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Abstract. This paper investigates the properties of cyclic probabilistic normal
logic programs, consisting of rules and a set of independent probabilistic facts,
under the well-founded semantics. That is, we assume that for each fixed truth
assignment for the probabilistic facts, the resulting normal logic program is
interpreted through the well-founded semantics. We derive results concerning
the complexity of inference, and discuss the challenging interplay between three-
valued assignments and probabilities.

1. Introduction
In this paper we focus on the combination of logic programs with probabilities. We focus
on normal logic programs; that is, on sets of rules that may containing negation as failure,
such as:

sleep :− not work,not insomnia. (1)

We assume that there is a set of probabilistic facts; that is, some facts, such as insomnia,
are associated with probabilities. For instance,

P(insomnia = true) = 0.3.

The probabilistic facts are assumed independent, hence there is a probability measure over
all of them, and this probability measure can be extended to all atoms of the program in
a variety of cases. This is the sort of probabilistic logic program originally proposed by
Sato [27, 28] and by Poole [21, 22]. In fact, Sato focused on definite programs (that is,
without negation), and Poole focused on acyclic programs (that is, no atom depends on
itself). There have been a few attempts to extend these original efforts into programs that
contain negation and cycles [16, 15, 29, 24]. To understand this combination, suppose
that we add to Expression (1) the following rule:

work :− not sleep. (2)

With probability 0.3, we have that insomnia is true, and then sleep is false and work is
true. This is simple enough. But with probability 0.7, we have that insomnia is false, and
then the remaining two rules create a cycle: sleep depends on work and vice-versa. The
question is how to interpret the whole probabilistic logic program.

One possible way to interpret cyclic probabilistic logic normal programs is to use
the well-founded semantics whenever the truth assignment for the probabilistic facts is
fixed [15]. This is the approach we follow here. We derive the complexity of inferences
for propositional and relational programs (where an inference is the computation of the
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probability for grounded atoms) in Section 4. We also examine the interplay between the
three-valued assignments that are employed in well-founded semantics and the meaning
of probabilities. In particular, we discuss some difficulties in interpreting conditioning
and evidence in the presence of three-valued assignments (Section 5). We summarize our
conclusions in Section 6.

2. Background: normal logic programs and the well-founded semantics

An atom is written as r(t1, . . . , tk), where r is a predicate and each ti is a term (a constant
or a logical variable). A normal logic program is a finite set of rules such as

A0 :− A1, . . . , Am,not Am+1, . . . ,not An.

where each Ai is an atom. Atom A0 is the head; the right hand side is the body. The body
consists of a set of subgoals separated by commas (A1 is a subgoal, not An is a subgoal).
If there are no subgoals, the rule is called a fact and written simply as A0.. Following
Prolog’s notation, a logical variable is always capitalized. Some normal logic programs
do not contain not; they are definite. An atom is ground if it does not contain any logical
variable; a program without logical variables is propositional. The Herbrand base of a
program is the set of all ground atoms build from constants and predicates mentioned in
the program. By grounding every rule using atoms in the Herbrand base, we obtain the
(propositional) grounding of a (possibly non-propositional) normal logic program. The
grounded dependency graph of a normal logic program is a directed graph where each
grounded predicate is a node, and where there is an edge from node B to node C if there
is a grounded rule whereC appears in the head andB appears in the body; ifB is preceded
by not in any such rule, then the edge between B and C is negative.

Functions are not included in rules in this paper; we assume function-free (that is,
relational) programs so that every Herbrand base is finite.

A literal L is either an atom A or a negated atom ¬A. A set of literals is inconsis-
tent if A and ¬A belong to it. Given a normal logic program P, a partial interpretation
is a consistent set of literals whose atoms belong to the Herbrand base of P. An inter-
pretation is a consistent set of literals such that every atom in the Herbrand base appears
in a literal. An atom is true (resp., false) in a (partial) interpretation if it appears in a
non-negated (resp., negated) literal. A grounded rule is satisfied in a partial interpretation
if its head is true in the interpretation, or any of its subgoals is false in the interpretation
— a subgoal is true in an interpretation if it is an atom A and A belongs to the interpre-
tation, or the subgoal is not A and ¬A belongs to the interpretation. A model of P is an
interpretation such that every grounding of a rule in P is satisfied. A minimal model of P
is a model with minimum number of non-negated literals.

Now consider the semantics of normal logic programs. There are many proposals
in the literature; however, currently there are two definitions that have received most
attention: the stable model [14] and the well-founded [31] semantics. We now describe
these semantics; alas, their definition is not simple.

Consider first the well-founded semantics. Given a subset U of the Herbrand base
of a program, and a partial interpretation I, say that an atom A is unfounded with respect
to U and I if for each grounded rule whose head is A, we have that (i) some subgoal
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Ai or not Ai is false in I, or (ii) some subgoal that is an atom Ai is in U . Now say
that a subset U of the Herbrand base is an unfounded set with respect to interpretation I
if each atom in U is unfounded with respect to U and I. This is a complex definition:
roughly, it means that, for each possible rule that we might apply to obtain A, either the
rule cannot be used (given I), or there is no atom in U that can be first shown to be true,
as any such derivation depends on other atoms in U . Now, given normal logic program
P, define TP(I) to be a transformation that takes interpretation I and returns another
interpretation. Define: A ∈ TP(I) iff there is some grounded rule with head A such that
every subgoal in the body is true in I. Also define UP(I) to be the greatest unfounded set
with respect to I (there is always such a greatest set). Define WP(I) = TP(I)∪¬UP(I),
where the notation ¬UP(I) means that we take each literal in UP(I) and negate it (that
is, A becomes ¬A; ¬A becomes A). Intuitively, TP is what we can “easily prove to be
positive” and UP is what we can “easily prove to be negative”.

Finally: the well-founded semantics of P is the least fixed point of WP(I); this
fixed point always exists. That is, apply Ii+1 = WP(Ii), starting from I0 = ∅, until it
stabilizes; the resulting interpretation is the well-founded model. The iteration stops in
finitely many steps given that we have finite Herbrand bases.

Now, consider the stable model semantics. Suppose we have a normal logic pro-
gram P and an interpretation I. Define the reduct PI to be a definite program that con-
tains ruleA0 :− A1, . . . , Am iffA0 :− A1, . . . , Am,not Am+1, . . . ,not An is a grounded
rule from P where each Am+1, . . . , An is false in I. That is, the reduct is obtained by (i)
grounding P, (ii) removing all rules that contain a literal not A in their body such that A
is an atom that is true in I, (iii) removing all remaining literals of the form not A from
the remaining rules. An interpretation I is a stable model if I is a minimal model of PI .
Note that a normal program may fail to have a stable model, or may have several stable
models. It so happens that any well-founded model is a subset of every stable model of a
normal logic program [31, Corollary 5.7]; hence, if a program has a well-founded model
that is an interpretation for all atoms, then this well-founded model is the unique stable
model (the converse is not true).

There are other ways to define the well-founded semantics that are explicitly con-
structive [3, 32, 23]. One is this, where the connection with the stable model semantics
is emphasized [3]: write LFTP(I) to mean the least fixpoint of FP(I) = TPI ; then the
well-founded semantics of P consists of those atoms A that are in the least fixpoint of
LFTP(LFTP(·)) plus the literals ¬A for every atom A that is not in the greatest fixpoint
of LFTP(LFTP(·)). Note that LFTP(LFTP(·)) is a monotone operator.

The well-founded semantics determines the truth assignment for some atoms; for
the remaining atoms, their “truth values are not determined by the program” [31, Section
1.3]. A very common interpretation of this situation is that the well-founded semantics
uses three-valued logic where the values are true, false, and undefined.

It is instructive to look at some examples.

Example 1. First, take a program with rules p :− not q,not r and q :− not p (identical
to Expressions (1) and (2)). The well-founded semantics assigns false to r and leaves p
and q as undefined. �
Example 2. Consider a game where a player wins if there is another player
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with no more moves [31, 32], as expressed by the cyclic rule: wins(X) :−
move(X, Y ),not wins(Y ).. Suppose the available moves are given as the following facts:
move(a, b). move(b, a). move(b, c). move(c, d).. Then the well-founded semantics
leads to {wins(c),¬wins(d)}, leaving wins(a) and wins(b) as undefined. If move(a, b)
is not given as a fact, it is assigned false, and the well-founded semantics leads to
{¬wins(a),wins(b),wins(c),¬wins(d)}. �
Example 3. The Barber Paradox: If the barber shaves every villager who does not shave
himself, does the barber shave himself? Consider:

shaves(X, Y ) :− barber(X), villager(Y ),not shaves(Y, Y ).
villager(a). barber(b). villager(b).

(3)

The well-founded semantics assigns false to barber(a), to shaves(a, a) and to shaves(a, b).
Also, shaves(b, a) is assigned true, and shaves(b, b) is left undefined. That is, even though
the semantics leaves the status of the barber as undefined, it does produce meaningful
answers for other villagers. �

3. Probabilistic logic programs and their semantics
In this paper we focus on a particularly simple combination of logic programming and
probabilities [21, 27]. A probabilistic logic program, abbreviated PLP, is a pair 〈P,PF〉
consisting of a normal logic program P and a set of probabilistic facts PF. A probabilistic
fact is simply an atom A associated with a probability value (assumed to be a rational
number). For instance, P(insomnia = true) = 0.3 is a probabilistic fact. If a probabilistic
fact contains logical variables, we interpret it as the set of all grounded probabilistic facts
obtained by substituting variables with constants in the Herbrand base. A probabilistic
fact is assumed not to unify with any other atom in the head of a rule. Note that as a fact
is the head of a rule, a probabilistic fact does not unify with any other fact.

The main probabilistic assumption is that all grounded probabilistic facts are inde-
pendent. That is, there is a product probability measure over the probabilistic facts, such
that P(A1 = v1, . . . , Am = vm) =

∏m
i=1 P(Ai = vi) for any set of atoms A1, . . . , Am that

appear in probabilistic facts, where each vi is either true or false. Suppose that for every
fixed truth assignment over all grounded probabilistic facts we have a unique interpreta-
tion for the resulting normal logic program (that is, once we fix the probabilistic facts,
all other atoms have their truth values fixed as true or false by the semantics). Then we
see that the probabilities over probabilistic facts induce a probability distribution over all
atoms. Sato’s distribution semantics, originally proposed for definite programs, is exactly
this probability distribution over all atoms [27]. Note that if a program is definite, then for
each truth assignment for all probabilistic facts we have a single minimal model (stable
model) that is exactly the well-founded model; thus for definite programs the distribution
semantics is always unique.

If a program has an acyclic grounded dependency graph, it is said to be acyclic [1].
The well-founded semantics of an acyclic normal logic program has a unique interpreta-
tion for all atoms. Now if a PLP 〈P,PF〉 is such that P is acyclic, then for each truth
assignment for grounded probabilistic facts the resulting normal logic program is acyclic
as well. And then there is a unique distribution semantics for the program. The same is
true for stratified programs; that is, programs where cycles in the grounded dependency
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graph contain no negative edge (this is often referred to as locally stratified in the liter-
ature) [2]. The well-founded semantics of a stratified program is a unique interpretation
for all atoms, hence 〈P,PF〉 has a unique distribution semantics if P is stratified. Note
that an acyclic program is stratified.

To simplify the text, we say that a PLP is acyclic, stratified, etc, when its underlying
normal logic program satisfies the property of interest.

In short: if a PLP is stratified, then it defines a unique distribution over all atoms;
we refer to this distribution as the distribution semantics of the PLP.

Now if a logic program is non-stratified, then its well-founded semantics may be
a partial interpretation, and some atoms may be left as undefined. One possible reaction
is to focus attention only on programs that do not admit a partial interpretation given any
truth assignment for all probabilistic facts — Riguzzi refers to these programs as sound
ones [24]. Another path, taken by Lukasiewicz [16, 17] and later by Hadjichristodoulou
and Warren [15] is to accommodate undefined values within the semantics.1 However, the
approach by Lukasiewicz is to leave the probability of any formula as undefined when-
ever the formula is undefined in any partial interpretation (to determine whether a for-
mula is undefined or not in a particular partial interpretation, three-valued logic is used).
Hence, when a formula gets a numeric probability, its truth value agrees across stable
models; thus any probability calculations that are produced with this sort of well-founded
semantics agree with a semantics based on stable models that is actually proposed by
Lukasiewicz [17, Theorem 4.5]. That is, Lukasiewicz’ proposal is more akin to the stable
model semantics than to the well-founded semantics.

The approach by Hadjichristodoulou and Warren [15] is to allow probabilities over
partial interpretations, thus allowing probabilities over atoms that are undefined. This is a
bold proposal as far as interpretation is concerned, as we explain in Section 5. Regardless
of its meaning, the approach deserves attention as it is the only one in the literature that
genuinely combines well-founded semantics with probabilities. Accordingly, we refer
to it as the well-founded semantics of probabilistic logic programs (the combination of
language and semantics is named WF-PRISM by Hadjichristodoulou and Warren).

The goal of the remainder of this paper is to study the computational complexity
of inferences under this well-founded semantics, and to discuss some of its conceptual
difficulties. Before we plunge into this endeavor, we present some examples.
Example 4. First, take the rules in Example 1, and probabilistic fact P(r = true) = 0.3.
Under the well-founded semantics, P(p = undefined) = P(q = undefined) = 0.7. �
Example 5. Now consider the following extended version of Example 1, adapted from
Example IV.1 by Hadjichristodoulou and Warren [15]. Consider:

cold :− headache, a. cold :− not headache,not a. P(a = true) = 0.34.
headache :− cold, b. headache :− not b. P(b = true) = 0.25.

There are four truth assignments for probabilistic facts, each with a product probability
and induced (three-valued) truth assignments for cold and headache:

1Sato et al. also allow their distribution to be defined over undefined values, but instead of the well-
founded semantics they prescribe Fitting’s three-valued semantics. This is a weaker semantics than the
well-founded one, and the literature on logic programming has consistently preferred the latter, as we do in
this paper.
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Probability a b cold headache

0.34× 0.25 = 0.085 true true false false
0.34× 0.75 = 0.255 true false true true
0.66× 0.25 = 0.165 false true undefined undefined
0.66× 0.75 = 0.495 false false false true

Consequently, by collecting probabilities, we have P(cold = true) = 0.255,
P(cold = undefined) = 0.165, and P(cold = false) = 0.580. And P(headache = true) =
0.750, P(headache = undefined) = 0.165, and P(headache = false) = 0.085. �
Example 6. Consider Example 2, and suppose that move(a, b) is not a fact, but in-
stead a probabilistic fact with associated assessment P(move(a, b) = true) = 0.5. Then
P(wins(c) = true) = P(wins(d) = false) = 1. We also have that P(wins(a) = true) = 0,
P(wins(a) = undefined) = P(wins(a) = false) = 0.5, and that P(wins(b) = true) =
P(wins(b) = undefined) = 0.5, P(wins(b) = false) = 0. �
Example 7. Consider Example 3, on the Barber Paradox. Suppose we add the prob-
abilistic fact P(barber(c) = true) = 0.5 and the fact villager(c).. With probability
0.5, shaves(c, c) is false, and with probability 0.5, shaves(c, c) is undefined. And
P(shaves(b, b) = undefined) = 1, while P(shaves(a, a) = false) = 1. �

Given that well-founded semantics deals with interpretations containing classical
negation ¬, it would perhaps be more elegant to have classical negation in the language
from the outset. In fact, that would clarify the meaning of probabilities attached to prob-
abilistic facts: P(A = true) = α would mean that A is true with probability α and ¬A is
true with probability 1 − α, leaving no probability mass to the undefined value. It turns
out that, once we allow cycles in a normal logic program, we can “simulate” classical
negation of atoms [13]. In short, we do so by replacing each ¬A by a fresh atom A′, and
by imposing the constraint that A ∧ A′ cannot be both true; this constraint can be built
with a cyclic rule. Thus our results on complexity do not change if we allow classical
negation to be placed directly in front of atoms.

4. The complexity of inference under the well-founded semantics
We wish to investigate the complexity of probabilistic inference under the well-founded
semantics. To do so, we need a number of definitions that we now quickly review.

We employ usual complexity classes P, NP, EXP, NEXP, and related ones, and
we use oracle Turing machines [20]. The polynomial hierarchy is the class of languages⋃

i ∆p
i =

⋃
i Πp

i =
⋃

i Σp
i , where ∆p

i = PΣp
i−1 , Πp

i = coΣp
i , Σp

i = NPΣp
i−1 and Σp

0 = P.
The complexity class #P is the class of integer-valued functions computed by a count-
ing Turing machine in polynomial time; a counting Turing machine is a standard non-
deterministic Turing machine that prints in binary notation, on a separate tape, the number
of accepting computations induced by the input [30]. The class #Σp

k contains the integer-
valued functions computed by a counting Turing machine with access to a Σp

k oracle (note:
#Σp

0 = #P). We are interested in the computation of probabilities, so we are not really
dealing with integer-valued outputs. Hence we resort to weighted reductions [5]; that is,
parsimonious reductions (Karp reductions that preserve the number of accepting paths)
scaled by a polynomial-time computable positive rational number. Using such reductions
one can normalize the output of counting Turing machines, thus obtaining probabilities.
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For any complexity class #C in the polynomial counting hierarchy, we say that a prob-
lem is #C-hard if any problem in #C can be reduced to it by a weighted reduction. If a
problem is #C-hard and can be solved with a polynomial number of pre-processing steps
followed by one call to a #C oracle and a multiplication by a rational obtained with poly-
nomial effort, then the problem is said to be #C-equivalent (an alternative definition is
advocated by Ref. [11]). For instance, the complexity of inferences in Bayesian networks
is #P-complete [25]. We also use the class #EXP, which contains functions computed
by counting Turing machines in exponential time [19] (this is not equal to the homony-
mous class defined by Valiant [30]). Hardness and equivalence for #EXP are defined as
for #P, with polynomial replaced by exponential.

Our inference problem is formalized as follows:

Input: a PLP whose probabilities are rational numbers, and a truth assignment Q to some
ground atoms in the (finite) Herbrand base.

Output: the value of (the rational number) P(Q).

We refer to this complexity as the inference complexity of PLPs. In practice it may
happen that the program is small compared to the query (similarly to what happens in
database theory, where the database is typically much larger than then instructions speci-
fying records of interest). We thus consider the following problem, which we refer as the
query complexity of PLPs [8]:

Input: a truth assignment Q to some ground atoms in the (finite) Herbrand base (the PLP
is fixed, and not considered part of the input).

Output: the value of (the rational number) P(Q).

We can now state our main result. We examine propositional and relational pro-
grams, and within the latter we look at programs with a bound on predicate arity. Note
that a bound on predicate arity forces each predicate to have a polynomial number of
groundings, but the grounding of the program may still be exponential (as there is no
bound on the number of atoms that appear in a single rule, each rule may have many
logical variables, thus leading to many groundings).

Theorem 1. The inference complexity of PLPs is #EXP-complete; it is #NP-complete
if the PLP has a bound on the arity of its predicates; it is #P-complete if the PLP is
propositional. The query complexity of PLPs is #P-complete.

Proof. Consider first propositional PLPs. Such a PLP can encode any Bayesian network
over binary variables [21], so inference is #P-hard. Membership follows from the fact
that logical inference with propositional normal logic programs under the well-founded
semantics is in P [9]; hence we can have a counting Turing machine that guesses a truth
assignment for probabilistic facts and then produces in polynomial time the truth assign-
ment for all atoms (this counting Turing machine produces an integer that yields the de-
sired probability after division by a constant).
Consider now PLPs with logical variables. Such a PLP can encode any “enhanced” plate
model as defined in Ref. [6], so inference complexity is #EXP-hard. The enhanced plates
that must be encoded are acyclic probabilistic models whose nodes are relations, and
whose probabilities are specified either through probabilistic facts or as propositional
Boolean operators or as existential quantifiers; such an acyclic model can be reproduced
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by an acyclic program (with predicates containing logical variables) and the Clark com-
pletion of the program [31] then produces the needed existential quantifiers. Membership
follows from the fact that inference in normal logic programs under the well-founded
semantics is in EXP [9] (using the same reasoning as for propositional programs). The
hardness of query complexity also follows from the parallel result for plate models [6],
and membership follows from the fact that data complexity of normal logic programs un-
der the well-founded semantics is in P [9].
Now consider PLPs with a bound on the arity of predicates. Hardness for #NP follows
from the fact that inference complexity of PLPs under the stable model semantics is #NP-
hard even for stratified programs [7], noting that for stratified programs the stable model
and the well-founded semantics agree. Membership follows from the fact that logical in-
ference is in PNP, as proved in Theorem 2; thus inference can be produced by a counting
Turing machine that nondeterministically selects the truth assignments for all probabilis-
tic facts and then runs logical inference by runing polynomial operations and calls to an
NP oracle (plus a final division by a constant).

The proof of Theorem 1, in the case of PLPs with bound on predicate arity, uses
the following result. Note that this is a result on logical inference; however it does not
seem to be found in current literature.

Theorem 2. Consider the class of normal logic programs with a bound on the arity of
predicates, and consider the problem of deciding whether a literal is in the well-founded
model of the program. This decision problem is PNP-complete.

Proof. Hardness follows from the hardness of logical inference with stratified pro-
grams under the stable model semantics [12]. Membership requires more work. We
use the monotone operator LFTP(LFTP(I)). Consider the algorithm that constructs
the well-founded extension by starting with the empty interpretation and by iterating
LFTP(LFTP(I)). As there are only polynomially-many groundings, there are at most
a polynomial number of iterations. Thus in essence we need to iterate the operator
LFTP(I); thus, focus attention on the computation of LFTP(I). The latter computa-
tion consists of finding the least fixpoint of TPI . So we must focus on the effort involved
in computing the least fixpoint of TPI . Again, there are at most a polynomial number
of iterations of TPI to be run. So, focus on a single iteration of TPI . Note that any in-
terpretation I has polynomial size; however, we cannot explicitly generate the reduct PI

as it may have exponential size. What we need to do then is, for each grounded atom
A, to decide whether there is a rule whose grounding makes the atom A true in TPI .
So we must make a nondeterministic choice per atom (the choice has the size of logical
variables in a rule, a polynomial number). Hence by running a polynomial number of
nondeterministic choices, we obtain an iteration of TPI ; by running a polynomial number
of such iterations, we obtain a single iteration of LFTP(I); and by running a polynomial
number of such iterations, we build the well-founded model. Thus we are within PNP as
desired.

To conclude this section, we note that, for the stable model semantics, the infer-
ence complexity of propositional PLPs is already in #NP, while the inference complexity
of PLPs with a bound on predicate arity is in #NPNP, and the query complexity is in
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#NP [7]. Thus the well-founded semantics does lead to smaller complexity classes; this
is consistent with the fact that logical inference with the well-founded semantics leads to
smaller complexity classes than logical inference with the stable model semantics [9].

5. The semantics of the well-founded semantics
The well-founded semantics of PLPs is attractive because it offers a unique semantics for
every probabilistic logic program. To some extent, the semantics is conceptually simple
— at least for someone who has mastered the well-founded semantics for normal logic
programs. However, the meaning of the well-founded semantics deserves some attention.

One problem with the well-founded semantics is that it is somewhat weak, and
repeatedly noted in the literature. Consider the program [31]:

a :− not b. b :− not a. p :− a. p :− b.

The well-founded semantics leaves every atom undefined. However, it is apparent that p
should be assigned true, for we can find two ways to understand the relation between a
and b, and both ways take p to true. Note that these two interpretations are exactly the
stable models: one contains a and ¬b, the other contains ¬a and b.

However weak, this sort of semantics may be appropriate sometimes: consider
for instance the Barber Paradox, where the well-founded semantics does not determine
whether the barber shaves himself, but still produces sensible inference for other villagers.
In other examples the well-founded semantics may be open to criticism in its reliance on
three-valued logic, as it invites controversy on the meaning of undefined. It is difficult
to determine whether undefined should be taken as simply an expression of subjective
ignorance, or the indication that something really is neither true nor false [33, Section
1.2.1.2]. In fact the vagaries of three-valued logic have received attention not only in
philosophical inquiry [4, 18], but in the practical development of databases [10, 26].

In any case, we do not want to repeat the old and unresolved debate on three-
valued logic here. Our point is that, in the presence of probabilities, matters become
even murkier. The problem is that undefined values reflect a type of uncertainty, and
probability is supposed to deal with uncertainty; by putting those together we may wish
to invite collaboration but we may end up with plain confusion. Consider for instance
Example 5. What does it mean to say that P(headache = undefined) = 0.165? Sup-
posedly probability is here to tell us the odds of true and false; by learning the prob-
ability of undefined, the next question should be about the probability of headache to
be true when one is saying that it is undefined. In fact, one might ask for the value
of P(headache = true|headache = undefined), not realizing that in the well-founded se-
mantics this value is simply zero. To emphasize the difficulty in interpretation, suppose
we add to Example 5 the simple rule

c :− a, b.

and one asks for P(c = false|cold = undefined). Should this number really be 1, as ob-
tained through the well-founded semantics, or should it simply be the interpreted as a
question about P(c = false), given that nothing of substance is said about cold? By look-
ing at such examples, one can understand Riguzzi’s refusal in dealing with undefined
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values: as he writes, “the uncertainty should be handled by the choices [that is, by the
probabilistic facts] rather than by the semantics of negation.”

As a final example, consider again the Barber Paradox. As noted before,
it makes some sense, for the logical program in Example 3, to obtain undefined
for shaves(b, b). But for the probabilistic program in Example 7, the meaning of
P(shaves(c, c) = undefined) = 0.5 is quite hard to ascertain. We should expect, given
that there is uncertainty, a probability that shaves(c, c) is true, and a probability that it is
false; instead we are served with the probability that it is undefined.

A difficulty here is that undefined values may appear due to a variety of situa-
tions: programs may be inconsistent (as it happens in Example 5), may fail to have a clear
meaning (as in the Barber Paradox), or simply may have various possible meanings (for
instance, various stable models). In the first two cases, it is even surprising that one would
assign probabilities to the inconsistent or contradictory cases. In the latter case, probabili-
ties may be contemplated, but then one may be surprised to see a mixture of probabilities,
presumably used to encode some subjective uncertainty, and undefined values that also
encode subjective uncertainty (we do not know the right model). The interpretation of the
various possible meanings of undefined, already difficult in three-valued logic, is magni-
fied by the challenges in interpreting probabilities.

6. Conclusion

In this paper we have studied the well-founded semantics of probabilistic normal logic
programs as advanced by Hadjichristodoulou and Warren [15]. Their proposal seems to
be the one that most strongly stays close to the (logical) well-founded semantics. Hence
it inherits an important advantage from the (logical) well-founded semantics: every prob-
abilistic logic program has a well-founded semantics.

We have examined the complexity of inference with probabilistic logic programs
under the well-founded semantics, and have clarified its properties in a number of di-
rections, ranging from propositional to relational programs, and from inference to query
complexity. These results should be useful in guiding the comparison between the well-
founded semantics and rival approaches.

We have also discussed the interpretation of the well-founded semantics for prob-
abilistic logic programs. We found that such an interpretation is not an easy matter, and
in many programs the semantics seems to unduly put together various notions of uncer-
tainty. We suggest that more study is needed to isolate those programs where undefined
values are justified and can be properly mixed with probabilities. For instance, we feel
that such a mix may be useful in dealing with programs that have many stable models,
where the well-founded semantics may be taken as an approximation of the set of possible
semantics. Such a discussion must be the subject of future research.
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models. In Scalable Uncertainty Management, volume 9310 of LNCS, pages 36–49.
Springer, 2015.

[7] Fabio Gagliardi Cozman and Denis Deratani Mauá. The structure and complexity of
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