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Abstract
A credal network associates a directed acyclic graph
with a collection of sets of probability measures. Usu-
ally these probability measures are specified through
several tables containing probability values. Here
we examine the complexity of inference in Boolean
credal networks when probability measures are speci-
fied through formal languages, by extending a frame-
work we have recently proposed for Bayesian net-
works. We show that sub-Boolean and relational log-
ics lead to interesting complexity results. In short, we
explore the relationship between language and com-
plexity in credal networks.
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1 Introduction

A credal network represents a set of probability dis-
tributions through a directed acyclic graph and an as-
sociated set of “local” credal sets [1, 6]. Usually these
local credal sets are specified using tables contain-
ing probability values, possibly with some additional
constraints between them. In practice, any elicita-
tion strategy must adopt some specification language
in which to encode probability assessments. For in-
stance, one may allow inequalities such as P(A) ≥ 1/2,
or perhaps interval-valued assessments such as P(A) ∈
[3/5, 7/10]; of course, one may have a specification
language with propositions and Boolean operators, or
even relations and quantifiers.

In this paper we study properties of credal networks as
parameterized by specification languages. We look at
the balance of expressivity for specification languages
and the complexity of inferences. We concentrate on
Boolean variables, and focus on a particular seman-
tics for credal networks (the semantics of “strong ex-
tensions”). To investigate the interplay between ex-
pressivity and complexity, we extend a framework we

have recently developed to study the complexity of
Bayesian networks [9].

We start with some necessary background in Sec-
tion 2. We discuss our framework in Section 3, in
particular looking at propositional languages. Sec-
tions 4 and 5 examine relational languages.

2 Credal networks and their strong
extensions

In this paper every possibility space Ω is finite; a ran-
dom variable is simply a function from Ω into the
reals, and we consider only random variables taking
on two values, 1 (meaning “true”) and 0 (meaning
“false”). A set of probability measures is called a
credal set [18]. We abuse language by referring to
sets of probability distributions, and also to sets of
probability mass functions, as credal sets. A set of
distributions for a variable X is denoted by K(X).
Given a credal set, for any event A we have its lower
and upper probabilities, denoted by P(A) and P(A) re-
spectively: P(A) = inf P(A) and P(A) = supP(A). In
this paper W , X, Y and Z denote random variables,
while A and B denote events or propositions.

A conditional credal set is obtained by applying Bayes
rule to each possible distribution in a credal set; we
also refer to sets of conditional distributions and con-
ditional mass functions as conditional credal sets. We
adopt regular conditioning; that is, K(X|A) is the set
of all conditional distributions that are obtained from
distributions such that P(A) > 0 [30]. We denote by
K(X|Y ) the set containing a credal set K(X|Y = y)
for each possible value of Y . The sets K(X|Y ) are
separately specified when there is no constraint on
the conditional set K(X|Y = y1) that is based on the
properties of K(X|Y = y2), for any y2 6= y1. For
events A and B, we define lower and upper condi-
tional probabilities: P(A|B) = infP:P(B)>0 P(A|B) and
P(A|B) = supP:P(B)>0 P(A|B).



Given some marginal and conditional credal sets, an
extension of these sets is a joint credal set with the
given marginal and conditional credal sets.

A credal network consists of a directed acyclic graph
where each node is a random variable Xi, together
with a set of constraints on probability values. The
graph is assumed to encode independence relations
amongst variables, and the constraints convey the
probabilistic assessments. The independence relations
are given by a Markov condition, soon to be explained.
Such a structure is useful as a representation for be-
liefs, opinions, and statistical summaries that may be
available when modeling a particular problem. For
instance, suppose we have five variables, representing
say economic indicators:

X1 X2 X3

X4 X5

Here we have that X1 and X2 are parents of X4; like-
wise, X3 and X4 are parents of X5. The parents of
Xi are denoted by pa(Xi). The meaning of the graph
is conveyed by the Markov condition: every Xi is in-
dependent of its nondescendants nonparents given its
parents. So, X5 is independent of X1 and X2 given
X3 and X4. Hence by drawing the graph we are ex-
pressing our belief that, conditional on X3 and X4,
no information about X1 and X2 can change our as-
sessments on X5.

To continue the example, we may have some con-
straints on probabilities. Even though one is
free to impose say P(X1 = 0|X4 = 1) ≥ 2/3 and
P(X3 = 1 ∧X2 = 0) ≤ 1/2, usually applications con-
strain assessments to a few simple forms [1, 6]. Typ-
ically we have each variable Xi associated with sepa-
rately specified setsK(Xi|pa(Xi)). When every credal
set K(Xi|pa(Xi) = π) is a singleton, the resulting
model is equivalent to a Bayesian network.

Once assessments are given, we can construct their
joint extension; that is, we can construct a credal
set consisting of those joint distributions that sat-
isfy the assessments. We have some freedom here,
for we can interpret the “independence relations” in
the Markov condition in various ways. There are sev-
eral concepts of independence that apply to credal
sets [7]; we might for instance consider extensions
that interpret the Markov condition through epis-
temic irrelevance [11]. In this paper we adopt the
most common concept of independence for credal sets;
namely, we adopt strong independence: X and Y are
strongly independent given Z if K(X,Y |Z = z) is the

convex hull of a set of distributions that factorize;
that is, if any p(X,Y |Z = z) in this latter set satisfies
p(X,Y |Z = z) = p(X|Z = z) p(Y |Z = z).

We are always interested in the largest extension
that satisfies given assessments and independence re-
lations. We refer to such extensions, when strong
independence is adopted, as strong extensions. Our
results are also valid if one adopts complete in-
dependence, provided one always keeps the inter-
est in the largest possible extension: X and Y
are completely independent given Z if any proba-
bility mass p(X,Y |Z = z) in K(X,Y |Z = z) satisfies
p(X,Y |Z = z) = p(X|Z = z) p(Y |Z = z). To sim-
plify the presentation, we focus only on strong inde-
pendence and strong extensions.

Given a credal network (graph and assessments)
and its resulting extension, we are interested in
computing conditional upper probabilities such as
P(X1 = 0|X2 = 1).

3 A Framework for Complexity
Analysis

We now extend a framework for complexity analy-
sis that we have recently developed for Bayesian net-
works [9], so as to include probability intervals. The
basic idea is to restrict assessments to two simple
forms that are inspired by probabilistic rules [22, 26]
and structural models [21]. The framework lets one
move down to sub-Boolean constructs and up to re-
lations and quantifiers. In the context of credal net-
works and strong extensions, our framework is valu-
able as it imposes some regularity into the specifi-
cation, for instance automatically implying that all
local credal sets are separately specified. So, it offers
a combination of flexibility and restraint that should
be useful in practical elicitation scenarios.

We will refer to existing complexity classes in our
results. To recap, the class PP consists of those
problems that can be solved by a nondeterministic
polynomially-bounded Turing machine where the ac-
ceptance condition is that more than half of compu-
tation paths accept [20]. And NPPP consists of those
problems that can be solved by a nondeterministic
polynomially-bounded Turing machine with an oracle
that solves PP decision problems [19]. In proofs we
use reductions from E-MAJSAT, an NPPP-complete
problem [19]. The E-MAJSAT decision problem is:
given a pair (φ, k) where φ is a Boolean sentence with
n propositions, and k ∈ [1, n] is an integer, is there
an assignment of the first k propositions such that the
majority of assignments to the remaining propositions
satisfies φ?



X1

X2 X3

X4 X5

P(X1 = 1) ≥ 1/2

P(X2 = 1) ∈ [1/4, 1/3] P(X3 = 1) = 1/5

X4 ⇔ X1 ∧X2 X5 ⇔ X3 ∧X4

Figure 1: A simple credal network.

Returning to the specification framework: Consider a
set of atomic propositions, A1, . . . , An, and take the
set Ω of 2n truth assignments. Associate a binary
variable Xi with atomic proposition Ai, such that
Xi(ω) = 0 when Ai is false, and Xi(ω) = 1 when Ai is
true, for ω ∈ Ω. Our credal networks are to be speci-
fied over X1, . . . , Xn; to simplify the presentation, we
equate atomic propositions and their associated vari-
ables. That is, we write propositional sentences con-
taining variables and their assignments, and we write
probabilities for propositional sentences.

We assume that a directed acyclic graph is given,
where each node is a variable X, and that each vari-
able X is associated with either:

• an equivalence X ⇔ F (Y1, . . . , Ym), or

• a probabilistic assessment P(X = 1) ∈ [α, β],

where F is a formula on propositions Y1, . . . , Ym that
are parents of X, and where α and β are nonnega-
tive rationals in [0, 1]. We call the former a logical
assessment, and the latter a probabilistic assessment.

By adopting this restricted syntax, the graph is ac-
tually redundant. One can simply give a set of as-
sessments, and as long as there are no cycles in the
specification, the graph can be then constructed out
of the assessments.

Note that we avoid direct assessments of conditional
probability. First, such an assessment may essen-
tially create negation (by imposing P(X = 1|Y = 1) =
P(X = 0|Y = 0) = 0); we wish to control the use of
negation. Second, by avoiding conditional probabili-
ties we do not need to start by discussing conditioning
on events that can have probability zero, a discussion
that is always difficult for the novice [8].

To illustrate the framework, consider the specification
in Figure 1. One might interpret this network as fol-
lows: X4 is a health condition that is identified with
the conjunction of two risk factors, and X5 is an ill-
ness that depends probabilistic on X4, with X3 acting
as “inhibitor”.

The strong extension of this credal network is sim-

ply the convex hull of all extreme Bayesian networks,
where an extreme Bayesian network is obtained by
taking extreme (upper or lower) probabilities [12, 13].
Hence we have eight possible configurations of vari-
ables, and four extreme joint probability distribu-
tions. For instance, one such distribution assigns
probability 1/2 to {X1 = 1} and probabilty 1/4 to
{X2 = 1}, while another distribution assigns proba-
bility 1 to {X1 = 1} and probability 1/4 to {X2 = 1}.

Denote by C(L) the set of credal networks that can be
produced through the framework above, with formu-
las F from a language L (a language L is simply a set
of well-formed formulas). Then INFd(L) denotes the
set of decision problems that yield YES if P(Q|E) > γ
for an assignment Q, a conjunction E of assignments,
a rational γ ∈ [0, 1], and a credal network in C(L),
and NO otherwise [10]. The set E is the evidence; we
focus only on conjunctions of assignments, and leave
for the future the study of more general languages in
which to express evidence. To simplify the statement
of some results, we denote by INFd

+(L) the decision
problems defined as in INFd(L), with the additional
constraint that all assignments are “positive” (that is,
variables are only set to true).

Denote by Prop(∧,¬) the language of well-formed
propositional sentences with conjunction and nega-
tion. First note that Prop(∧,¬) can specify any dis-
tribution over variables X1, . . . , Xn that can be spec-
ified by a Bayesian network over these variables. To
see why, suppose we have a Bayesian network over
X1, . . . , Xn. Consider first a variable X with two par-
ents Y1 and Y2. Impose:

X ⇔ (¬Y1 ∧ ¬Y2 ∧ Z00) ∨ (¬Y1 ∧ Y2 ∧ Z01) ∨
(Y1 ∧ ¬Y2 ∧ Z10) ∨ (Y1 ∧ Y2 ∧ Z11) ,

where Zab are fresh binary variables (that do not
appear anywhere else), associated with assessments
P(Zab = 1) = P(X = 1|Y1 = a, Y2 = b). Obviously we
can always produce disjunction using conjunction and
negation, so ∨ appears as syntactic sugar in this latter
expression. Now for a variable X with many parents,
we just repeat this structure, by taking into account
any possible configuration of parents. The marginal
distibution of X1, . . . , Xn is exactly the distribution
specified by the original Bayesian network.

By allowing interval-valued assessments in our frame-
work, we obtain a similar result for credal networks:
Prop(∧,¬) allows us to specify any (separately spec-
ified) strong extension over variables X1, . . . , Xn. To
see why, suppose we have a separately specified credal
network over X1, . . . , Xn. Consider again a vari-
able X with two parents Y1 and Y2, and suppose
K(X|Y1, Y2) is such that each K(X|Y1 = a, Y2 = b)
has two extreme points, p0(X|Y1 = a, Y2 = b) and



p1(X|Y1 = a, Y2 = b). Introduce fresh variables Wab

and Zabc, and let

X ⇔
∨

a ∈ {0, 1}
b ∈ {0, 1}
c ∈ {0, 1}

(Y1 = a)∧(Y2 = b)∧(Wab = c)∧(Zabc = 1),

and assessments P(Zabc = 1) = pc(X = 1|Y1 =
a, Y2 = b) and P(Wab = 1) ∈ [0, 1]. This encodes the
desired local, separately specified, credal sets. The
idea is that a and b select a particular configuration
of Y1 and Y2, while c selects a particular extreme point
of the corresponding local credal set (and then Zabc

carries the appropriate probability value). By repeat-
ing this structure to take into account any configura-
tion of parents of X, we construct a joint credal set
whose marginal is the strong extension of the original
credal network (note that we may have to use addi-
tional variables with the same role as Wab, in case we
have more than two extreme points per credal set).

Given the generality of Prop(∧,¬), we have that
INFd(Prop(∧,¬)) is NPPP-complete [10]. Now
consider a more restricted language: denote by
Prop(∧, (¬)) the language that uses only conjunction
and atomic negation (defined as negation that can
appear only before a proposition that is associated
with a probabilistic assessment). Note that the credal
network in Figure 1 belongs to C(Prop(∧, (¬))). We
know that inference within Prop(∧, (¬)) for Bayesian
networks is polynomial as long as evidence is “posi-
tive” [9]. Somewhat surprisingly, this result applies
to credal networks:

Theorem 1 INFd
+(Prop(∧, (¬))) can be solved in

polynomial time.

Proof. Consider first a network with just conjunction,
and consider a query Q = {XQ = 1}. Note first that
if a node X appears in Q or in E, then its ascendants
must all be set to true. So we first add to E all as-
cendants of nodes originally in E; also, if a node has
all parents set to true, then it must be true and can
be added to E, so we repeat this until no more nodes
can be added to E. Now if any descendant of XQ is
in the evidence, then XQ is necessarily true, so we
have P(Q|E) = P(Q|E) = 1. So, either we have evi-
dence assigned to a descendant of XQ, and then the
solution is immediate, or all descendants are barren
nodes that can be discarded. So, to proceed we sup-
pose that XQ has no descendants. Now continue by
d-separation. Collect all nodes that are ascendants
of XQ; these are d-connected to XQ. Now suppose
one of these nodes, say W , points both to an ascen-
dant of XQ, and to a non-ascendant, say Y , of XQ.
Now if Y is not in E, then it is a barren node that

XQ

X1

X2 X3 W ′

W

Y

Z

Figure 2: Network in Theorem 1.

must be discarded. And if Y is in E, then W it-
self must be in E, hence Y is to be discarded. For
instance, consider Figure 2, and suppose {Y = 1}
is the evidence. Then W , Z and W ′ are set to true,
and we can discard them, as the path emanating from
XQ through W is blocked. Once we have discarded
all nodes that are not required for our computation,
we are left with an “inverted” tree whose root is XQ,
and where each leaf is either a node set to true, or a
node associated with a probability interval. Denote
by X1, . . . , Xm the nodes that are not set to true in
this tree; we can then write XQ ⇔ X1 ∧ · · · ∧Xm. So
we have P(XQ|E) =

∏m
i=1 P(Xi); in fact, we also have

that P(XQ|E) =
∏m

i=1 P(Xi). To complete the proof,
suppose that atomic negation is allowed, so some vari-
ables appear negated. We can run the same procedure
already described, with the novelty that we cannot
have X ∧¬X in the final expression (if that happens,
the evidence is inconsistent). �

It seems unlikely that polynomial-time inference
can be obtained with other languages for Boolean
credal networks, as several simple changes to
Prop(∧, (¬)) move us into higher complexity.1 Con-
sider: even though INFd

+(Prop(∧, (¬))) belongs to
P, INFd(Prop(∧, (¬))) does not (as it is PP-hard al-
ready when all probability intervals are singletons
[9]). Also, if we move from INFd

+(Prop(∧, (¬)))
to INFd

+(Prop(∧,¬)), then clearly we obtain
NPPP-completeness. Finally, we might move to
INFd

+(Prop(∧,∨, (¬))) by adding disjunction. In do-
ing so, again we move away from polynomial-time be-
havior, as the following result shows.

Theorem 2 INFd
+(Prop(∧,∨, (¬))) is NPPP-com-

plete.

Proof. Consider an E-MAJSAT problem specified by
(φ, k). We can code φ in CNF within Prop(∧,∨, (¬)).
For a given k, we can associate the first k variables
Xi with assessments P(Xi) ∈ [0, 1], and the remaining
variables Xj with assessments P(Xj) = 1/2. We can

1But note that if network topology is constrained to poly-
trees, then polynomial behavior is obtained by the 2U algo-
rithm [13]. Hence, by suitably restricting the topology, we still
get tractability.



then produce a network where each proposition is a
root node, and all other nodes are either conjunctions
or disjunctions of their parents. This network has size
polynomial on the input. Denote by Q an assignment
for the leaf node that yields the final conjunction in
the CNF. By deciding whether P(Q) > 1/2, we solve
the E-MAJSAT problem. �

To close this section, we comment on an additional
type of assessment that one might allow, namely, as-
sessments where material implication is used instead
of equivalence. For instance, suppose that in our pre-
vious example we change the logical assessment for
X5 to

X5 ← X3 ∧X4.

A sensible semantics here might be to consider every
possible probability measure compatible with this log-
ical constraint; that is, the assessment should mean
P(A5|A3 ∧A4) = 1 and P(A5|¬(A3 ∧A4)) ∈ [0, 1].
This suggests that if we are willing to contemplate
assessments based on material implication, we should
be willing to entertain interval probabilities from the
outset. We leave such a discussion for the future,
noting here that existing languages such as Poole’s
Independent Choice Logic (ICL) [23] do have mate-
rial implication in the syntax, but often adopt special
semantics to guarantee sharp probabilities.

4 Relational Credal Networks

Many phenomena in real life depict repetitive pat-
terns. For instance, social networks involve many in-
dividuals, several of which may share common char-
acteristics. Epidemiological events may also bring to-
gether similar individuals; temporal sequences mod-
eled by hidden Markov models often display similar-
ities across time steps. There are indeed several for-
malisms that capture repetition in Bayesian network
fragments [15, 16, 24, 25]. The simplest strategy is to
allow random variables to be parameterized; for in-
stance, we might extend the specification in the pre-
vious section as follows:

P(X1(x) = 1) ≥ 1/2, (1)
P(X2(x) = 1) ∈ [1/4, 1/3], (2)

P
(
X3(x, y) = 1

)
= 1/5, (3)

X4(x) ⇔ X1(x) ∧X2(x), (4)
X5(x, y) ⇔ X3(x, y) ∧X4(x). (5)

At this point we can simply refer to x, y, . . . as log-
ical variables, and to X1(x), X2(x), X3(x, y) as rela-
tions. Again we write sentences that mix variables
and Boolean operators. We say that X(x1, . . . , xk),

where each xi is either a logical variable or an indi-
vidual, is an atom. An atom with no logical variable
is a ground atom.

We can then extend our specification framework as
follows.

We assume that a directed acyclic graph is given,
where each node is a relation, and that every k-ary
relation X is associated with either:

• a logical assessment

X(x1, . . . , xk)⇔ F (x1, . . . , xk, Y1, . . . , Ym),

where F is a formula with free logical variables
x1, . . . , xk, and possibly with other logical vari-
ables that are bound, and where each Yi is either
a relation or an individual; or

• a probabilistic assessment

P(X(x1, . . . , xk) = 1) ∈ [α, β],

where α and β are nonnegative rationals in [0, 1].

We assume that our languages consist of subsets of
function-free first-order logic (referred to as FFFO).
Hence we allow existential and universal quantifiers
in our syntax.

Concerning the semantics, as often happens when
one moves from sharp to interval probabilities, there
is more than one way to interpret assessments. In
our setting, there are two sensible semantics for well-
formed specifications, as we now discuss.

We assume that we have a set D, the domain. In this
paper every domain is finite, with N elements. Ev-
ery individual refers to an element of the domain. We
will always adopt the rigidity assumption that is com-
mon in probabilistic logic [3]; that is, we will always
assume that the interpretation of individuals is con-
stant across interpretations for a fixed domain. That
is, the individual Ann is always mapped to the same
element of D, whatever the interpretation of relations.
Hence our individuals can be identified with elements
of the domain, and given labels such as 1, 2, . . . , N .

For instance, suppose we take assessments (1)–(5),
and a domain with two individuals, say Ann and Bob,
respectively denoted by a and b. We have several
ground atoms: X1(a), X1(b), X2(a), X2(b), X3(a, a),
X3(a, b), and so on. Consider a graph where each
ground atom is a node, and where an edge is inserted
between two nodes if an edge was present between
the relations. In our example, we obtain the graph in
Figure 3. Note that grounding produced two disjoint



X1(a)

X2(a)

X3(a, a) X3(a, b)

X4(a)

X5(a, a)

X5(a, b)

X1(b) X2(b)

X3(b, a) X3(b, b)

X4(b)

X5(b, a)

X5(b, b)

Figure 3: Grounding assessments (1)–(5) with respect
to domain D = {a, b}.

X1(a)

X2(a)

X3(a, a) X3(a, b)

X4(a) X5(a)

X1(b) X2(b)

X3(b, a) X3(b, b)

X4(b) X5(b)

Figure 4: Grounding assessments (1)–(4) and (6) with
respect to domain D = {a, b}.

graphs in this case. However, suppose we keep assess-
ments (1)–(4), but we turn X5 into a unary relation
such that:

X5(x)⇔ ∀y : X3(x, y) ∧X4(y). (6)

Then grounding takes us to Figure 4.

So far, our procedure to produce a single grounded
graph out of the logical assessments and a fixed do-
main seems uncontroversial. Now consider the prob-
ability assessments; for instance, take

P(X1(x)) ∈ [1/2, 1].

What does it mean? Does it mean that

• for each γ ∈ [1/2, 1],

∀x ∈ D : P(X1(x)) = γ

is a possible assessment, or that

• for each x ∈ D,

P(X1(x)) = γ

is a possible assessment for each γ ∈ [1/2, 1]?

The difference between these two interpretations
is substantial, even though both share the same
grounded graph (for given N). In the first interpreta-
tion the assessments are viewed as a set of relational

Bayesian networks. That is, each selection of prob-
ability values defines a relational Bayesian network,
that itself can be grounded into a Bayesian network
given a domain. For assessments (1)–(5), we have 4
extreme Bayesian networks that are generated given
D = {a, b}; we have for instance an extreme Bayesian
network where P(X1(a)) = P(X1(b)) = 1/2, and
also we have a Bayesian network where P(X1(a)) =
P(X1(b)) = 1 (but we do not have P(X1(a)) = 1/2
and P(X1(b)) = 1). In the second interpretation the
assessments directly yield a credal network with sepa-
rately specified local credal sets. In our example, the
latter semantics yields grounded assessments

P(X1(a) = 1) ≥ 1/2,P(X2(b) = 1) ≥ 1/2,

P(X2(a) = 1) ∈ [1/4, 1/3], . . . ,P(X3(b, b) = 1) = 1/5,

and there are 16 extreme Bayesian networks given
D = {a, b}.

We will refer to a set of well-formed assessments as
a relational credal network. When the first semantics
is adopted, we say that the relational credal network
has coupled parameters; when the latter semantics is
used, we say the relational network has decoupled pa-
rameters. To simplify the language, we often refer to
coupled relational credal networks and decoupled rela-
tional credal networks.

5 The Complexity of Relational
Languages

We can now consider inference problems for selected
relational languages L. The input to our inference
problems is a relational credal network, evidence, and
the size of the domain, denoted by N . We assume
that the arity of all relations is bounded.

Domain size N can be given either in binary or unary
encoding. In computational terms, binary encoding
for N implies that almost every calculation requires
exponential effort (as there may be exponentially long
numbers in the output) [9]. For this reason, it makes
sense to assume that N is specified in unary notation.
So, we denote by INFd(L) and by INFd

+(L) respec-
tively the decision problems for language L, as before,
for unary N , where the query Q is an assignment to
a grounded atom, and evidence E is a set of assign-
ments for grounded atoms (evidence is understood as
the conjunction of those assignments). Recall that
all relations have bounded arity (and the bound is
known). Note that for relatively simple languages we
already have NPPP-complete inference, from the re-
sults for propositional languages (Section 3).

Consider then function-free first-order logic (we refer
to it by FFFO). The following result is not surprising:



Theorem 3 INFd
+(FFFO) is NPPP-complete both for

decoupled and for coupled relational credal networks.

Proof. For pertinence, ground the relational
credal network into a credal network specified using
Prop(∧,¬). Inference in the grounded credal network
is a NPPP-complete problem. For hardness, note that
a domain with a single individual can already define
an arbitrarily complex credal network. �

To obtain more insightful results concerning complex-
ity, we have previously proposed an analysis with
respect to data complexity and to domain complex-
ity [9]. We have started such an analysis for relational
Bayesian networks, and we now present results for re-
lational credal networks.

We refer to the complexity of computing a condi-
tional probability, given a relational credal network,
evidence (a set of assignments), and an integer N (the
size of the domain in unary notation), as the combined
complexity. Theorem 3 deals with combined complex-
ity. We refer to the complexity of computing a condi-
tional probability, for a fixed relational network, when
evidence and N are inputs, as the data complexity.
And we refer to the complexity of computing a condi-
tional probability, for a fixed relational network and
fixed evidence, when N is the input, as the domain
complexity.2

When we focus on relational Bayesian networks, the
data complexity of FFFO is PP-complete [9]. So the
combined and data complexities are identical for rela-
tional Bayesian networks as far as first-order logic is
concerned. For relational credal networks the data
complexity depends on the semantics, as we now
show: as often happens when one moves from sharp
to indeterminate probabilities, concepts that collapse
in the former case do not collapse in the latter case,
and we must deal with more nuanced scenarios.

We use DINFd(L) to indicate the data complexity
of relational credal networks specified through lan-
guage L. We can state our main results:

Theorem 4 DINFd(FFFO) is NPPP-complete for de-
coupled relational credal networks.

Proof. For decoupled relational credal networks, per-
tinence to NPPP is easy (even the combined complex-
ity is in NPPP by Theorem 3). To prove hardness,
we adapt the proof for a similar result for Bayesian
networks [9]. Take an E-MAJSAT problem with pair
(φ, k), where φ is in CNF with m clauses, each one

2Data and domain complexity are respectively related to
the existing notions of lqe-liftability and liftability [17, 28]; lqe-
liftability means that data complexity is polynomial, and lifta-
bility means that domain complexity is polynomial.

of them with three literals (for each clause, we re-
fer to the “left” literal, the “middle” literal, and the
“right” literal). Suppose propositions are A1, . . . , An.
If the number of clauses m is smaller than n, then
add trivial clauses such as A1 ∨ A1 ∨ ¬A1 until m =
n. These clauses do not change the output of MA-
JSAT. If instead n < m, then add fresh propositions
An+1, . . . , Am. These propositions do not change the
output of MAJSAT. Introduce unary relations sat(x)
and choice(x); impose P(sat(x)) = 1/2, P(choice(x)) ∈
[0, 1]. The idea is that sat(x) refers to proposition
Ax for x ∈ {k + 1, . . . , n}, while choice(x) refers to
proposition Ax for x ∈ {1, . . . , k}. Introduce binary
relations auxsatij (x, y) and auxchoiceij (x, y), where i can be
either left, middle, and right, while j can be either +

or −. Adopt P
(
auxsatij (x, y)

)
= P

(
auxchoiceij (x, y)

)
= α

for some α ∈ (0, 1); the specific value of α will not
matter. To be concrete, adopt α = 1/2. Also, intro-
duce auxiliary relations literali(x) where i can be left,
middle, right. Impose

literali(x) ⇔ (∃y : auxsati+(x, y) ∧ sat(y))
∨ (∃y : auxsati−(x, y) ∧ ¬sat(y))
∨ (∃y : auxchoicei+ (x, y) ∧ choice(y))
∨ (∃y : auxchoicei− (x, y) ∧ ¬choice(y)).

Introduce unary relation clause(x) and impose

clause(x)⇔ literalleft(x)∨ literalmiddle(x)∨ literalright(x).

Finally, introduce query and

query⇔ ∀x : clause(x).

Take N = n; given our previous discussion we have
n = m. Individuals are referred as {1, . . . , N} and
have a dual purpose, indexing both propositions and
clauses.

Take evidence E as follows. For the ith clause, sup-
pose the left literal is Aj . If j > k, set auxsatleft+(i, j)
to true, and all other auxsatleft+(i, y) to false; also set
all auxsatleft−(i, y) to false, all auxchoiceleft+ (i, y) to false,
and all auxchoiceleft− (i, y) to false. If instead i ≤ k, set
auxchoiceleft+ (i, j) to true, and all other auxchoiceleft+ (i, y) to
false; also set all auxchoiceleft− (i, y) to false, all auxsatleft+(i, y)
to false, and all auxsatleft−(i, y) to false.

Suppose instead that for the ith clause the left literal
is ¬Aj ; follow the previous paragraph, but exchange
+ and −. Repeat similarly for middle and right lit-
erals, but using middle and right as appropriate. Fi-
nally, decide whether P(query(1) = 0) > 1/2. If YES,
the E-MAJSAT problem is accepted, if NO, it is not
accepted. Hence we have the desired reduction. �



Theorem 5 DINFd(FFFO) is PP-complete for cou-
pled relational credal networks.

Proof. For coupled relational credal networks, PP-
hardness is obtained by encoding any E-MAJSAT
problem with k = 0 in the previous proof, and not-
ing that MAJSAT is a PP-complete problem [27]. To
prove pertinence to PP, we will use the fact that PP
is closed under union, a celebrated result in complex-
ity theory [4]. Take a fixed relational credal network
and note that there is a fixed number (possibly large)
of relational Bayesian networks that can be gener-
ated by selecting each one of the possible endpoints of
probability intervals. Each one of these M relational
Bayesian networks specifies a set of strings, consisting
of those strings containing N and associated evidence,
such that the inference problem yields YES if a string
is accepted. That is, we have M sets of accepted
strings, and our problem is: given a string with N
and evidence, accept it if any one of those M sets of
strings contains it. But note that each set of strings
defines a PP decision problem (the problem of accept-
ing the strings), as each relational Bayesian network
can be grounded into a polynomially larger Bayesian
network, and inference can be conducted in the latter
network. So our main problem is to consider a set
of strings that is the union of the M set of strings;
because PP is closed under union, the main problem
is in PP as well. �

As noted previously, PP is the class of problems that
can be solved by “majority” Turing machines with a
polynomial bound; they are usually related to count-
ing problems [20]. And NPPP is the class of problems
that can be solved by a nondeterministic Turing ma-
chine with a polynomial bound, with the “help” of an
oracle that returns the solution PP given problems.
Intuitively, we should expect the latter problems to be
significantly more taxing than the former (but current
literature does not seem to have a result on whether
they are different or not).

6 Conclusion

We have explored the balance of expressivity and com-
plexity in Boolean credal networks. We have recently
proposed a framework for such an analysis, geared to
Bayesian networks [9]; this paper is a first step in ex-
tending the framework to credal networks.

We have discussed both propositional and relational
languages, and for relational languages we have stud-
ied combined and data complexities. Theorem 1 re-
veals a class of credal networks that admits poly-
nomial inference, a property shared by few other
classes [10]; the result is surprising in that it repro-

duces the polynomial character of Bayesian networks
under the same language. And in the opposite di-
rection, Theorems 4 and 5 show distinctions between
Bayesian and credal networks, as in the latter there is
more than one reasonable semantics to choose from,
and the choice does have an impact on complexity.
Surprisingly, for coupled relational credal networks
the data complexity is identical to the data complex-
ity of relational Bayesian networks.

Perhaps the most compelling aspect of our frame-
work is the number of questions it raises. Consider
a simple fact. It is usually assumed that one can
arbitrarily choose between computing an upper or
a lower probability, as they are directly related by
P(A|B) = 1 − P(Ac|B) [29]. But if a language does
not have negation, it may not be possible to formu-
late P(Ac|B) as a query, and it may then be harder
to produce a lower probability than an upper proba-
bility. This sort of phenomena can only be explored
when we pay attention to languages. In fact, the key
difference between Bayesian and credal networks is
the language that is used to express assessments.

There are many languages to explore concerning the
complexity of credal networks. There are several frag-
ments of function-free first-order logic that are widely
used, such as monadic logic [5]; there are guarded
fragments and description logics such as DL-Lite, EL,
ALC [2]; there are also languages based on second-
order logic and various modal logics. For all these
logical languages, one can ask combined and data
complexity, not only for inference, but also for other
problems of common interest such as maximum a pos-
teriori configurations (MAP). All such problems await
detailed investigation.
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