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Abstract. Plate-based probabilistic models combine a few relational
constructs with Bayesian networks, so as to allow one to specify large and
repetitive probabilistic networks in a compact and intuitive manner. In
this paper we investigate the combined, data and domain complexity of
plate models, showing that they range from polynomial to #P-complete
to #EXP-complete.

1 Introduction

The desire to tackle complex decision scenarios, where many variables interact
and vast quantities of data are collected, has produced various modeling lan-
guages based on graphs. For instance, Bayesian and Markov networks offer visu-
ally pleasant tools by which one can represent interacting variables [8, 14, 18]. In
practice, several scenarios display repetitive patterns that can be best encoded
using relations, domains, and individuals. To address this reality, formalisms
have been proposed that combine features of Bayesian and Markov networks
with relational languages; for instance, plates [16], Markov logic networks [7],
relational Bayesian networks [6].

Plate-based probabilistic models are possibly the simplest and most success-
full of these “probabilistic relational models”. By capturing symmetries in the
model, plates make communication and modelling much more efficient. Plates
are simple to draw, easy to understand, and quite powerful in what they can rep-
resent. Plate models have been extensively used in statistical practice [15] since
they were introduced with the BUGS project [13, 16]. In machine learning, they
have been used (often informally) to convey several models since their first ap-
pearance [10]. One example is the smoothed Latent Dirichlet Allocation (sLDA)
model [9], usually represented with plates as in Figure 1 (explained later).

In this paper we present results on the inferential complexity of plate models,
a topic that seems not to have received due attention. There are (at least) three
kinds of complexity results that are of interest in this context [11]: first, the
combined complexity of inferences, where model, evidence and domain are given
as input; second, the data complexity, where query, evidence and domain are
given as input (and we fix a model); finally, the domain complexity, where only
the domain is given as input (and model, query and evidence are fixed).

We start with the original plate models (Section 2), where nodes in a plate
can only have children inside the same plate, and we investigate their inferential
complexity (Section 3). We first look into the combined complexity, which we
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Fig. 1. Smoothed Latent Dirichlet Allocation, a plate model.

show to be #P-complete; this is a surprising result given that plates can generate
grounded models that are exponentially large on their description size (hence a
naive approach to inference would take exponential time). We show data com-
plexity also to be #P-complete, and domain complexity to be constant. We then
move to more general plate models where a node can have children in any plate
(Section 4). Here it is necessary to allow “aggregation functions” that specify
probability values. We focus on the simplest combination functions, and show
that combined complexity leads to #EXP-complete inference, while data com-
plexity leads to #P-complete inference.

2 Plates

In this section we define plate models and some related concepts; because the
literature does not have a standard formalization, we start from somewhat basic
notions. We only deal with finite spaces, so every variable has finitely many
values, leaving for the future a study of continuous variables [5].

A Bayesian network consists of a directed acyclic graph where each one of
its n nodes is a random variable Xi, and where the following Markov condition
holds: any Xi is independent of its nondescendants given its parents. Addition-
ally, a Bayesian network contains a set of conditional probability distributions:
for each Xi, we have P(Xi = xi|pa(Xi) = πi) for all values xi and πi (pa(Xi)
denotes the parents of Xi in the graph). The Markov condition implies the fac-
torization P(X1 = x1, . . . , Xn = xn) =

∏n
i=1 P(Xi = xi|pa(Xi) = πi), where πi

is the projection of x1, . . . , xn on pa(Xi) [18]. As a simple example [14], assume
we want to infer the performance of John (a student), as given by his grade; the
performance is affected by John’s intelligence and by the course’s difficulty. This
is graphically represented as GradeDifficulty Intelligence . Now we may be
interested in a set of students; we use Grade(ci, sj) to denote the grade of student
sj in course ci; similarly, Difficulty(ci) denotes the difficult of the ith course and
Intelligence(sj) the intelligence of the jth student. A Bayesian network for two
students and two courses is shown in Figure 2. The very same model can be
described using plates as in Figure 3 [13].

To define plate models more formally, we adopt the following concepts, mix-
ing definitions by Koller and Friedman [14, Chap. 6] and terminology by Poole
[19]. We first take any logical variable (logvar) to be typed, ranging over a finite
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Fig. 2. Bayesian network with repetitive structure.
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Fig. 3. Plate model for the network in Figure 2.

set, called its domain. Note: in the language of plates each logical variable is
uniquely attached to a symbol, from which we can deduce its domain. A pa-
rameterized variable (parvariable) X is a function that yields a random variable
X(x 1, . . . , x k) for each instantiation of the logvars x 1, . . . , x k (all typed). All the
random variables in the image of a parvariable take values in the same space
(hence we can unambiguously talk about the space of values of parvariables).
Denote by logvar(X) the tuple of logvars associated with parvariable X. A plate
graph consists of a directed acyclic graph where each node Xi is a parvariable,
and such that for any Xi and Y ∈ pa(Xi), logvar(Y ) ⊆ logvar(Xi).1 If two nodes
share a logvar they are said to belong to the same plate. Each plate is usually
indicated by a rectangle, containing the parvariables that belong to the plate,
and information about the logvars in the plate. A plate model consists of a plate
graph and, additionally, a template conditional probability distribution for each
parvariable Xi, that yields P(Xi = xi|pa(Xi) = πi) for all possible values xi and
πi. Template distributions are often called parfactors [19]; the latter word is also
used to refer to arbitrary functions over parvariables.

To specify the semantics of plate models, we need an additional piece of
notation. Suppose we have an ordered set of logvars −→x = (x 1, . . . , x k) and one
of its possible instantiations, −→a = (a1, . . . , ak); then, given another ordered set
of logvars, −→x ′, denote by −→x ′[−→x /−→a ] the ordered set where, for each possible i,
x i is replaced by ai.

Concerning semantics, a plate model represents a (possibly large) Bayesian
network, constructed as follows. First, for each parvariable X, generate all in-
stantiations of logvar(X) (as they range over their domains), and for each instan-
tiation −→a create a node X(−→a ). Second, for each parvariable X, generate again
all instantiations of its logvars; for each instantiation −→a = (a1, . . . , ak) and for

1 Note that the definition of plate model in Ref. [14] does not require acyclicity, but
this seems to be a necessary requirement in all the relevant literature.



each Y in pa(X), add an edge from Y (logvar(Y )[logvar(X)/−→a ]) to X(−→a ). Third,
associate each grounded parvariable with the corresponding template conditional
distribution.

The graph in Figure 2 is the “grounding” of the plates model in Figure 3: x
runs over a set containing courses c1 and c2, and y runs over a set containing stu-
dents s1 and s2. To complete specification of the grounded Bayesian network, we
must have template probabilities. Suppose, for instance, that all variables are bi-
nary, and P(Difficulty(x ) = 0) = 1/3. Then we have both P(Difficulty(c1) = 0) =
1/3 and P(Difficulty(c2) = 0) = 1/3 in the grounded Bayesian network.

The plates we have defined so far are the “classic” plates that first appeared
with the BUGS system [16]. One of their limitations is that a node only has
children inside the same plate (we assume there is a “base plate” containing all
nodes). In practice plate models go beyond this, by letting a node to have children
in other plates. See for instance the sLDA model in Figure 1: here φ(z) has a
child W (x , y). The semantics of these enhanced plates is discussed in Section 4.

3 The complexity of “classic” plate models

We now examine the complexity of inference with classic plate models. In this
context, an inference typically refers to the calculation of a conditional probabil-
ity P(Q|E), where Q and E are sets of assignments {X(−→a ) = x} (understood as
conjunctions). We assume that Q and E are not contradictory (i.e., that they do
not contain different assignments to the same variable) and that P(E) > 0 so that
the inference is well-defined. Note that checking whether this last assumption
holds is again an inference problem. As an example of inference, consider com-
puting P(Difficulty(c1)=1|Intelligence(s2)=1,Grade(c1, s2)=0,Grade(c2, s2)=1).
The set Q is the query and the set E is the evidence.

To discuss the complexity of inferences, we need a few concepts. The com-
plexity class #P is the class of integer-valued functions computed by counting
Turing machines in polynomial time; a counting Turing machine is a standard
nondeterministic Turing machine that prints in binary notation, on a separate
tape, the number of accepting computations induced by the input [21]. Thus,
#P contains the counting versions of NP-complete problems. If a problem is #P-
hard and can be solved with one call to a #P oracle and with polynomial-time
computations (i.e., if it belongs to FP#P [1]), it is said to be #P[1]-equivalent [12].
Roth [20] showed that inference in Bayesian networks is #P-hard. Because in-
ference can be reduced to counting solutions of NP-complete problems followed
by a normalization step [8], the problem is #P[1]-equivalent [12]. Note that one
cannot assert #P-completeness of such inferences, as #P produces integers and
inference produces rationals. Later we will need the class #EXP; that is, the
class of functions computed by counting Turing machines in exponential time
(the number of accepting paths may have exponential size) [17]. A problem is
#EXP[1]-equivalent if it is #EXP-hard and can be solved with one call to a
#EXP oracle whose result x is processed through a function h(x) that requires
polynomial time with respect to the size of x.



A plate model can specify any Bayesian network: just define all parvariables
without logvars. Hence the calculation of P(Q|E) for plate models is #P-hard.
Now consider a generic plate model, with as many logvars (as many plates)
as needed. For each plate, a domain must be specified; suppose the domain is
given as a list of elements. This assumption means, in essence, that we are not
contemplating compact ways to specify the domain (for instance, one might just
give a number N in binary notation, with the understanding that the domain is
{1, 2, . . . , N}; we do not deal with this case here).

Even an explicit specification for domains can lead to exponentially large
grounded Bayesian networks. By taking M nested plates, each with a domain
consisting of N elements, a single parvariable can specify NM random variables.
Here is a simple example. Suppose we are interested in groups of individuals; for
instance, we wish to model the parvariable Family that indicates whether or not
M individuals are related. We draw:

Family(x1, . . . , xM )
x1 x2 . . . xM

Assuming we have N individuals, the grounding of this plate model has NM

grounded nodes. In this example inference is trivial as all random variables are
independent. If we instead had several parvariables connected in complex ways,
we might face a very dense, exponentially large Bayesian network. This might
suggest that calculation of probability values would take us to#EXP in the worst
case. The nice fact about plate models is that inference has the same complexity
of Bayesian networks, despite the possibly exponential size of grounded Bayesian
networks:

Theorem 1 Inference in plate models is #P[1]-equivalent.

Proof. Clearly, the problem is #P-hard, so it suffices to show it can be com-
puted with one call to #P plus polynomial-time post-processing. We achieve
this by showing that, in any given inference, only a polynomially-large fragment
of the (possibly exponentially-large) grounded Bayesian network is necessary,
and inference in this fragment is known to be #P[1]-equivalent.

We are to compute P(Q|E). Suppose we produce the complete grounded
Bayesian network. All nodes that appear in Q and in E appear in this network.
The fragment consisting of these grounded nodes and their (grounded) ances-
tors is the sub-network that contains all information needed for inference; other
grounded nodes can be discarded [18]. This fragment may contain disconnected
sub-networks; the only sub-network that matters for the computation of P(Q|E)
is the sub-network that contains the grounded parvariables in Q. Refer to this
fragment of the original grounded as the requisite network.

Suppose there are m grounded nodes in Q∪E. For any grounded node W in
this set, the number of ancestors of W is less than the number of (parvariable)
nodes in the plate model. For instance, in our last example, the ancestors of a



grounding of Grade contain exactly one grounding of Difficulty and one grounding
of Intelligence. Now if there are n parvariables in the plate model, there are at
most mn grounded nodes in the requisite network. By running inference in this
requisite network, we obtain the desired result. �

This result focuses on the combined complexity of plate models; that is, the
complexity of inference when plate model, query, evidence, and domains are
given as input. However, in practice we may be more interested in the com-
plexity of inferences when the model is fixed. This is justified when we expect
the model to be small but the data to be abundant. For instance, we may be
interested in modeling relations in a social network; we may have a few relations
(friendship, marriage, etc), but an enormous amount of data. The complexity of
inference when query, evidence and domains are inputs (and the model is fixed)
is called the data complexity of inference; similarly, we may be interested in a
fixed model and fixed query/evidence, with only the domains as the input; in this
case we have domain complexity [11]. Data and domain complexities are directly
related to the concepts of lqe-liftability and domain-liftability that are often em-
ployed in the literature on lifted inference of probabilistic relational models [4].
Lqe-liftability means that data complexity is polynomial, and domain-liftability
means that domain complexity is polynomial.

Concerning the data complexity of plates, we have:

Theorem 2 Inference in plate models when the model is fixed is #P[1]-equivalent.

Proof. Given Theorem 1, we only need to show hardness. Consider a monotone
2-CNF formula on propositional variables a1, . . . , an with m clauses. We call ai
and aj left and right variables, respectively, of the clause ai ∨ ak. We assume
an ordering of the clauses, so that we can refer to the left (right) variable of
ith clause. Counting the number of assignments to the variables that make the
sentence true is a #P-complete problem [21]

Build the plate model in Figure 4. Both the logvars x and y index the propo-
sitions in the CNF formula; their domains are {1, . . . , n}. A grounded variable
Left(i) represents the proposition ai when it appears as the left variable in a
clause. Similarly, Right(j) represents aj when it appears as the right variable.
Impose P(Left(x )) = 1/2, P

(
Right(y)

)
= 1/2. The Equivalence(x , y) parvariable

enforces that Left(i) and Right(j) must take on the same value whenever they
represent the same proposition; this is achieved by imposing

P
(
Equivalence(x , y) = 1|Left(x ),Right(y)

)
=

{
1, if Left(x ) = Right(y),
0, if Left(x ) 6= Right(y).

Finally, Disjunction(x , y) encodes a clause with propositions Left(x ) and Right(y):
P
(
Disjunction(x , y) = 1|Left(x ),Right(y)

)
= 0 if Left(x ) = Right(y) = 0 and

P
(
Disjunction(x , y) = 1|Left(x ),Right(y)

)
= 1 otherwise.

Now create the evidence E that contains for each i = 1, . . . , N (that is, for
each proposition), the assignment {Equivalence(i, i) = 1}. Likewise, create the
query Q containing for each clause the assignment {Disjunction(i, j) = 1}, where
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Fig. 4. A plate model that counts satisfying assignments of monotone 2-CNF formulas.

ai and aj are, respectively, the left and right variables of the ith clause. Building
this plate model takes polynomial time in the size of the CNF formula. One can
check that P(Q|E) equals the number of satisfying assignments of the formula
up to a (polynomial-time computable) constant. �

The proof of Theorem 1 shows that the size of domain is irrelevant once the
model, query and evidence are fixed. Hence, domain complexity is constant:

Theorem 3 Inference in plate models, when the model, query and evidence are
fixed, takes constant time.

4 Enhanced plate models

We now consider plate models where a node in a plate can have children in
other plates; we refer to these as enhanced plate models. As before, to guarantee
that such a definition works for all cases, we assume that there is a “base plate”
encompassing all nodes, so that a node outside of all drawn plates is already in
the base plate, and it can have children in other plates. We do not draw the base
plate in our plate models.

A popular model that employs enhanced plate models is sLDA, depicted in
Figure 1. Here the logvar z runs over a set of topics, while x runs over a set of
documents, and y runs over a designated set of strings. The node W (x , y) is the
child of φ(z); grounding produces:

φ(t1) . . . φ(tK)

W (d1, s1) . . . W (d1, sN ) . . . W (dM , s1) . . . W (dM , sN )

Now consider a particular grounded variable W (d, s); the number of parents
of this variable in the grounded graph depends on the number of topics (that
is, on the size of domain of z). Hence the template probability P

(
W (x , y)|φ(z)

)
must specify which procedure is to be used to produce probability values given
the domains. The typical solution is to allow aggregation functions to be given [14],
where an aggregation function takes a set of groundings, and assignments for
them, and produces a probability value out of them. Another strategy is used in



relational Bayesian networks, where combination functions are adopted to com-
pute probability values [6]. Now we need to be careful when selecting a family
of aggregation functions lest the complexity of inference may be dictated by
the complexity of a single aggregation function. For example, consider allowing
a function that counts the number of solutions of an EXP-complete problem.
Then clearly the inference problem is #EXP-hard. On the other extreme, con-
sider aggregation functions that return constant values; these functions act as if
disconnecting the parents from the child, and do not add any expressivity over
classic plate models.

We choose to investigate the simplest possible language, where all parvari-
ables are binary (have two values), and aggregation functions are specified using
existential quantifiers. Such quantifiers can describe many common phenomena;
for instance, they can be used to specify Noisy-Or models [18]. Moreover, existen-
tial quantifiers are easily computed, and concisely specified. Say we have a par-
variable Y with parent X(x ), and x takes values in {a1, . . . , aN}. The grounded
Bayesian network contains the variable Y with parents X(a1), . . . , X(aN ). Then
the corresponding conditional distribution is P(Y = 1|X(a1), . . . , X(aN )) = 0 if
X(a1) = · · · = X(aN ) = 0 and P(Y = 1|X(a1), . . . , X(aN )) = 1 otherwise. This
can be stated more concisely as Y = ∃xX(x ).

Now suppose the model has another variable Z with P(Z|Y ) = 1 if Z 6= Y
and P(Z|Y ) = 0 if Z = Y . That is, Z = ¬Y . Then P(Z|X(x )) = ¬∃xX(x ) =
∀x¬X(x ). Thus we assume, as a syntactic sugar, that we can specify aggregation
functions containing arbitrary logical formulas with existential and universal
quantifiers, and that we specify the aggregation function as a first-order logical
expression: for example, Y =

(
∃x ∀yZ(x , y) ∧ ¬X(x )→W (y)

)
.

Given that we may have a polynomial number of nested plates, and this
produces an exponential number of groundings, one might suspect that inference
with enhanced plates requires exponential effort. However, it is not obvious how
to prove this, because the language of plate models does not allow us to directly
build standard complete problems for exponential classes. We have the restriction
that each logvar is tied to a plate/domain; hence we cannot write a logical
expression such as X(x )→ ¬X(y), where the same parvariable X appears with
distinct logvars. However, our main result in this section shows that exponential
behavior is actually realized:

Theorem 4 Inference in enhanced plate models is #EXP[1]-equivalent.

Proof. To prove pertinence, note that an enhanced plate model can be grounded
into an exponentially larger Bayesian network, and inference can be carried out
in that network (which implies it can be solved with one call to a #EXP machine
and some exponential-time post-processing).

To prove hardness, we resort to bounded domino problems; indeed, we will
build a plate model (Figure 5) that encodes a domino problem. A domino system
consists of a finite set D of tiles and a pair of compatibility relations H and
V , both on D × D, respectively expressing horizontal and vertical constraints
between tiles. The idea is that tiles are to be placed in points of a torus Ns×Nt,



where Ns denotes the integers modulo s, and that adjacent tiles need to satisfy
the constraints H and V . Such a torus is denoted compactly by U(s, t).

Some tiles, the initial conditions, are assigned to the first n points in the
bottom row of torus U(s, t). We denote by d0i the ith initial condition; that is,
the initial condition for point (i, 0). The torus has a tiling if it is possible to
cover the whole torus while respecting the compatibility relations and the initial
conditions. That is, there must be a mapping τ : U(s, t) → D such that for
all (x, y) ∈ U(s, t), (i) (τ(x, y), τ(x + 1 mod s, y)) ∈ H; (ii) (τ(x, y), τ(x, y + 1
mod t)) ∈ V ; (iii) τ(i, 0) = d0i for 0 ≤ i < n.

Börger et al. showed that given a (time/space) bounded Turing machine
one can construct a bounded domino system that reproduces its behavior [2,
Thm. 6.1.2]. Unfortunately in their construction the number of accepting paths
in the Turing machine and the number of tilings in the domino system may
differ, and this is inappropriate for a counting class such as #EXP. We need
to produce a parsimonious reduction [3, Sec. 18.1]; that is, a reduction that
preserves the number of accepting paths in the Turing machine. To do it, we
must recapitulate the construction by Börger et al. They start by assuming that
we have a simple nondeterministic Turing machineM over alphabetΣ containing
a blank character. That is, the Turing machine works on a single semi-infinite
tape where cells are numbered from 0 on; the machine never tries to move to the
left of the first cell, and at every stage of the computation there is some integer
n such that cells 0 to n contain non-blank characters and all other cells contain
blanks; finally, the machine has a unique accepting state qa, in which the tape
contains only blanks and the head is in the first cell. Given any Turing machine,
we can enlarge it polynomially so that it satisfies these restrictions, as described
by the following result (the proof is omitted due to space constraints, but it can
be produced by an explicit construction):

Lemma 1 Let M be a simple nondeterministic Turing machine with alphabet
Σ, input alphabet Σ′, and set of states Q. An input x is a sequence σ′0σ′1 . . . σ′n−1.
Then there exists a domino system and a linear-time reduction that takes any
input x to a sequence d0 of n tiles such that:
(i) if M accepts x in time t0 and space s0 then for any accepting computation
there is a single tiling for torus U(s, t) with initial condition d0 where s and t
are polynomials on s0, t0, and M ;
(ii) ifM does not accept x then the torus U(s, t) is not tiled with initial condition
d0 for all s, t ≥ 2.

Hence, counting the number of tilings is a #EXP-complete problem. From
now on we assume that we have a domino system with m tiles (|D| = m)
specifying a torus U(2n, 2n) and initial conditions d0i . . . d0n−1. Our goal is to
reduce the problem of counting tilings to an inference in an enhanced plate
model. Our reduction is inspired by a similar result by Tobies [1].

First we need to represent the positions of the torus; we do so by creating
2n logical variables x0,0, . . . , x0,n−1 and x1,0, . . . , x1,n−1. All these variables have
the same binary domain {0, 1}. The idea is that these variables represent the
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Fig. 5. Counting tilings of a torus with a plate model. Each plate is actually a set of
n nested plates, one for each logvar in the indicated vector of logvars. Nodes s3, s4, s5
and s5 encode auxiliary logical expressions indicated in the text.

coordinates of a position (x, y) in the torus in the following way: an assignment
−→a to −→x 0 = (x0,0, . . . , x0,n−1) represents the value of x (the column) in binary
notation, while an assignment

−→
b to −→x 1 = (x1,0, . . . , x1,n−1) represents the value

of y (the row) in binary notation. To make the presentation more clear and
succinct, we treat all these logical variables as a single variable −→x whose domain
are the natural numbers between zero and 22n. One should bear in mind that
this is simply syntactic sugar (so the reduction is polynomial in the input).

The proof builds two torus, which we force to be identical. The positions
of the second torus are represented by the logical variables −→y whose combined
domain are the natural numbers between zero and 22n − 1. Here again, this is
simply syntactic sugar to avoid writing 2n logical variables with binary domains.



We create parvariables X0(
−→x ), . . . , Xn−1(

−→x ) and Y0(
−→x ), . . . , Yn−1(

−→x ) to
represent the x- and y-coordinates of the positions in binary notation. Thus
a position (x, y) is encoded as x =

∑n−1
i=0 Xi(x, y) · 2i and y =

∑n−1
i=0 Yi(x, y) · 2i.

The row and column of a position in the second torus are represented by parvari-
ables X+

0 (−→y ), . . . , X+
n−1(
−→y ) and Y +

0 (−→y ), . . . , Y +
n−1(
−→y ). We impose P(Xi = 1) =

P
(
X+
i = 1

)
= P(Yi = 1) = P

(
Y +
i = 1

)
= 1/2 (here and elsewhere we omit log-

vars to save space). We need to specify the concept of adjacent positions; to this
end we introduce parvariables East(−→x ,−→y ) and North(−→x ,−→y ), and specify:

East(−→x ,−→y ) =

n−1∧
k=0

(∧k−1j=0Xj(
−→x ))→ (Xk(

−→x )↔ ¬X+
k (
−→y )) ∧

n−1∧
k=0

(∨k−1j=0¬Xj(
−→x ))→ (Xk(

−→x )↔ X+
k (
−→y )),

∧
n−1∧
k=0

(Yk(
−→x )→ Y +

k (−→y )) ∧ (¬Yk(−→x )→ ¬Y +
k (−→y ))),

North(−→x ,−→y ) =

n−1∧
k=0

(∧k−1j=0Yj(
−→x ))→ (Yk(

−→x )↔ ¬Y +
k (−→y )) ∧

n−1∧
k=0

(∨k−1j=0¬Yj(
−→x ))→ (Yk(

−→x )↔ Y +
k (−→y )

∧
n−1∧
k=0

((Xk(
−→x )→ X+

k (
−→y )) ∧ (¬Xk(

−→x )→ ¬X+
k (
−→y ))).

Parvariable East(−→x ,−→y ) indicates whether −→y is the position immediately to the
right of −→x ; similarly, North(−→x ,−→y ) indicates whether −→y is the position imme-
diately above −→x . We need to enforce that the positions of −→x and −→y with
−→x = −→y have the same encoding: EqualX(−→x ,−→y ) =

∧n−1
k=0 Xk(

−→x ) ↔ X+
k (
−→y ),

EqualY(−→x ,−→y ) =
∧n−1
k=0 Yk(

−→x )↔ Y +
k (−→y ). We can now create variables to define

the adjancency of every position: A1 = ∀−→x : ∃−→y : East(−→x ,−→y ), A2 = ∀−→x : ∃−→y :
EqualX(−→x ,−→y ), A3 = ∀−→y : ∃−→x : EqualX(−→x ,−→y ), A4 = ∀−→x : ∃−→y : North(−→x ,−→y ),
A5 = ∀−→x : ∃−→y : EqualY(−→x ,−→y ), A6 = ∀−→y : ∃−→x : EqualY(−→x ,−→y ).

We then need to represent the base row (so that we can establish an ori-
gin and initial conditions for the torus). We create a parvariable B′i(

−→x ), for
each i = 0, . . . , n − 1, such that B′i(

−→x ) reflects the binary encoding of i, as
follows: B′0(

−→x ) =
∧n−1
k=0 ¬Xk(

−→x ), B′1(
−→x ) = X0(

−→x ) ∧
∧n−1
k=1 ¬Xk(

−→x ), B′2(
−→x ) =

¬X0(
−→x )∧X1(

−→x )∧
∧n−1
k=2 ¬Xk(

−→x ), and so on. Now specifyB(−→x ) =
∧n−1
k=0 ¬Yk(

−→x )
and, for each i ∈ {0, . . . , n−1}, Bi(−→x ) = B′i(

−→x )∧B(−→x ). The parvariable B(−→x )
indicates that the position is in the base row, and the parvariable Bi(

−→x ) indi-
cates that the position is in the ith column. Together, they specify the relevant
part of the base row that we need to specify the initial tiles. We must enforce
an origin for the torus, so we introduce: A7 = ∃−→x : B0(

−→x ).



At this point, by fixing
∧7
i=1Ai we build a torus of size 2n × 2n. It remains

to represent the horizontal, vertical and initial constraints.
We introduce a pair Cj(

−→x ) and C+
j (
−→y ) for each possible tile. For each tile

j = 1, . . . ,m, we impose P
(
Cj(
−→x )
)
= P

(
C+
j (
−→y )
)
= 1/2. Each position of the

torus must have one and only one tile:

A8 = ∀−→x :

∨
j∈C

Cj(
−→x )

 ∧
 ∧
j∈C,k∈C,j 6=k

¬(Cj(−→x ) ∧ Ck(−→x ))

 .

Moreover, the tiles must satisfy the horizontal and vertical restrictions:

A9 = ∀−→x :
∧
j∈C

Cj(
−→x )→ (∀−→y : East(−→x ,−→y )→ ∨k:(j,k)∈HC+

k (
−→y )),

A10 = ∀−→x :
∧
j∈C

Cj(
−→x )→ (∀−→y : North(−→x ,−→y )→ ∨k:(j,k)∈V C+

k (
−→y )).

Now make both sets of parvariables related to tiles behave the same:

A11 =
∧
j∈C
∀−→x : ∀−→y : C+

j (
−→y ) ∧ East(−→x ,−→y )→ Cj(

−→x ),

A12 =
∧
j∈C
∀−→x : ∀−→y : C+

j (
−→y ) ∧ North(−→x ,−→y )→ Cj(

−→x ).

Finally, we impose the initial conditions: A13 = ∀x :
∧n−1
i=0 Bi(

−→x ) → C0
i (
−→x ),

where C0
i represents the ith tile as given by initial condition.

Computing the probability of A14 =
∧13
i=1Ai produces the probability that a

tiling is built satisfying all horizontal and vertical restrictions and the initial con-
dition. If we can recover the number of tilings of the torus from this probability,
we obtain the number of accepting computations of the exponentially-bounded
Turing machine we started with. Assume we have P(A14 = 1). Then P(A14 = 1)×
2δ is the number of truth assignments that build the torus satisfying horizontal
and vertical relations and initial conditions, where δ = 22n(2n + 22n+1 + m).
However, this number is not equal to the number of tilings of the torus. To see
this, consider the grounded Bayesian network where each a in the domain is as-
sociated with a “slice” containing groundings Xi(a), Yi(a), Cj(a) and so on. If a
particular configuration of these indicator variables corresponds to a tiling, then
we can produce the same tiling by permuting all elements of the domain with
respect to the slices of the network. Intuitively, we can fix a tiling and imagine
that we are labelling each point of the torus with an element of the domain;
clearly every permutation of these labels produces the same tiling (this intuition
is appropriate because each a corresponds to a different point in the torus).
So, in order to produce the number of tilings of the torus, we must compute
P(A14 = 1) × 2δ/(22n!), where we divide the number of satisfying truth assign-
ments by the number of repeated tilings. Consequently we obtain the number
of accepting computations of the original Turing machine just by processing the
inference P(A14 = 1), proving the desired result. �



Concerning the data complexity of enhanced plates, we have:

Theorem 5 Inference in enhanced plate models when the model is fixed is #P[1]-
equivalent.

Proof. Hardness follows from Theorem 2. To show pertinence, consider that,
once the plate model is fixed, the arity of any relation is fixed. And given the
domains as input, the combined domain has size that is a polynomial on the
domains (where the maximum arity appears in the exponent). So one can then
produce a grounded Bayesian network of size polynomial in the input. The result
follows as inference in the grounded Bayesian network belongs to FP#P[1]. �

Concerning domain complexity, the fact that one can build complex logical
expressions using plates (see the proof of Theorem 4) suggests that polynomial
behavior cannot be expected [4]. However, we have not been able to provide
precise lower and upper bounds on domain complexity, so we leave this as a
challenge for future work.

5 Conclusion

Plates allow large Bayesian networks to be concisely described, and are partic-
ularly useful when one faces scenarios with many variables and intricate rela-
tions. Despite the popularity of plate models, few results on their complexity
are available. We have presented here a number of results concerning the com-
plexity of “classic” and enhanced plates; the former display #P[1]-equivalent
combined/data complexity (despite the fact that they may induce exponentially
large groundings), while the latter display #EXP[1]-equivalent combined com-
plexity and #P[1]-equivalent data complexity. The results on enhanced plates
are obtained when all relations are binary and aggregation functions are based
on existential quantification. It is not difficult to see that exponential complexity
there stems from the nesting of plates; in fact, if the level of nesting is limited,
the combined complexity goes down to #P[1]-equivalent.

There are several avenues open for future work. The domain complexity of
enhanced plate models is an open problem. Also, plate models are often aug-
mented with additional resources to allow recursive descriptions and structural
uncertainty [14]; the complexity of these more sophisticated languages deserves
analysis. Finally, it would be interesting to examine more restricted languages;
for instance, languages where evidence can only be “positive”, or where aggrega-
tion functions can only have some bounded complexity.
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