Course x Student y

Grade(x , y)Difficulty(x) Tenacity(y)

Registration

Fig. 2. DAPER diagram for the University World. Again we show logvars,
even though they are not used in DAPER diagrams.

where a parvariable depends on a set of parvariables, all
indexed by a logvar. For instance the parvariable Ranking(y)
of student y may depend on all of the student’s registrations. It
is then necessary to specify a template probability distribution
P
(
Ranking(y)|{Grade(x , y)}y

)
. The solution is to consider an

aggregation function that returns a single value given a set of
variables. For instance, an aggregation function may return
true when at least a variable takes a particular value, and false
otherwise, or perhaps it may return the number of variables
taking a particular value.

Other early proposals resorted to object orientation [29],
[33] and frames [30] so as to encode repetitive structures
in large Bayesian networks. Some of these proposals led to
a family of models referred to as Probabilistic Relational
Models [17]. We employ here the definitions proposed by
Getoor et al. [18]. Most of these definitions are conveyed by
a simple example; for instance, consider the simple diagram
about the University World in Figure 1.

The parvariables and their domains, and the associations
between objects in different domains, are the relational schema
of the PRM. A skeleton is an explicit specification of objects
for each domain, plus the explicit specification of pairs of ob-
jects that are associated across domains. For instance: suppose
in a practical scenario that course a is the one that appears in
registration b; then the pair (a, b) must appear in the skeleton.

Each parvariable is again associated with a template proba-
bility distribution. In the University World of Figure 1, we must
have P

(
Grade(z)|Difficulty(x),Tenacity(y)

)
, with the under-

standing that x and y are both associated uniquely through
registration z. Again, one may have to specify aggregation
functions when a parvariable depends on several groundings
of another parvariable. One example would be, as before, a par-
variable Ranking(y) depending on all groundings of Grade(z).
Hence the specification of a PRM is not entirely given by the
diagram of domains and parvariables; to guarantee that a PRM
is properly defined, one must check the properties of possible
skeletons, and specify template probabilities accordingly.

In an effort to make modeling assumptions explicitly, one
might consider using the machinery of Entity-Relationship
Diagrams. Indeed the DAPER language does exactly that [22].
As an example, in Figure 2 we have a DAPER diagram for
the University World.

Given a PRM and a skeleton, suppose one wishes to
compute probabilities or best explanations with respect to
the grounded Bayesian network. For instance, suppose one is
given the PRM in Figure 1, and domains {c1, c2} for Course,
{s1, s2, s3} for Student, and {r1, r2, r3, r4} for Registration.
Suppose student s1 registers in both courses, but s2 registers
only in c2 while s3 registers only in c1. The following
grounded Bayesian network is produced:

Difficulty(c1)

Difficulty(c2)

Grade(r1)

Grade(r2)

Grade(r3)

Grade(r4)

Tenacity(s1)

Tenacity(s2)

Tenacity(s3)

To compute probabilities or best explanations, one may
process the grounded Bayesian network, or perhaps exploit
repetitive structures [41]. In any case, inferences that focus on
properties of grounded networks are referred to as elementary
inferences [25].

Returning to modeling, one may be interested in constrain-
ing some of the relationships between objects; for instance, the
dependence of Grade on Tenacity may be present only if some
other relations exist. DAPER diagrams allow constraints based
on first-order logic to determine whether edges are present in
groundings of a diagram [22]. Moreover, it may be necessary to
allow recursive relationships. Indeed, this is the usual situation
in temporal modeling, where X(t) depends on X(t′) for t′ < t.
In fact, DAPER diagrams that encode Hidden Markov Models
have been proposed [22], where the relationship Next orders
time slices (hence the keyword ORDER):

Slice t Slice t + 1Next
ORDER

State(t)Observation(t) State(t + 1)

Another example where recursive behavior is important is
gene transmission. Consider the gene that determines blood
type. Here a person (the child) receives information from her
father and her mother. Both a PRM and a DAPER diagram
have been suggested for this setting [18], [22], as depicted in
Figure 3. These PRM and the DAPER models allow domains
to appear several times, if properly labeled. The DAPER
diagram can even resort to the keyword 2DAG to mean that
“each child has at most two parents and cannot be his or
her own ancestor.” As for the PRM, one may be interested
in marking the “is mother of” and “is father of” relations as
acyclic; in fact, if there were cycles in their groundings, there
would be no grounding into a valid Bayesian network. One
proposal in the literature [18] is to mark associations between
classes as guaranteed-acyclic (that means that there is no way
to reach any object from itself, by following this association),
and to associate colors to edges. Consider a graph where each
parvariable is a node, so that: If there is an edge between two

Person z

Gene(z)

Person x

Gene(x)

(Mother)
Person y

Gene(y)

(Father)

Person x
(Mother)

Person y
(Father)

Person z

Family 2DAG

Gene(z)

Gene(x)

Gene(y)

Fig. 3. The blood-type example.

parvariables whose enclosing classes are associated, then the
edge is green if the association is guaranteed-acyclic; if the
association is not guaranteed-acyclic, the edge is red. If the
resulting colored dependency graph is such that every cycle
contains at least a green edge and no red edge, then any
grounding of this PRM is a valid (that is, acyclic) Bayesian
network.

We have just defined the meaning of global consistency
checking in probabilistic relational models: given the descrip-
tion of a model, determine whether any given skeleton induce
a valid Bayesian network [25]. As noted later, the problem is
in general quite difficult.

III. NON-DIAGRAMMATIC SPECIFICATIONS

The use of diagrams to specify repetitive structures in
Bayesian networks is visually attractive. But a great deal of
syntax is needed for practical modeling, and the semantics is
not always transparent. Diagrams are sometimes too liberal;
for instance, by letting edge constraints be expressed through
sentences in first-order language [22], one cannot guarantee
decidability of global consistency checking.

To avoid such difficulties, it seems sensible to resort to
textual descriptions, by using formal languages to specify
probabilistic relational models. On the one hand, we wish to
adopt expressive languages; on the other hand, we would like
to handle a limited set of constructs, to simplify analysis.

As an example, one existing proposal is the Probabilistic
Relational Language (PRL) [19]. PRL offers a translation of
PRMs into logic programming constructs, so as to make the
grounding process unambiguous. PRL does not regulate the
specification of probability values (indeed, it allows “arbitrary
functional representations” for the conditional probability dis-
tributions [19, Section 3.3]). PRL divides the constructs into
logical background, probabilistic background, and probabilistic
dependency. The language uses predicates of varied arity to
encode both the conceptual scheme and the dependencies be-
tween random variables (expressed through logical functions).
Assumptions on the order of dependences are needed to obtain
globally consistent models; that is, to obtain models that can be
grounded into acyclic graphs. Results on complexity for PRL
do not seem to be available, and it seems that producing them
would be quite difficult given the intrincacies of the language.

Two other examples of formalisms that could be used to
encode PRMs are Logical Bayesian Networks (LBNs) [15]

and Bayesian Logic Programs (BLPs) [44]. Both distinguish
between logical predicates that specify the grounding into
graphs, and probabilistic or Bayesian predicates that encode
probabilistic entities. To illustrate, consider the following
Bayesian Logic Program example [44]:

carrier(x) | founder(x)

carrier(x) | mother(m,x), father(f, x), carrier(m), carrier(f)

suffers(x) | carrier(x)

where founder, mother and father are logical predicates while
carrier and suffers are Bayesian ones. There are several other
formalisms that move even closer to the syntax and semantics
of logic programming to specify Bayesian networks [40], [45];
we do not emphasize logic programming in this paper. Other
formalisms combine a functional style with probabilities [36],
[48], to produce languages that are very general and powerful
[16], [34]; one challenge then is that generality goes against
guarantees on decidability and inferential complexity.

There are also several formalisms that employ description
logics to specify Bayesian networks, often coupled with rela-
tional structures [9], [10], [13], [28]. Their goals are similar to
ours; in fact the work by Carvalho et al. offers a similar frame-
work to build (multi-entity) Bayesian networks through OWL
constructs [9]. The main difference is that we encode both the
skeletons and probabilities using the same constructs, and so
we can employ logical inference more broadly (we discuss this
matter later when we comment on inferences). Additionally,
there is also a large variety of probabilistic description logics
[32]; some of these logics do employ Bayesian networks [12]
to represent uncertainties (but do not necessarily use the logic
to specify the networks).

Another notable formalism in which PRMs can be ex-
pressed consists of Recursive Relational Bayesian Networks
(RRBNs), where probability values are specified using a func-
tional style [23], [24]. RRBNs are defined with a relatively
small set of constructs, so that a solid semantics can be given
without difficulties. Because the semantics of RRBNs is the
semantics we adopt for our own relational expressions, we
briefly summarize here the main concepts behing RRBNs.

Basically, a RRBN consists of two relational vocabularies,
plus a set of probability formulas. One vocabulary, called
the guard vocabulary, contains the guard relations; that is,
the relations whose interpretation is assumed to be given in
any particular application [27]. Guard relations specify the
skeleton of the PRM.1 The second vocabulary, the parvariable
vocabulary, consists of relations whose interpretations are
to receive probabilities (these are the probabilistic relations
in LBNs). To connect to our previous examples: as guard
vocabulary, one may use unary relations that denote classes
(such as Course, Student, etc), and binary relations that
denote associations (such as the association between Course
and Registration). And Difficulty, Grade, and Tenacity, to be
associated with probabilities, are the parvariable relations.

To specify a RRBN, one must give, for each parvariable
r(−→x), a probability formula with free logvars in −→x (we use

1We note that in their most recent textbook presentation [27], PRMs are
just depicted as Bayesian networks where nodes are relations, in drawings that
can be directly translated into RRBNs. The term “guard relation” is in fact
borrowed from that presentation, not from the work on RRBNs.

−→x to denote a vector of logvars). Each probability formula
specifies a template probability distribution r(−→x) given some
other relations: if a probability formula associated with relation
r contains relations s1, . . . , sm, then s1, . . . , sm are the parents
of r, and are denoted by PA[r]. Given a particular interpretation
for r and its parents, the corresponding probability formula
yields a real number in [0, 1].

Jaeger’s original proposal was to have a small set of ways
in which one can define probability formulas, to simplify
their elicitation and analysis. A probability formula F (−→x)
can be specified (recursively) in four different ways. First,
a single number in [0, 1] is a probability formula. Second,
an atom is a probability formula, where an atom is simply
a relation s(−→y), with its associated logvars −→y . Third, an
expression F1F2 + (1 − F1)F3, where F1, F2 and F3 are
probability formulas, is a probability formula. Fourth, to allow
parents to be associated with additional logvars, Jaeger intro-
duced combination functions: such a function takes a multiset
of numbers in [0, 1] and returns a single number in [0, 1].
The idea is that a probability formula may have the form
f(F1, . . . , Fk|Γ), where f is a combination function, the Fi are
probability formulas with logvars in −→x ∪−→y , and Γ is a formula
that consists of Boolean operations on relations in the guard
vocabulary plus equality of logvars (that is, expressions such
as x = y). The idea is that one will take every −→y that satisfies
Γ; for each one of them, each Fi will produce a number, and
finally all of those numbers will produce a single probability
value through f [23], [24].

The intended semantics is that each probability formula
F (−→x) yields

P
(
r(−→x) = true|PA[r](−→x ,−→y)

)
= F (−→x).

Informally: each grounding of −→x , as each logvar runs over a
domain, produces a probabilistic assessment for r given the
parents of r (with the implicit understanding that F contains
logvars in −→x ∪ −→y). As an example, consider the University
World, where we have the parvariable Tenacity(y). As we are
now restricted to relations, we should interpret Tenacity(y) for
instance as indicating whether tenacity is high (true) or low
(false). Likewise, we might interpret Grade(x , y) as indicating
whether grades are high (true) or low (false). In any case, for
the University World we could write

P(D(x) = true) = α1,
P
(
T(y) = true

)
= α2,

P
(
G(x , y) = true|D(x),T(y)

)
=

(α3D(x) + α4(1− D(x)))T(y)+
(α5D(x) + α6(1− D(x)))(1− T(y)),

using D(x) for Difficulty(x), T(y) for Tenacity(y), and
G(x , y) for Grade(x , y). The first probability formula, equal
to α1, means that any grounding of x , say to element a, yields
an assessment P(D(a) = true) = α1. Note that D(a) is inter-
preted as a random variable over the set of interpretations for
all relations; hence the assessment can be read as: probability
α1 is assigned to the set of interpretations such that D(a) is
true. The third formula above encodes a conditional probability
table for any grounding P(G(a, b) = true|D(a),T(b)). Again,
T(b) a random variable over all interpretations; similarly, D(a)
and G(a, b) are random variables over all interpretations, for
any selected elements a and b. We can thus read the probability

formula as specifying, for instance, that probability α3 is
assigned to the set of interpretations such that G(a, b) given
the set of interpretations where D(a) and T(b) are true. Even
though this example does not contain combination functions,
the latter are used similarly, to produce probability values for
each grounding of corresponding logvars.

By grounding each probability formula, we obtain a di-
rected graph that, if acyclic, defines a unique Bayesian net-
work. This Bayesian network is the semantics of the RRBN.
Now it may be the case that by grounding the RRBN we obtain
cycles; in this case the RRBN is not globally consistent.

IV. PRM SPECIFICATION BASED ON DESCRIPTION
LOGICS

One wonders whether a convenient scheme for PRM can
be found, where syntax and semantics are relatively easy
to grasp, and yet based on solid formalization. With such
a formalism, one can comfortably specify models and have
them analyzed automatically by suitable inference tools. Even
though diagrams are usually elegant, they are not always
transparent semantically; even though textual languages are
usually solid, they are often difficult to digest.

Our purpose in this paper is to propose a specification
framework for probabilistic relational models that is both solid
and simple. We pursue a unified strategy where conceptual
modeling and uncertainty management are expressed using the
same set of constructs from description logics. In a sense, we
wish to bring probabilistic relational modeling up to date with
description logic technologies developed during the last decade
or so.

A. Conceptual modeling

As far as conceptual modeling is concerned, even relatively
basic description logics can represent fairly sophisticated dia-
grams with entities and relationships. Logics such as DL-Lite
[6] already capture some diagrams, and variants of the popular
logic ALC [47] can even cover most features of UML class
diagrams [3] and conceptual graphs [46]. Before we proceed,
we spend two paragraphs on basic syntax and semantics for
description logics.

Typically a description logic deals with individuals
(a, b, . . .), concepts (C,D, . . .), and roles (r, s, . . .). There
are vocabularies containing the names of individuals, concepts
and roles (the names in these vocabularies refer to basic
individuals, concepts and roles). Concepts and roles can be
combined to form new concepts using a set of constructors:
intersection (CuD), union (CtD), complement (¬C), existen-
tial restriction (∃r.C), and value restriction (∀r.C). The logic
ALC adopts all of these constructs [47]. Many description
logics denote by r− the inverse role of r. Moreover, concept
inclusions/definitions are denoted respectively by C v D and
C ≡ D, where C and D are concepts. Concept C t ¬C
is denoted by >, and concept C u ¬C is denoted by ⊥.
Restrictions ∃r.> and ∀r.> are abbreviated by ∃r and ∀r
respectively. A set of concept inclusions and definitions is a
terminology. If an inclusion/definition contains a concept C
in its left hand side and a concept D in its right hand side,
C directly uses D. Indicate the transitive closure of directly
uses by uses. A terminology is acyclic if it is a set of concept

inclusions/definitions such that no concept in the terminology
uses itself [1].

The semantics of the constructs in the previous paragraph is
as follows. Take a nonempty set D, the domain, and a mapping
I, the interpretation. An interpretation I maps each individual
to an element of the domain, each concept name to a subset
of the domain, each role name to a binary relation on D ×
D. An interpretation is extended to other concepts as follows:
(¬C)I = D\(C)I , (C u D)I = (C)I ∩ (D)I , (C t D)I =
(C)I∪(D)I , (∃r.C)I = {x ∈ D|∃y ∈ D : (x, y) ∈ (r)I∧y ∈
(C)I}, (∀r.C)I = {x ∈ D|∀y ∈ D : (x, y) ∈ (r)I → y ∈
(C)I}. Also, r− is a role such that (x, y) ∈ (r−)I if and only
if (y, x) ∈ (r)I . We have C v D if and only if (C)I ⊆ (D)I ;
and C ≡ D if and only if (C)I = (D)I .

Consider for instance the University World. We have con-
cepts Course and Student. We should state that these concepts
are disjoint:

Course v ¬Student.

In fact the disjointness of concepts is such a common circum-
stance, that many description logics have keywords to indicate
disjointness [2]. Next we have the relationship Registration, as
depicted in Figure 2. We might introduce a role Registration,
to connect the other two concepts. However, if we continue
with the modeling process, we see that such a strategy is
not adequate. To understand the problem, consider now the
grade associated with a registration. To associate a particular
grade with a particular registration, we would need a ternary
relation; this would move us away from most description
logics, and possibly into undecidability problems. To keep
matters manageable, we must treat Registration as a concept,
and treat its associations with other guards as roles. This is
indeed an example of reification, where a n-ary relation is
attached to a concept, and broken down into a number of roles
[4, Section 10.6.1].2 In any case, we must encode the following
diagram:

RegistrationCourse Student

Start by declaring concepts Course, Student and Registra-
tion to be disjoint. Now introduce roles registration-student
and registration-course, and adopt the following inclusions,
where we use obvious abbreviations to save space:

Registration v (∀r-c.C) u (∃r-c) u (∀r-s.S) u (∃r-s) ,

Student v
(
∀r-s−.R

)
u
(
∃r-s−

)
,

Course v
(
∀r-c−.R

)
u
(
∃r-c−

)
.

Any interpretation for this terminology is then a valid skeleton
for the underlying probabilistic relational model.3

To refine the conceptual model even further, we can use
number restrictions. Consider the construct (≥ nr.C), where
n is a non-negative integer, r is a role, and C is a concept.
The semantics of (≥ n : r.C)I is given by the set

{x ∈ D : |{y ∈ D : (x, y) ∈ rI ∧ y ∈ CI}| ≥ n},
2This strategy is actually recommend by the W3C in their report “Defining

N-ary Relations on the Semantic Web”, at http://www.w3.org/TR/2006/NOTE-
swbp-n-aryRelations-20060412/.

3Note that domain and range restrictions often used in description logics
would be useful in this example, as suggested to us by a reviewer.

where | · | returns cardinality of a set. Informally (≥ nr.C)
is the subset of the domain containing elements with no less
than n links (through role r) to elements in the concept C. We
also use, when needed, obviously derived constructs such as
(< nr.C), (= nr.C), and so on. Note that number restrictions
are syntactic variants of counting quantifiers [31], and we can
read them as ∃≥nr.C, ∃<nr.C, and so on.

To illustrate number restrictions for conceptual modeling,
suppose we wish to enforce that a registration must be associ-
ated with a single student and a single course, while a course
can have at most 50 students, and a student can attend at most
8 courses. Using UML notation to express cardinalities:

RegistrationCourse Student
1

1..50

1

1..8

To encode this diagram, write:

Registration v (∀r-c.C) u (=1r-c) u (∀r-s.S) u (=1r-s) ,

Student v
(
∀r-s−.R

)
u
(
∃r-s−

)
u
(
≤ 8 r-s−

)
,

Course v
(
∀r-c−.R

)
u
(
∃r-c−

)
u
(
≤ 50 r-c−

)
.

B. Probabilistic modeling

Consider now the parvariables and their template probabil-
ities. Our first problem is the ontological status of parvari-
ables. Take parvariable Tenacity; is it a unary or a binary
relation? If we take tenacity as a concept, then by writing
Tenacity v Student we say that some of the a ∈ D that are
students, are also “tenacities”. This seems incorrect, as tenacity
is a property of a student.

Our solution is to encode each parvariable through a
pair role-concept. For instance, we take student-tenacity to
connect a particular student with its tenacity. And then we
introduce a concept that represents the parvariable itself; in
this example, we might call it Tenacity. The idea is that each
element of the domain that belongs to Student is associated
with an element of the domain that is the corresponding
tenacity.

In the University World, we must encode the following
diagram, where all concepts are disjoint:

RegistrationCourse Student
1

1..50

1

1..8

GradeDifficulty Tenacity

1
1

1
1

1
1

To do so, we introduce not only the role student-tenacity,
but also course-difficulty and registration-grade. The follow-
ing inclusions convey the whole conceptual model (using some
obvious abbreviations):

R v (∀r-c.C) u (= 1r-c) u (∀r-s.S) u (= 1r-s) u
(∀r-g.G) u (= 1r-g) ,

S v
(
∀r-s−.R

)
u
(
∃r-s−

)
u
(
≤ 8 r-s−

)
u

(∀s-t.T) u (= 1s-t) ,
C v

(
∀r-c−.R

)
u
(
∃r-c−

)
u
(
≤ 50 r-c−

)
u

(∀c-d.D) u (= 1c-d) ,

G v
(
∀r-g−.R

)
u
(
= 1r-g−

)
,

T v
(
∀s-t−.S

)
u
(
= 1s-t−

)
,

D v
(
∀c-d−.C

)
u
(
= 1c-d−

)
,

We refer to the set of guard relations as the guard termi-
nology; we do not require this terminology to be acyclic as it
simply describes constraints that any skeleton is supposed to
satisfy in our model. We note that all constructs discussed so
far belong to the description logic ALCQI; that is, ALC with
inverse roles and number restrictions [8]. Typical inference
services, like satisfiability and subsumption, have been studied
for this logic, and have their decidability and complexity well
mapped. In particular, general satisfiability and subsumption
in ALCQI are EXP-complete problems [49].

We now examine the second issue concerning parvariables;
namely, how to specify template probabilities for them. One
possibility is to develop another language in which to express
such templates. Instead, our proposal is to express dependences
and probabilities again through description logics.

To do so, we resort to a functional specification of proba-
bilities, a specification strategy that has been advocated for
Bayesian networks for quite some time [42]. A functional
specification can capture any probability distribution, and at
the same time it can expose conditional independences betwen
events (that is, “local structure” in conditional probabilities
[27]). Functional specifications restricted to logical languages
have been used to investigate the relationship between ex-
pressivity and complexity in Bayesian networks [11], and
general functional networks are the basis of significant work
on causality [39, Section 1.4].

The idea is easily explained in the propositional setting.
Suppose we have three propositions A,B,C. Each proposition
is associated with a random variable that yields 1 if the
proposition is true, and 0 otherwise; to simplify the notation,
we refer to a proposition and to its associated random variable
by the same letter. Suppose additionally we have the Bayesian
network A→ C ← B. We must specify P(A = a), P(B = b),
and P(C = c|A = a,B = b) for all possible (a, b, c). It is easy
enough to specify P(A = a): a single real number in [0, 1] will
do. Similarly, it is easy to specify P(B = b). Now to specify
P(C = c|A = a,B = b), we might write down a table. Instead,
we might write

C ⇔ (A∧B∧C ′1)∨(A∧¬B∧C ′2)∨(¬A∧B∧C ′3)∨(¬A∧¬B∧C ′4),

where the C ′i are auxiliary binary random variables, each
associated with a simple assessment P(C ′i = 1) = αi (these
auxiliary variables are often called “independent choices”
[42]). Any propositional Bayesian network can be encoded this
way. Special cases are easily handled: if C is a conjunction of
A and B, we just write C ⇔ A ∧B.

We can directly transfer the discussion in the previous
paragraph to the relational setting, where we are interested
in template probabilities. So, with relation r(−→x) we may
associate the template assessment P

(
r(−→x)

)
= α, meaning that

P(r(−→a)) = α for all instantiations −→a of −→x . Note that here
we are implicitly equating a grounding r(−→a) with a random
variable that yields 1 if r(−→a) is true and 0 otherwise. Of
course, we can also apply this to sentences formed out of
description logic constructs.

To illustrate, a possible specification in the University
World is

Grade(x , y)⇔ Choice ∧ ¬Difficulty(x) ∧ Tenacity(y), (1)

to mean that a high grade is attained when the course is easy
and the student’s tenacity is high, provided that the independent
choice Choice is true (and we might add for instance that
P(Choice) = 0.9).

Our idea is to use functional specifications, where all
formulas belong to description logics. Note that we must use
the skeleton to build the right links between parvariables.
Basically, we must “travel” through the associations in the
conceptual model; again, this is best understood by taking our
University World example. Here is the functional specification
in first-order logic, where g , r , s , t , c and d run respectively
over the (disjoint) domains for grades, registrations, students,
tenacities, courses, and dedications:

G(g) ⇔ Choice ∧
¬
(
∀r : r-g(r , g)→(∀c : r-c(r , c)→(∀d :c-d(c, d)→D(d))

)
∧
(
∀r : r-g(r , g)→(∀s : r-s(r , s)→(∀t :s-t(s , t)→T(t))

)
.

This is clearly too long for easy reading; the version in
ALCQI is much cleaner:

G ≡ Choice ∧ ¬
(
∀r-g−. (∀r-c. (∀c-d.D))

)
u(

∀r-g−. (∀r-s. (∀s-t.T))
)
.

In fact, we can write a shorter specification if we allow
role composition; that is, if we allow the symbol r ◦ s to be
used, meaning composition of relations [8]. Then we have:

G ≡ Choice u ¬
(
∀r-g− ◦ r-c ◦ c-d.D

)
u
(
∀r-g− ◦ r-s ◦ s-t.T

)
.

To write these expressions, one must look at the conceptual
model, and write down the “path” between the concept in the
left hand side and any other concept in the right hand side.
For instance, the path from Grade to Difficulty goes through
the inverse of r-g, then through r-c, and finally through c-d.

Even though a textual description always carries a precise
specification of conceptual and probabilistic modeling, in this
example we may even draw a pleasant diagram that visually
conveys the description:

RegistrationCourse Student
1

1..50

1

1..8

GradeDifficulty Tenacity

1
1

1
1

1
1

At this point we have all facilities of RRBNs at our dis-
posal, except one: in RRBNs one can have equality of logvars,
with expressions such as x = y or even ¬(x = y). These
constraints can be expressed using identity roles and Boolean
operations on roles [5]. An identity role id(C), where C is a
concept, is a role with semantics {(x, x) ∈ D ×D : x ∈ CI}
[35]; the negation of such a role creates a “difference” operator.
Even though the interaction amongst all these constructs leads
to a decidable fragment of first-order logic [43], refined
algorithms for logical inference with them do not seem to be

available, so we do not emphasize equality handling in this
paper.

To summarize: we use a functional specification, where
each parvariable is either associated with a basic unconditional
probabilistic assessment, or a formula in a suitable description
logic. Presumably such a logic will have Boolean operators,
some quantification and numeric restrictions, plus inverses
(and the identity role). The description logic ALCQIreg
offers all of these constructs (and others), with EXP-complete
complexity for typical inference services [8, Theorem 5.16].

C. Inference

Once a PRM is specified through the process here pro-
posed, one has a guard vocabulary, and a guard terminol-
ogy, that specify the possible skeletons; and a parvariable
vocabulary, together with a funcional specification of template
probabilities.

One advantage of adopting description logics to specify
both skeletons and probabilities is that one can run logical
inferences to verify consistency of conceptual modeling, sub-
sumption of concepts, satisfiability of datasets. The immense
body of knowledge on these matters can be used without
difficulty. Logical inference is just available, if needed.

However, presumably someone interested in building a
PRM is actually interested in probabilistic forms of inference.
We must distinguish between elementary inference and global
consistency.

Suppose a PRM is specified, and guards are fixed so that a
skeleton is given. If the resulting grounded network is cyclic,
the model and guards are inconsistent. If instead the grounded
network is acyclic, then one can run any Bayesian network
inference algorithm there [27]. Or perhaps one can operate
directly over repetitive structures, running lifted inference [41],
[50]. The complexity of such inferences have received some
attention [11], [26]. Consider the problem of computing the
probability of a grounding given a set of other groundings.
Existing results for relational Bayesian networks show that,
except for very simple languages, this problem is #P-complete
as long as domains are given explicitly, if all relations have
bounded arity [11]. Given that in description logics all re-
lations are either unary or binary, these results apply to the
specification languages discussed in this paper.

Much less explored is the problem of global consistency
checking. One should note that global consistency checking is
important in several circumstances. For instance, to deal with
structural uncertainty (that is, uncertainty about guard relations
[18]), one must be able to discard models that are not globally
consistent. As another example, to learn PRMs from data, one
must be able to search within the space of globally consistent
models.

As noted previously, some simple cases of global consis-
tency checking are dealt with by coloring arcs in different ways
[18]. However, the problem of deciding whether a specified
PRM is consistent is in general quite difficult, and mostly
open. Jaeger has discussed this problem in connection with
RRBNs [25], but his analysis focuses on rather expressive
models for which consistency checking is undecidable. Jaeger

conjectures that simpler languages might allow decidable con-
sistency checking. One potential advantage of our approach
is that description logics do have constructs in which to ex-
press transitive closure and, consequently, acyclicity [20]. For
instance, consider expressing that associations in the Blood-
Type example (Figure 3) do not produce cycles. We can write,
in the guard terminology:

Founder v Person u ∀motherOf−.⊥ u ∀fatherOf−.⊥,
Person v (∀motherOf−.Person) u (≤ 1motherOf−) u

(∀fatherOf−.Person) u (≤ 1fatherOf−) u
(∃(motherOf−)+.Founder) u
(∃(fatherOf−)+.Founder),

where the superscript + denotes transitive closure. In fact,
relatively simple sentences can express cycles in a logic with
the identity role and role operators, as long as transitive closure
is available [35].

As transitive closure cannot be expresed in the two-variable
fragment of first-order logic [31], decidability might be a
concern. However, a description logic with all constructs
of ALCQIreg plus transitive-reflexive closure is still de-
cidable [7], [37]; indeed, decidability has been established
for even more expressive logics with transitive closure [14].
We leave for the future an exploration of this topic, but
we conjecture that several expressive description logics (with
transitive closure) will lead to decidable global consistency
checking.

V. CONCLUSION

We have presented a modeling process for probabilistic
relational models. Because we resort to description logics, we
benefit from their solid semantics, and from results concerning
expressivity and complexity. Moreover, and very importantly in
practice, our modeling process can be directly used in ontology
building packages. Compared to existing graphical languages
(such as DAPER diagrams), our formalism is more controlled
and easier to formalize; compared to existing textual languages
(such as RBBNs), our formalism is based on well-known
constructs from description logics that are more convenient
to anyone interested in knowledge representation.

We plan, in our future work, to develop algorithms both
for elementary inference and global consistency checking.
Hopefully we will benefit from the relational structure to run
lifted forms of elementary inference, and we will be able to use
transitive closure to obtain automatic checking of acyclicity for
grounded networks.

In fact, we would like to stress that global consistency
checking is a logical inference problem: given a model, are
cycles impossible? For such a problem to be dealt with, one
must use a modeling language that allows such a question to
be asked. This is a point where our framework is distinguished
from other efforts: by staying within a logical formalism, we
can concretely discuss, and hope to solve, global consistency
checking.

ACKNOWLEDGEMENTS

The first author was partially supported by CNPq and the
second author was partially supported by FAPESP.

REFERENCES

[1] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-
Schneider, Description Logic Handbook. Cambridge Univ. Press, 2002.

[2] F. Baader and W. Nutt, “Basic description logics,” in Description Logic
Handbook. Cambridge Univ. Press, 2002, pp. 47–100.

[3] D. Berardi, D. Calvanese, and G. D. Giacomo, “Reasoning on UML
class diagrams,” Artificial Intelligence, vol. 68, pp. 70–118, 2005.

[4] A. Borgida and R. J. Brachman, “Conceptual modeling with description
logics,” in Description Logic Handbook. Cambridge Univ. Press, 2003,
pp. 359–381.

[5] A. Borgida, “On the relative expressiveness of description logics and
predicate logics,” Artificial Intelligence, vol. 82, no. 1-2, pp. 353–367,
1996.

[6] D. Calvanese, G. D. Giacomo, D. Lembo, M. Lenzerini, and R. Rosati,
“DL-Lite: Tractable description logics for ontologies,” in AAAI, 2005,
pp. 602–607.

[7] D. Calvanese, T. Eiter, and M. Ortiz, “Regular path queries in expressive
description logics with nominals,” in Int. Joint Conf. on Artificial
Intelligence, 2009, pp. 714–720.

[8] D. Calvanese and G. D. Giacomo, “Expressive description logics,” in
Description Logic Handbook. Cambridge Univ. Press, 2003, pp. 184–
225.

[9] R. N. Carvalho, K. B. Laskey, and P. C. Costa, “PR-OWL 2.0 —
bridging the gap to OWL semantics,” in URSW 2008-2010/UniDL 2010,
LNAI 7123, 2013, pp. 1–18.

[10] P. C. G. Costa and K. B. Laskey, “PR-OWL: A framework for
probabilistic ontologies,” in Conf. on Formal Ontology in Information
Systems, 2006.

[11] F. G. Cozman and D. D. Mauá, “Bayesian networks specified using
propositional and relational constructs: Combined, data, and domain
complexity,” in AAAI Conf. on Artificial Intelligence, 2015.

[12] C. d’Amato, N. Fanizzi, and T. Lukasiewicz, “Tractable reasoning with
Bayesian description logics,” in Int. Conf. on Scalable Uncertainty
Management, S. Greco and T. Lukasiewicz, Eds., vol. 5291. Springer,
2008, pp. 146–159.

[13] Z. Ding, Y. Peng, and R. Pan, “BayesOWL: Uncertainty modeling in se-
mantic web ontologies,” in Soft Computing in Ontologies and Semantic
Web, ser. Studies in Fuzziness and Soft Computing. Berlin/Heidelberg:
Springer, 2006, vol. 204, pp. 3–29.

[14] C. L. Duc, M. Lamolle, and O. Cure, “SHOIQ with transitive closure
of roles is decidable,” in Description Logics, 2013, pp. 735–746.

[15] D. Fierens, H. Blockeel, M. Bruynooghe, and J. Ramon, “Logical
Bayesian networks and their relation to other probabilistic logical
models,” in Int. Conf. on Inductive Logic Programming, 2005, pp. 121–
135.

[16] D. Fierens, G. van den Broeck, J. Renkens, D. Shrerionov, B. Gutmann,
G. Janssens, and L. de Raedt, “Inference and learning in probabilistic
logic programs using weighted Boolean formulas,” Theory and Practice
of Logic Programming, vol. 15, pp. 358–401, 2014.

[17] N. Friedman, L. Getoor, D. Koller, and A. Pfeffer, “Learning proba-
bilistic relational models,” in Int. Joint Conf. on Artificial Intelligence,
1999, pp. 1300–1309.

[18] L. Getoor, N. Friedman, D. Koller, A. Pfeffer, and B. Taskar, “Prob-
abilistic relational models,” in Introduction to Statistical Relational
Learning, 2007.

[19] L. Getoor and J. Grant, “PRL: A probabilistic relational language,”
Machine Learning, vol. 62, pp. 7–31, 2006.

[20] G. D. Giacomo and M. Lenzerini, “TBox and ABox reasoning in
expressive description logics,” in Knowledge Representation, 1996, pp.
316–327.

[21] W. Gilks, A. Thomas, and D. Spiegelhalter, “A language and program
for complex Bayesian modelling,” The Statistician, vol. 43, pp. 169–
178, 1993.

[22] D. Heckerman, C. Meek, and D. Koller, “Probabilistic entity-
relationship models, PRMs, and plate models,” in Introduction to
Statistical Relational Learning, L. Getoor and B. Taskar, Eds. MIT
Press, 2007, pp. 201–238.

[23] M. Jaeger, “Relational Bayesian networks,” in Conf. on Uncertainty in
Artificial Intelligence, D. Geiger and P. P. Shenoy, Eds. San Francisco,
California: Morgan Kaufmann, 1997, pp. 266–273.

[24] ——, “Complex probabilistic modeling with recursive relational
Bayesian networks,” Annals of Mathematics and Artificial Intelligence,
vol. 32, pp. 179–220, 2001.

[25] ——, “Relational Bayesian networks: a survey,” Linkoping Electronic
Articles in Computer and Information Science, vol. 6, 2002.

[26] M. Jaeger and G. V. D. Broeck, “Liftability of probabilistic inference:
Upper and lower bounds,” in 2nd Statistical Relational AI (StaRAI-12)
Workshop, 2012.

[27] D. Koller and N. Friedman, Probabilistic Graphical Models: Principles
and Techniques. MIT Press, 2009.

[28] D. Koller, A. Y. Levy, and A. Pfeffer, “P-CLASSIC: A tractable
probablistic description logic,” in AAAI, 1997, pp. 390–397.

[29] D. Koller and A. Pfeffer, “Object-oriented Bayesian networks,” in Conf.
on Uncertainty in Artificial Intelligence, 1997, pp. 302–313.

[30] ——, “Probabilistic frame-based systems,” in National Conf. on Artifi-
cial Intelligence (AAAI), 1998, pp. 580–587.

[31] L. Libkin, Elements of Finite Model Theory. Springer, 2004.
[32] T. Lukasiewicz, “Expressive probabilistic description logics,” Artificial

Intelligence, vol. 172, no. 6-7, pp. 852–883, April 2008.
[33] S. Mahoney and K. B. Laskey, “Network engineering for complex belief

networks,” in Conf. on Uncertainty in Artificial Intelligence, 1996.
[34] V. Mansinghka and A. Radul, “CoreVenture: a high-level, reflective

machine language for probabilistic programming,” in NIPS Workshop
on Probabilistic Programming, 2014.

[35] F. Massacci, “Decision procedures for expressive description logics with
intersection, composition, converse of roles and role identity,” in IJCAI,
2001, pp. 193–198.

[36] B. Milch, B. Marthi, D. Sontag, S. Russell, D. L. Ong, and A. Kolobov,
“BLOG: Probabilistic models with unknown objects,” in IJCAI, 2005.

[37] M. Ortiz, “An automata-based algorithm for description logics around
SRIQ,” in LANMR, 2008.

[38] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. San Mateo, California: Morgan Kaufmann, 1988.

[39] ——, Causality: Models, Reasoning, and Inference. Cambridge, United
Kingdom: Cambridge Univ. Press, 2000.

[40] D. Poole, “The independent choice logic for modelling multiple agents
under uncertainty,” Artificial Intelligence, vol. 94(1/2), pp. 7–56, 1997.

[41] ——, “First-order probabilistic inference,” in Int. Joint Conf. on Artifi-
cial Intelligence (IJCAI), 2003, pp. 985–991.

[42] ——, “Probabilistic programming languages: Independent choices and
deterministic systems,” in Heuristics, Probability and Causality — A
Tribute to Judea Pearl, R. Dechter, H. Geffner, and J. Y. Halpern, Eds.,
2010, pp. 253–269.

[43] I. Pratt-Hartmann, “Complexity of the two-variable fragment with
counting quantifiers,” Journal of Logic, Language and Information,
vol. 14, no. 3, pp. 369–395, 2005.

[44] L. D. Raedt and K. Kersting, “Probabilistic inductive logic program-
ming,” in Int. Conf. on Algorithmic Learning Theory, 2004, p. 19-36.

[45] T. Sato and Y. Kameya, “Parameter learning of logic programs for
symbolic-statistical modeling,” Journal of Artificial Intelligence Re-
search, vol. 15, pp. 391–454, 2001.

[46] U. Sattler, D. Calvanese, and R. Molitor, “Relationship with other
formalisms,” in Description Logic Handbook. Cambridge Univ. Press,
2003, pp. 142–183.

[47] M. Schmidt-Schauss and G. Smolka, “Attributive concept descriptions
with complements,” Artificial Intelligence, vol. 48, pp. 1–26, 1991.

[48] M. Tenorth and M. Beetz, “KnowRob: A knowledge processing in-
frastructure for cognition-enabled robots,” The Int. Journal of Robotics
Research, vol. 32, no. 5, pp. 566–590, 2013.

[49] S. Tobies, “The complexity of reasoning with cardinality restrictions
and nominals in expressive description logics,” Journal of Artificial
Intelligence Research, vol. 12, pp. 199–217, 2000.

[50] G. van den Broeck, “On the completeness of first-order knowledge
compilation for lifted probabilistic inference,” in Neural Processing
Information Systems, 2011.

