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Abstract. This paper introduces a probabilistic description logic that adds proba-
bilistic inclusions to the popular logic ALC, and derives inference algorithms for
inference in the logic. The probabilistic logic, referred to as CRALC (“credal”
ALC), combines the usual acyclicity condition with a Markov condition; in this
context, inference is equated with calculation of (bounds on) posterior probability
in relational credal/Bayesian networks. As exact inference does not seem scalable
due to the presence of quantifiers, we present first-order loopy propagation meth-
ods that seem to behave appropriately for non-trivial domain sizes.

1 Introduction

A description logic offers a formal language where one can describe concepts such as
“A mother is a woman who has a child” [2]. To do so, a description logic typically uses
a decidable fragment of first-order logic, and tries to reach a practical balance between
expressivity and complexity. The last decade has seen a significant increase in interest
in description logics as a vehicle for large-scale knowledge representation, for instance
in the semantic web [4]. Indeed, the language OWL, proposed by the W3 consortium
as the “data layer” of their archictecture for the semantic web, is an XML encoding for
quite expressive description logics [21].

Description logics are not geared towards the representation of uncertainty about
individuals and concepts: one cannot express that “with high probability, a bird is a
flying animal”. The literature contains a number of proposals that add probabilistic
uncertainty to description logics, as this is central to the management of semantic data
in large repositories. The goal of this paper is to contribute in such a direction.

In this paper we consider a probabilistic extension of the popular logic ALC , where
we allow probabilistic inclusions such as P (FlyingBird|Bird) = 0.99. Section 2 offers
a brief appraisal of related work in the literature. The syntax and semantics of our pro-
posed probabilistic logic are introduced in Section 3. A notable feature of our proposal
is that we adopt an interpretation-based semantics that avoids the challenges of direct
inference and lets us deal smoothly with probabilities over assertions. We then adopt a
Markov condition, attached to the usual acyclicity condition of description logics, that
connects the logic with the theory of relational credal/Bayesian networks. In Section 4
we discuss the inference problem for the logic, and note that exact inference does not
seem to be scalable when quantified concepts are employed. Thus we derive a first-
order version of loopy propagation, and show evidence of the scalability of the method
even when probabilities are not uniquely specified. We briefly discuss infinite domains
in Section 5.
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2 Probabilistic Description Logics

This section reviews the literature on probabilistic description logics; some basic con-
cepts are defined in this paragraph. Assume a vocabulary containing individuals, con-
cepts, and roles [2]. Concepts and roles are combined to form new concepts using a
set of constructors; constructors in the ALC logic [45] are conjunction (C � D), dis-
junction (C � D), negation (¬C), existential restriction (∃r.C), and value restriction
(∀r.C). Concept inclusions/definitions are denoted respectively by C � D and C ≡ D,
where C and D are concepts. A set of concept inclusions and definitions is a termi-
nology. Concept (C � ¬C) is denoted by �, and concept (C � ¬C) is denoted by ⊥
(when we use � or ⊥, we assume them to be defined through some C that does not
appear anywhere else in the terminology). If an inclusion/definition contains a concept
C in its right hand side and a concept D in its left hand side, say that C directly uses
D. Indicate the transitive closure of “directly uses” by uses. A terminology is acyclic
if it is a set of concept inclusions/definitions such that no concept in the terminology
uses itself [2]. Typically terminologies only allow the left hand side of a concept inclu-
sion/definition to contain a concept name (and no constructors). Usually one is interest
in concept subsumption: whether C � D for concepts C and D. A terminology may
be associated to a set of assertions about individuals, such as Fruit(appleFromJohn)
and buyFrom(houseBob, John). A set of assertions A is called an Abox. An asser-
tion C(a) directly uses assertions of concepts (resp. roles) directly used by C instan-
tiated by a (resp. by (a, b) for b ∈ D), and likewise for the “uses” relation in a re-
cursive fashion. The semantics of a description logic is almost always given by a do-
main D and an interpretation I. The domain D is a nonempty set; we often assume
its cardinality to be given as input. The interpretation function I maps each individ-
ual to an element of the domain, each concept name to a subset of the domain, each
role name to a binary relation on D × D. The interpretation function is extended to
other concepts as follows: I(C � D) = I(C) ∩ I(D), I(C � D) = I(C) ∪ I(D),
I(¬C) = D\I(C), I(∃r.C) = {x ∈ D|∃y : (x, y) ∈ I(r) ∧ y ∈ I(C)},
I(∀r.C) = {x ∈ D|∀y : (x, y) ∈ I(r) → y ∈ I(C)}. An inclusion C � D is
entailed iff I(C) ⊆ I(D), and C ≡ D is entailed iff I(C) = I(D). An assertion C(a)
is consistent iff I(a) ∈ I(C) for some interpretation, and likewise for r(a, b); an Abox
is consistent iff all its assertions are consistent at once. Logics in the literature offer
significantly larger sets of features, such as numerical restrictions, role hierarchies, in-
verse and transitive roles (the OWL language contains several such features [21]). Most
description logics have direct translations into multi-modal logics [44] and fragments
of first-order logic [5] (the translation to first-order logic is particularly important here:
each concept C is interpreted as a unary predicate C(x); each role r is interpreted as a
binary predicate r(x, y); other constructs have direct translations into first-order logic,
such as ∃r.C to ∃y : r(x, y) ∧ C(y) and ∀r.C to ∀y : r(x, y)→ C(y)).

Several probabilistic descriptions logics have appeared in the literature. Heinsohn
[20], Jaeger [24] and Sebastiani [46] consider probabilistic inclusion axioms such as
PD(Plant) = α, meaning that a randomly selected individual is a Plant with probabil-
ity α. That is, probabilities are assigned to subsets of the domainD; this characterizes a
domain-based semantics. Sebastiani allows assessments such as P (Plant(Tweety)) =
α as well, specifying probabilities over the interpretations themselves. For example one
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interprets P (FlyingBird(Tweety)) = 0.001 as assigning 0.001 to the probability of
all interpretations where Tweety is a flying bird. This characterizes an interpretation-
based semantics. Overall, most proposals for probabilistic description logics have
adopted a domain-based semantics [13,14,18,20,24,30,33,46,52], while relatively few
have adopted an interpretation-based semantics [6,46]. The difficulty with domain-
based semantics is the problem of direct inference [31]: statistical information about
the domain does not translate into information about individuals. For example, suppose
we learn that P (FlyingBird) = 0.3; a domain-based semantics takes a fixed domain and
fixed interpretation and assigns 0.3 to the probability that an element of the domain is a
flying bird. However, we learn nothing about P (FlyingBird(Tweety)), as the interpre-
tation is fixed and Tweety either is a flying bird, or not. For this reason, most proposals
for probabilistic description logics with a domain-based semantics simply do not handle
assertions. We note that Dürig and Studer do avoid direct inference by only allowing
probabilisties over assertions [14]. Lukasiewicz has proposed another strategy, where
probabilities over terminologies and assertions blend through an entailment relation
with nonmonotonic properties, lexicographic entailment [18,33]. Lukasiewicz consid-
ers probabilistic versions of very expressive description logics; his logic P-SHOIN (D)
is currently the most expressive probabilistic description logic in the literature. In this
paper we prefer not to employ nonmonotonic reasoning.

The probabilistic description logics discussed so far share the property that a set of
formulas may be satisfied by one or more probability measures (in fact, semantics based
on sets of probability measures are often adopted by probabilistic logics [19]). Another
characteristic shared by the probabilistic description logics mentioned so far is that they
do not express judgements of independence. However, there has been significant effort
in combining logical constructs with Bayesian and Markov networks in the last fif-
teen years, so as to benefit from independence judgements rather than to suffer from
their complexities [17,36]. Indeed, several recent probabilistic description logics have
adopted semantics based on Bayesian networks. The first logic to do so, P-CLASSIC,
enlarges the logic CLASSIC with a set of Bayesian networks (“p-classes”) so as to spec-
ify a single probability measure over the domain [30]. A limitation is that P-CLASSIC
does not handle assertions. Some characteristics of P-CLASSIC are present in the log-
ics proposed in this paper (acyclicity and Markov conditions); however our interest in
obtaining meaningful probabilities over assertions, by resorting to interpretation-based
semantics, is a major difference.

Other logics that combine terminologies with Bayesian networks are Yelland’s Tiny
Description Logic [52], Ding and Peng’s BayesOWL language [13], and Staker’s
logic [49] (none can handle assertions). Costa and Laskey’s PR-OWL language [6]
adopts an interpretation-based semantics inherited from Multi-entity Bayesian networks
(MEBNs) [7], and quite similar to the semantics used in this paper. The PR-OWL lan-
guage is more expressive than ours, with less guarantees concerning inference and infi-
nite domains; their inference algorithms are based on incremental propositionalization.
Finally, most constructs in this paper can be also emulated in Nottelmann and Fuhr’s
probabilistic version of the OWL language, however our inference methods are com-
pletely different from theirs [40]. Besides the literature just reviewed, there is a large
body of relevant work on knowledge databases [22] and on fuzzy description logics [34].
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3 A Probabilistic Description Logic: CRALC
Probabilistic inclusions and inferences. Start with a fragment of ALC by discarding
roles for a moment. That is, if C and D are concepts, then ¬C, C � D and C � D
are concepts as well. Concept inclusions and definitions are allowed, denoted by C �
D and C ≡ D where D is a concept and C is a concept name (that is, we do not
allow general concept axioms [2]). Now introduce probabilistic inclusions P (C|D) =
α, where D is a concept and C is a concept name. If D is �, then we simply write
P (C) = α. We are interested in computing a query P (A0(a0)|A) for an Abox A =
{Aj(aj)}Mj=1 (this is an inference).

Acyclicity. Given a probabilistic inclusion P (C|D) = α, say that C “directly uses” B
if B appears in the expression of D; again, “uses” is the transitive closure of “directly
uses”, and a terminology is acyclic if no concept uses itself (Section 2). We assume that
every terminology is acyclic; this is in fact a common assumption for description logics
[2]. The acyclicity assumption allows one to draw any terminology T as a directed
acyclic graph G(T ): each concept name is a node, and if a concept C directly uses
concept D, then D is a parent of C in G(T ).

Domain/interpretation semantics. As noted in Section 2, in a domain-based semantics
we consider measures over the domainD, and the natural interpretation for a probabilis-
tic inclusion is P (set of Cs | set of Ds) = α. An interpretation-based semantics instead
postulates probability measures over interpretations (that is, over complete assignments
of individuals to concepts: for m concepts and |D| = n, there are m2n interpretations).
The most natural interpretation-based semantics for P (C|D) = α seems to be (as dis-
cussed for instance by Lukasiewicz [32]):

∀x : P (C(x)|D(x)) = α. (1)

We favor this interpretation-based semantics because it can smoothly interpret a query
P (A(a)|B(b)) for concepts A and B and individuals a and b. A domain-based seman-
tics would assign 0 or 1 to the probability P (A(a)|B(b)), depending on the particular
fixed interpretation. That is, the semantics (1) lets us bypass direct inference (the prob-
lem of moving from probabilities over domains to probabilities for individuals).1 Note
that asserted facts must be conditioned upon: there is no contradiction between assess-
ment ∀x : P (C(x)) = α and assertion C(a), as we can have P (C(a)|C(a)) = 1 while
P (C(a)) = α.

Following Bacchus [3], we harmonize the semantics (1) and assertions such as C(a)
by assuming that all individuals are rigid designators (that is, an individual corresponds
to the same element of the domain in all interpretations).

Adding roles: relational networks. We now introduce restrictions ∃r.C and ∀r.C into
the logic. To simplify the presentation, without loss of generality we assume that C in

1 As a digression, we note that the most elaborate attempt to address, rather than bypass, direct
inference in probabilistic description logics are Lukasiewicz’s. He uses lexicographic entail-
ment to produce direct inference [18,33], and also tries to avoid a drawback of semantics (1):
the fact that it forbids exceptions such as P (C(a)|D(a)) < α for some individual a.
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Fig. 1. Graph G(T1) for terminology T1 in Example 1, and its grounding for domain D = {a, b}

these restrictions is a concept name (an auxiliary definition may specify a concept C
of arbitrary complexity). As probabilistic inclusions must only have concept names in
their conditioned concept, assessments such as P (∀r.C|D) = α are not allowed.

Now, each restriction ∃r.C and ∀r.C is added as a node to the graph G(T ). As each
one of these restrictions directly uses r and C, the graph G(T ) must contain a node for
each role r, and an edge from r to each restriction directly using it. Each node ∃r.C or
∀r.C is a deterministic node in that its value is completely determined by its parents;
again, we emphasize that a direct assessment such as P (∃r.C|D) = α is not allowed.

Example 1. Consider a terminology T1 with concepts A, B, C, D. Suppose P (A) =
α1, B � A, C � B �∃r.D, P (B|A) = α2, P (C|B � ∃r.D) = α3, and P (D|∀r.A) =
α4. The last three assessments specify beliefs about partial overlap among concepts.
Suppose also P (D|¬∀r.A) = ε ≈ 0 (conveying the existence of exceptions to the
inclusion of D in ∀r.A). Figure 1 depicts G(T ). �

Independence and Markov condition. Probabilistic description logics such as P-
CLASSIC, BayesOWL and PR-OWL employ judgements of independence, encoded
by a Markov condition, to constrain probability values (down to uniqueness) and to
decompose models into small pieces. Other probabilistic logics adopt similar Markov
conditions for graph-based assessments [16,36], and a few logics adopt graphs with
Markov conditions and allow assessments “outside” of the graphs [1,9].

We take the position that the structure of the “directly uses” relation encodes stochas-
tic independence through a Markov condition. First, for every concept C ∈ T and for
every x ∈ D, C(x) is independent of every assertion that does not use C(x), given
assertions that directly use C. Second, for every (x, y) ∈ D×D, r(x, y) is independent
of all other assertions, except ones that use r(x, y).

The interaction between logical constructs and this Markov condition has its sub-
tleties. For instance, if G(T ) is A → C ← B because A � ¬C and B � C, then
the Markov condition imposes independence of A and B, but this is possible only if
P (A) = 0 or P (B) = 0, as A �B must be empty [10]. Thus CRALC does not exactly
match the behavior of standardALC when probabilities are unspecified, as logical con-
straints may interact with the Markov condition; we leave for the future a detailed study
of the relationship between CRALCand standardALC.

Homogeneity. Note that a terminology in CRALC may not specify a single measure
over interpretations (in Example 1, the assessment P (C|B � ∃r.D) = α3 does not
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guarantee that P (C|B � ∃r.D) is constrained down to a single value). We assume the
following homogeneity condition always holds. We assume that, given a concept C with
parents D1, . . . , Dm, then for any conjunction of the m concepts ±Di, where ±Di

is either Di or ¬Di, P (C(x)| ±D1(x) � ±D2(x) � · · · � ±Dm(x)) is a constant
across individuals x. Without this condition, a probability left unspecified in a termi-
nology may take a distict value for each individual in the domain, a situation we wish
to preclude. With the homogeneity condition, any terminology can be viewed as a non-
recursive relational Bayesian network [25], except for the fact that some probabilities
may not be precisely specified. Indeed, for a fixed finite domainD, the propositionaliza-
tion of a terminology T produces a credal network; that is, a Bayesian network where
probabilities are not precisely specified [8]. Figure 1 shows a propositionalized version
of T1 (Example 1).

Thus we have a logic with the constructs ofALC, including assertions (with rigidity
for individuals), plus probabilistic inclusions with semantics (1), acyclicity and the ex-
tended Markov condition, and homogeneity. We refer to the resulting logic as CRALC
(for “credal”ALC).

Uniqueness. There is a way to guarantee uniqueness of probabilities that may be useful
in practice. First, adopt the unique names assumption; that is, distinct names for indi-
viduals correspond to distinct elements of the domain. Second, assume the following
uniqueness condition: (i) for each concept C: if C has no parents, then P (C) = α is
given; and if C has parents, then either C is specified by a definition, or C has a single
parent D and probabilistic inclusions with respect to D and ¬D (that is, either C is
determined by its parents or C is a “fully probabilistic” node); and (ii) for each role r,
an assessment P (r) = α is made, whose semantics is ∀x, y : P (r(x, y)) = α.

The unique names assumption and the uniqueness condition guarantee that, when we
ground a terminology, we obtain a Bayesian network (different assumptions guarantee
uniqueness in P-CLASSIC and PR-OWL).

Example 2. Consider a terminology T2 with concepts A, B, C, D, where: P (A) = α1,
B � A, P (B|A) = α2, D ≡ ∀r.A, C ≡ B � ∃r.D, and P (r) = α3. Figure 1 also
applies, but now all probabilities are precisely specified.

4 Inference: First-Order Elimination and Loopy Propagation

Consider an inference in a CRALC terminology, defined as the calculation of query
Q = P (A0(a0)|A) for A = {Aj(aj)}Mj=1 (where |D| > M ). We start with both
the uniqueness condition and domain closure (domain with finite cardinality n that is
known and given as part of the input). Later we discuss removal of these assumptions.

We first derive the joint probability distribution over the set V n
T containing all asser-

tions generated from T and a domainD with cardinality n. To do so, introduce random
variables that are indicator functions of grounded relations. We use the same notation
for an assertion and its associated random variable. For instance, C(a) and r(a, b) refer
both to assertions and to random variables that yield 1 if the assertion holds and 0
otherwise. Denote by C the set of concept names in T , plus restrictions such as ∃r.C
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and ∀r.C (where C is always a concept name); byR the set of role names in T ; and by
pa(Ci(x)) the parents of concept Ci. Then our assumptions imply:

P (V n
T ) =

∏

Ci∈C; x∈D
P (Ci(x)|pa(Ci(x))) ×

∏

r∈R; x,y∈D
P (r(x, y)) .

One can propositionalize any terminology and do inference in the resulting network;
such a strategy is clearly not scalable. Our strategy is instead to employ techniques
from first-order variable elimination [11,12,42]. The first step then is to write Q and
P (V n

T ) in a shattered form [11]; that is, so that every pair of atoms can be grounded
either into identical or disjoint sets of grounded atoms, taking into account constraints
on the possible assertions.

A key insight is that in CRALC we can syntactically shatter the query and the dis-
tribution at once. Define D′ .= {a0, . . . , aM} and D′′ .= D\D′. The following theorem
can be proved by inspecting Expression (2) and noting that it satisfies all conditions
required for shattering [12]:

Theorem 1. Query Q and P (V n
T ) are shattered when P (V n

T ) is written as:
∏

Ci∈C;a′∈D′
P (Ci(a′)|pa(Ci(a′))) ×

∏

r∈R;a′,a′′∈D′
P (r(a′, a′′))

×
∏

r∈R;a′∈D′;x0∈D′′
P (r(a′, x0))P (r(x0, a

′)) (2)

×
∏

Ci∈C;x0∈D′′
P (Ci(x0)|pa(Ci(x0))) ×

∏

r∈R;x0,x1∈D′′
P (r(x0, x1)) ,

where pa(Ci(x)) denotes the parents of Ci if Ci is a concept name; and if Ci is a
restriction ∃r.C or ∀r.C, then pa(Ci(a′)) denotes {r(a′, a′′), C(a′′) : a′′ ∈ D′} ∪
{r(a′, x0), C(x0) : x0 ∈ D′′}, and pa(Ci(x0)) denotes {r(x0, a

′), C(a′) : a′ ∈ D′} ∪
{r(x0, x1), C(x1) : x1 ∈ D′′}. �

The first line of Expression (2) encodes a propositional Bayesian network over individu-
als in Q. These individuals are connected to other individuals through roles P (r(a′, x0))
and P (r(x0, a

′)) (in pa(Ci(a′)), pa(Ci(x0)) and in the second line of Expression (2)).
The third line builds a relational Bayesian network with “generic” individuals x0 and
x1, with connections P (r(x0, x0)) and P (r(x0, x1)). Figure 2 offers a visual trans-
lation of shattering on terminology T2 and query P (C(a0)). A benefit from explicit
shattering of the Q and P (V n

T ) is that we can apply “first-order” d-separation on the
shattered network, thus eliminating unnecessary parts of the terminology. For instance,
node (∃r.D)(x0) can be removed from Figure 2 when we compute P (C(a0)).

First-order variable elimination is, in essence, variable elimination in the shattered
network. Some gains are apparent. For instance, node B(x0) in Figure 2 can be elim-
inated for all x0 at once, as

∑
B(x0)

P
(
V n
T2

)
∝

∑
B(x0)

∏
x0∈D′′ P (B(x0)|A(x0)) ×

P (C(x0)|B(x0), (∃r.A)(x0)), and we can invert summation and product in the last ex-
pression (this is an inversion elimination [11]). The elimination of nodes containing
restrictions requires new techniques. Note that, while Braz et al do not have quantifica-
tion in their language [11,12], Poole discusses the network where ∃x : A(x) has single
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Fig. 2. A shattered version of T2 and query P (C(a0)); grounded network for T2 and |D| = 10

parent A(x). Poole shows that P (∃x : A(x)) = 1− (1−P (A(x)))n when the ground-
ings of A(x) are independent [42]. Such a nice result does not apply when restrictions
are themselves parameterized, as is the case here (but approximations proposed later do
use this insight).

We first note the algebraic structure of distributions P (Ci|pa(Ci)) when Ci is a
restriction, using indicator functions. Remember that such distributions only yield 0 or
1 probabilities, as a restriction is completely determined by its parents. In the next two
expressions, ∀ stands for the indicator function of ∀r.C(x), ∃ stands for the indicator
function of ∃r.C(x), and likewise C stands for C(x) and r stands for r(x, y). Then:

P (∀|pa(∀)) = (∀)

⎛

⎝
∏

y∈D
1− r + rC

⎞

⎠ + (1 − ∀)

⎛

⎝1−
∏

y∈D
1− r + rC

⎞

⎠; (3)

P (∃|pa(∃)) = (∃)

⎛

⎝1−
∏

y∈D
1− rC

⎞

⎠ (1− ∃)

⎛

⎝
∏

y∈D
1− rC

⎞

⎠. (4)

In theory, one could apply these expressions to the shattered network produced by The-
orem 1, and then run first-order variable elimination. Our experience in trying the al-
gorithm on small examples (such as the examples discussed previously) suggests that
exact inference in the shattered network is rarely viable. The difficulty is that, in exactly
those cases where propositionalization does not work due to the presence of quanti-
fiers, first-order inference seems to fail as well, at least in practice. Note that first-order
variable elimination does not guarantee elimination of “first-order” nodes beforehand;
in the worst case the network (or vast parts of it) must be propositionalized. The dif-
ficulty is that restrictions typically lead to many connections between grounded nodes
due to their quantifiers. To illustrate this fact, Figure 1 (right) shows a propositionaliza-
tion of terminology T2 with a n = 10, produced using the Primula system for relational
Bayesian networks (www.cs.aau.dk/˜jaeger/Primula/). The network is dense due to aux-
iliary nodes that must be inserted to encode deterministic relations (mostly quantifiers);
without these auxiliary nodes the probability tables cannot even be stored. Exact in-
ference in this network does not seem possible even with the best available algorithms
(calculation of P (C(a0)) was possible up to n = 9 and failed for n > 9 due to memory
exhaustion).
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Instead of insisting on exact methods, a wiser and more scalable strategy is to look
for approximations. Here the challenge is to find approximations that can exploit the
structure of quantifiers. We investigate variational methods that “break” connections
in networks; among those, the loopy propagation algorithm seems particularly suitable
[39]. Another idea would be to use variational approximations of Noisy-OR [29] in
Expressions (3) and (4); we leave this possibility for the future.

A natural strategy then is to propositionalize a terminology and run loopy propaga-
tion in the resulting network. Loopy propagation deals with quantifiers in a straightfor-
ward manner: a restriction node receives messages from its neighbors, and then locally
produces messages by replacing the “local” distribution P (C|pa(C)) by an appropriate
Expression (3) or (4). Note that Poole’s analysis of quantifiers, mentioned previously,
applies locally during loopy propagation.

However, we can do much better, and this is one of the main insights of this pa-
per. We can use the shattered network produced by Theorem 1 directly, and concoct a
first-order version of loopy propagation: simply run loopy propagation in the shattered
network, and combine the local messages using Expressions (3) or (4) as appropriate; if
a message flows from a parameterized node to a restriction node, then it must be raised
to a power (equal to the number of individuals that can be substituted for the parameter)
before combination in Expressions (4) or (3). Note that it is not just the case that we are
running loopy propagation in a conveniently modified version of G(T ); we are indeed
running a first-order version of loopy propagation, because all the messages that are sent
in the parameterized portion of the shattered network would be replicated were the ter-
minology propositionalized. Thus, the same excellent empirical performance that has
been observed for loopy propagation (in propositional networks) is necessarily trans-
ferred to this first-order loopy propagation scheme.

Example 3. Consider node (∀r.A)(x0) in Figure 2. A possible schedule of messages
has nodes A(a0), A(x0/x1), r(x0, a0) and r(x0, x1) sending messages to (∀r.A)(x0).
A message to be sent to node D(x0/x1) is easily produced as, locally to the approxi-
mation scheme, P ((∀r.A)(x0) = 1) =

∏
y∈D 1− P (r(x0, y)) (1− P (A(y))).

The idea that a first-order loopy propagation scheme can be built in probabilistic re-
lational models was advanced by Jaimovich et al [28] for Markov networks without
observed variables, and more recently by Sigla and Domingos [48] for Markov logic.
What the shattered network allows us to do is to apply first-order loopy propagation on
a structure that is fixed beforehand even when observations are made.

To illustrate the performance of this first-order loopy propagation scheme, consider
again Example 2. The next table shows P (C(a0)) for a domain containing individuals
a0, . . . , an−1, for several n. Whenever possible we show the result of exact inference
with a state-of-art algorithm (in the SamIam package at reasoning.cs.ucla.edu/samiam,
using the recursive decomposition algorithm). Note that inferences converge to a stable
value for n large; the analysis of Section 5 sheds light on this issue.

n 1 2 3 5 9 10 20 50

Loopy: P (C(a0)) 0.5175 0.5383 0.5291 0.4885 0.4296 0.4223 0.4049 0.4050

Exact: P (C(a0)) 0.4350 0.4061 0.4050 0.4050 0.4050 — — —
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As another example, we have built a larger terminology containing 15 nodes, with 3
restrictions and a considerable amount of arcs amongst nodes (details are omitted due
to lack of space). Exact inference became unfeasible even for small domains; loopy
propagation produced inferences in seconds for n = 10, 20.

We have worked so far under the uniqueness assumption. In practice it may be useful
to drop such a demanding assumption, as one may for instance choose not to specify
P (r) for all roles. In theory, lack of uniqueness (in the presence of homogeneity) is easy
to handle: instead of a single probability measure, we must now deal with a set of proba-
bility measures; instead of computing a single value for an inference, we must compute
a minimum and a maximum value for the probabilities of interest [8]. In practice, the
calculation of exact probability bounds without uniqueness appears quite challenging
computationally. However, the picture is different for approximate algorithms. Indeed,
the L2U algorithm [23] is a version of loopy propagation for credal networks with bi-
nary variables that has been observed empirically to have excellent performance. One
can extend L2U to first-order just as we did for loopy propagation, now letting messages
carry probability intervals. Again, messages are locally combined and quantifiers can be
dealt with in a local fashion. And again, the first-order algorithm has the property that
its performance is identical to what would be obtained were the terminology grounded
and L2U performed in the grounded network.

To illustrate the performance of this first-order L2U scheme, we return again to Ex-
ample 2. But now we take P (r) to be entirely unspecified; that is, it can be any value in
the interval [0, 1]. This is in accord with the usual description logics where no informa-
tion is provided for roles except through their use in restrictions. In the next table we
show inferences for P (C(a0)) for a domain for several n (an inference now produces an
interval containing lower/upper probabilities). Note the convergence of probabilities as
n increases. Perhaps more surprinsingly, note the little influence P (r) has in the value
of P (C(a0)); this suggests that one may leave various probabilities free in a knowledge
base and still get meaningful answers.

n 1 3 5 10 20 50

L2U: P (C(a0))
[0.405000
0.464500]

[0.405000
0.406783]

[0.405000
0.405030]

[0.405000
0.405000]

[0.405000
0.405000]

[0.405000
0.405000]

5 Infinite Domains

Infinite domains are useful, when a domain is finite but very large, and necessary, when
the available information does not constrain the cardinality of the domain. However, in-
finite domains are challenging: there are issues concerning existence and uniqueness of
a joint measure, and then there are obvious difficulties with inference based on proposi-
tionalization. Indeed, first-order variable elimination may fail for infinite domains when
probabilities are expressed in Braz et al’s language [12].

We use results by Jaeger [26,27] to prove existence and uniqueness for CRALC:

Theorem 2. Every terminology T in CRALC defines a unique joint distribution under
the uniqueness condition, and P (V ∞

T ) = limn→∞ P (V n
T ).
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Proof. As every terminology in CRALC under the given assumptions defines a non-
recursive relational Bayesian network, it defines a unique joint distribution over an ap-
propriate algebra [27, Th. 4.7]. Now note that all restrictions can be rewritten as max-
based combination functions [25], and consequently they are exponentially convergent
[26, Def. 3.4]. The limit of the joint distribution as n grows is then the joint distribution
for an infinite domain [26, Th. 3.9]. �

Similar results have been proved for the BLOG language [35]. Existence has also been
proved for other probabilistic description logics where infinite domains may lead to vio-
lation of uniqueness [7,41,47]; existence also obtains for logics that assign probabilities
over domains (even without uniqueness) [18,33].

We now turn to inference with infinite domains, restricting ourselves to queries con-
ditioned on �. Here again Theorem 1 comes handy. We simply analyze the shattered
graph top down, taking limits at each Expression (3) or (4) that we meet. (Gaifman’s
theorem [15] is necessary here to prove correctness, as it shows that probabilities for
restrictions are obtained by taking limits over disjunctions/conjunctions.)

For example, if P (r) > 0 and P (A) > 0, then for any x, we have both limits
limn→∞ P ((∃r.A)(x)|pa((∃r.A)(x)))=1, limn→∞ P ((∀r.A)(x)|pa((∀r.A)(x)))=0
whenever the conditioning events have nonzero probability. There are several other pos-
sibilities, by taking combinations of P (r) = 0, P (r) = 1, P (A) = 0, P (A) = 1; all of
these cases lead to probability 0 or 1 for restrictions. This rationale constructs a zero-
one law for CRALC . A similar zero-one law for description logics has been proved
by Ycart and Rousset [51] for a uniform distribution over possible assertions; Jaeger’s
analysis of infinite domains [27] also implies several related zero-one laws. An inter-
esting side effect is that we can make a linear number of queries in G(T ) (one for each
restriction, from top to bottom) to build a relational Bayesian network without roles on
which inferences can be made. The next example should be sufficient to illustrate how
these ideas can be used when computing queries for infinite domains.

Example 4. Consider terminology T2, with α1 = 2α2 = 3α3 = 0.9, query P (C(a0))
and an infinite domain. From top down: as P (r) > 0 and P (A) > 0, P (∀r.A) = 0;
thus P (D) = 0 and P (C) = P (B) = P (B|A)P (A) + P (B|¬A) P (¬A) = α2α1

and P (C(a0)) = 0.405. Compare this value with the values obtained in the previous
section for n large.

6 Conclusion

This paper started from the desire to represent terminologies with probabilities over con-
cepts, in such a way that queries involving assertions can be handled. A probabilistic
version of the ALC description logic has been introduced, with an interpretation-based
semantics that allows probabilistic inclusions and queries on the probability of assertions
(thus bypassing the problem of direct inference). The paper contributed with techniques
for first-order inference algorithms in finite domains (and to a limited extent, in infinite
domains) and in particular with a first-order loopy propagation scheme that is based on the
“shattered” version of a terminology. Such techniques may be useful to other languages
such as Costa and Laskey’s PR-OWL [6]. The use of shattering and loopy propagation
may be useful in other logics as well, a point that we leave for future investigation.
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The paper clearly left a few topics for the near future: investigation of inference in in-
finite domains with observations, and more empirical testing with improved variational
approximations. In the future we plan to investigate extensions of the language, such
as at-least and at-most restrictions (these can be handled through loopy propagation) or
role inclusions, leading gradually to a full-blown version of the OWL language.

A few closing words on the assumptions we have adopted seem appropriate. Some
of them could easily be relaxed; for instance, we could allow probabilistic inclusions
with a set of conditioned concepts, provided no such concept is a restriction. Other as-
sumptions seem difficult to remove, such as the rigidity and unique names assumptions
on individuals, and the homogeneity condition on probabilities. Also, it seems difficult
to remove the acyclicity condition (and the associated Markov condition). Undirected
graphs would seem more amenable to a mix of logical and probabilistic constructs as
cycles are not a concern [43,50]; however, undirected graphs interact awkwardly with
probabilistic logic, as the usual Markov condition for undirected graphs fails to im-
ply factorization of measures in the presence of logical constraints [38]. A possibility
is to postulate a factorization from the outset [43,47]; we have preferred to stay with
the Markov condition of directed acyclic graphs, even though probabilistic description
logics based on undirected graphs certainly deserve more study.

As a final comment, we note that it would also be desirable to drop the domain
closure assumption, as description logics never assume anything about cardinality of
the domain [37]. Interest must then be in computing minima/maxima of probabilities
as n varies. Given the rigidity assumption, a query fixes observations with respect to
elements of the domain, and leaves other elements unobserved. Even though no general
technique for such optimization problems seems to be developed at this point, in some
simple cases one can find bounds and optimal n:

Example 5. Consider terminology T1 with α1 = 2α2 = 3α3 = 4α4 = 1000ε = 0.9,
and query P (C(a0)), with no information about domain cardinality. This terminology
is simple enough that we can write down the expressions for the query and optimize over
them. We obtain P (C(a0)) ∈ [0.1215, 0.3]; the lower bound is obtained for P (r) = 0
(any n) and the upper bound for P (r) = 1 and n =∞.
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