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Abstract. This paper describes a real application of graphical neural networks (GNNs) in the dynamic estimation of
spatially distributed buoys that are of central importance in maritime navigation. We describe the techniques we used
to process both data and background knowledge about the domain, indicating why GNNs are particularly well suited
for this sort of task. We report our empirical results, demonstrating that GNNs profitably use the avaible relational
structure.
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1. INTRODUCTION

Many practical situations ask for predictions that must be based both on collected data and on
structural patterns. If attributes are related through predicates, so that data come in the form of
graphs, one may exploit relational learning to build a prediction model through a Graph Neural
Network [Gori et al. 2005; Sperduti and Starita 1997]. A different scenario that seems to also ask for
some graph-theoretical structure ensues if we have background knowledge about relations amongst
attributes that display repetitive patterns, for example because they are related through spatial and/or
temporal phenomena. Graph Neural Networks seem to offer the ideal vehicle to exploit underlying
time/space structures.

In this paper we examine a real problem of technological and economic importance, where one
must deal with a substantial flow of temporal data and also with a known spatial structure. The
problem is to determine the speed of water current at a particular location within a major port area
in South America, using measurements collected by a network of nearby sea buoys. Sensors in buoys
periodically collect data, but a significant number of points are missing due to technical glitches.
Prediction of water conditions in the port area is a major concern for port authorities that must
coordinate a large number of heavy ships transporting for instance oil or ore. Current physical models
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Fig. 1. Graph: nodes, edges, and global attribute.

are costly to develop and maintain, as they require high-quality measurements of the environment,
boundary conditions and a 3D accurate spatial representation of the location.

Abstractly, this is a problem where sequential data are collected through a sensor network with a
fixed spatial structure where sensors are often faulty. Thus our specific application is representative
of a large class of significant prediction challenges faced by several industries and that could greatly
exploit the properties of GNNs.

We have developed a GNN-based model whose structure captures spatial relations in the domain
and whose parameters are learned from historical and real data collected at the Sepetiba/Ilha Grande
Bay in Brazil. In this paper we describe the design we have adopted for our GNN and examine
a number of nontrivial structural assumptions that can be imposed in our model, comparing their
impact. We show that the GNN attains excellent performance and, more importantly, that it benefits
from the spatial structure imposed on it.

In Section 2 we describe the essential ingredients of graph neural networks and the problem we
address. In Section 3 we introduce our modeling decisions. Results are described and discussed in
Section 4. Section 5 closes the paper with a summary of our conclusions and planned future work.

2. BACKGROUND

In this section we summarize relevant notions about GNNs (Section 2.1) and then we describe the
prediction problem we have tackled in this work (Section 2.2).

2.1 Graph Neural Networks

Deep neural networks now offer excellent, and often surprising, performance in a variety of settings
where patterns must be identified and acted upon. However, fully connected neural networks face
difficulties when capturing repetitive relationships between entities [Battaglia et al. 2018]. In some
cases neural networks adopt weights that are shared across many units, for instance in Convolutional
Neural Networks (CNNs) or Recurrent Neural Networks (RNN); however, even in those cases the
connections are mostly local within the model (spatially or temporally).

Graph Neural Networks (GNNs) have been developed so as to take into account the structure of a
domain, expressed through relations amongst entities [Scarselli et al. 2009; Sperduti and Starita 1997].
The goal is to work in the intersection between neural techniques and symbolic modeling, where the
underlying relations and connections capture the symbolic aspects of the domain. To codify the
domain, a GNN uses nodes (that belong to one or more classes), edges (that correspond to binary
predicates), and global attributes. Figure 1 depicts a fragment of a graph with such objects.

In order to better illustrate the components of a GNN, consider a simple setting that is not related
to the application we latter describe. Take the physical problem of predicting the mass position in a
mass-spring system. One can model the physical system using a graph with nodes representing masses
of the system and edges representing relations between nodes — that is, interactions between masses
due to the springs. The masses attributes vi are their positions, velocities and mass values. The edges
attributes ek are the stiffness and the natural length of the spring that connects each mass (node).
Lastly, the global attribute u, shared with all entities, is the gravity force. These objects define the
underlying graph. To predict the features of the model, a prediction function is to be applied to
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Fig. 2. Sepetiba/Ilha Grande Bay, and the location of the main port terminals: 1 - Angra Terminal
(Oil) TEBIG; 2 - Guaiba Island Terminal (Ore) TIG; 3 - Port of Sepetiba; 4 - CSN Terminal.

entities; for instance, one might want to predict one mass (node) position after 5 time steps in the
hypothetical mass-spring system problem.

To determine the behavior of a GNN, a number of functions must be specified; in the most general
scheme [Battaglia et al. 2018], we have functions associated with nodes, edges, and global attributes:

e′k = φe(ek, vrk , vsk , u), ē′i = ρe→v(E′i),
v′i = φv(ē′i, vi, u), ē′i = ρe→u(E′),
u′ = φu(ē′, v̄′, u), v̄′i = ρv→u(V ′),

where updated attributes are primed, and edges, nodes and global attributes, respectively ek, vi and
u, are given by φ functions. Besides, edges attributes are aggregate by ρ functions, which can be the
mean, median, sum (any aggregation function) so as to be produced by nodes that are pointed by the
edges or by the global attributes. The same is true for aggregating node attributes for the purpose of
updating global attributes. For a GNN, each φ function is encoded by a neural network; all of these
networks must have their structure designed and their weights learned — as we discuss latter for our
particular application.

2.2 The Sepetiba/Ilha Grande Bay Prediction Problem

The Sepetiba/Ilha Grande Bay is located in the State of Rio de Janeiro, southeast region of Brazil. It
is a sheltered area close to Rio de Janeiro city, with different port facilities and heavy traffic of ships.
Figure 2 shows the region of interest within South America (left) and the four main port terminals,
TEBIG, TIG, Port of Sepetiba, and CSN (right).

The state of the sea and the weather conditions have a direct impact on the operations of commercial
sea-going vessels, largely determining the safety of the navigation. In fact, during extreme events, such
as low visibility or strong currents, the traffic of ships must be interrupted. The short-term prediction
of environmental parameters (within 24 to 48 hours) is an essential duty of port authorities; in the
case of shared channels with multiple ship sizes (as in the present case), prediction becomes even more
critical. We are interested in predictions within a time frame of 24 hours, as this is the most typical
prediction window in this context.

The prediction of environmental parameters is generally made with an array of physical models of
atmospheric and hydrodynamic circulation. The inputs of the method are the boundary conditions
such as tidal variation, low-resolution satellite or global model information and local wind measure-
ments [PIANC MarCom 2012]. They also depend on an accurate 3D grid model of the area (coastline
and bathymetry). Recent years have witnessed a growing number of measured data, due to new
sensing, data transmission and storage technologies, and a consequent call for more sophisticated
data-driven techniques for time-series prediction [Wu et al. 2019]. The data-based model is indepen-
dent of the physical models and external inputs, being automatically updated as soon as a new set of
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Fig. 3. Location of buoys measuring current, tide, wind and visibility. Names of buoys: 1) B18 2) BEV 3) TIG 4) TIG
1 5) Bifurcation 6) Evolut 7) Pier 8) BPA 9) B22

measurements is available. It is within this trend towards data-driven modeling that we operate.

Here we adopt a novel modeling approach that uses a spatially distributed network of sensors along
the Sepetiba/Ilha Grande Bay so as to predict the speed of water current at a single buoy referred
to as Bifurcation. The network consists of nine navigational buoys located as indicated in Figure 3
(note that Bifurcation appears there over number 6). Each buoy collects measurements of variables
related to tide elevation, current and wind speed, and visibility. The water current speed in a bay
strongly depends on the tide elevation; there is also weaker dependency on wind speed (superficial
drag) and on meteorological effects (indirectly indicated by the visibility). All dependencies, as well
as their temporal evolution, must be captured by a predictor.

Each buoy collects a round of measurements every ten minutes. Due to the relatively slow dynamics
of the system, we decided to sub-sample and look at twenty minute intervals between measurements.
Notably, data collection is rather faulty: several features are missing in many measurement rounds,
and in some cases buoys do not report on one or more features for months. This calls for the benefit
of a GNN approach that exploits the spatial information.

3. A GNN FOR PREDICTION

Following Battaglia et al. [Battaglia et al. 2018], we take a (directed) attributed graph to be a tuple
G = (V,E), where V = {v1, . . . ,vN} is a set of node attributes (real-valued vectors), and E =
{(e1, r1, s1), . . . , (eM , rM , sM )} is a set of triples containing an edge attribute ek (a real-value vector)
over the edge (rk, sk).1

Our underlying graph is specified as follows. Each node represents a buoy whose attributes are
current velocity component in x-axis, current velocity component in y-axis, wind velocity component
in x-axis, wind velocity component in y-axis, local sea level, local temperature and local visibility. As
for the edges, an expert provided domain knowledge by selecting which attributes of nodes should
affect other node attributes. The edge attributes are a projection of the adjacent node attributes
current velocity component in x-axis, current velocity component in y-axis and local sea level.

1[Battaglia et al. 2018] also defines a global attribute u which we do not use in this work.
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We consider two types of graph topology: a fully connected version (which we call “non-local”
model) and a fully disconnected version (which we call “local” model). The first version captures effects
between buoys (as they all share a geographic location and are spatially related); the second version
does not use the power of Graph Neural Networks and was built only for purposes of comparison.

That is, we have two schemes:

• A non-local neural network updates node attributes taking all relational information into account
[Wang et al. 2018]. We can represent this architecture as:

V φv

E φe
ρe→v

V ′

The function e′k = φe(ek) updates each edge attribute ek. These updated attributes are aggregated
via a simple sum as ēi = ρe→v({ek}k:rk=i) =

∑
k:rk=i e

′
k. Finally, the function v′i = φv(ēi,vi) updates

each node attribute vi based on the aggregate attribute ēi. As stated in Section 2.1, in a GNN
approach, the functions applied to graph’s entities are neural networks. In this sense, the update
functions described above as φe and φv are neural networks (NN) fed by entity’s attributes. In other
words, given the buoys’ attributes on a time step, that are in graph’s nodes and edges, their values
in the next step are predicted by updating edges’ attributes, e′k = NNe(ek), which is an independent
variable for updating nodes’ attributes: v′i = NNv(ēi,vi).

• A local neural network that only looks at attributes of the node; that is, we have only v′i = φv(vi).

Note that the second scheme (the local one) benefits from the graph structure as the function φv is
shared among all nodes, although information between nodes are not shared between them.

To enable the GNNs to capture the temporal evolution of signals, we concatenate, for each node
and edge, measurements from the past 48h, collected every 20 minutes. This effectively generates
node attributes vi ∈ R145×7 and the edge attributes ek ∈ R145×3 (i.e., 144 observed data points plus
the next-step point to be predicted).

4. EXPERIMENTS

We took a large dataset consisting of data from 2018-01-01 00h00 to 2019-12-31 23h50 of the four
locations (TEBIG, TIG, CSN and Port of Sepetiba), which gives us, approximately, 105k data points
containing measurements from nine buoys. About 3.2 million of cells were missing in this dataset
which corresponds to roughly 43% of the cells.

We completed the dataset using two distinct methods. First we implemented an average-based
imputation method as follows. Suppose we consider a buoy and a feature is missing there at some
time step, then, if a feature was missing for some buoys and that feature was present in the majority
of other buoys, we imputed their average when their variance was small, and we imputed the median
otherwise; if instead the majority of buoys also lacked that feature, then we took an average in
time around the time step of interest just for measurements of the buoy. Second, we used MICE
imputation, a popular MAP-based scheme that fits local statistical models to impute values [Buuren
and Groothuis-Oudshoorn 2011]. Our experiments indicated that the average-based imputation led
to slightly better performance, so later we report results with an average-completed dataset.

We implemented our GNN using DeepMind’s Graph Nets library2, adapting it as needed to our
model. Given the modeling assumptions described in the previous section, we have 2.415.367 pa-

2https://github.com/deepmind/graph_nets.
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Fig. 4. Forecasting procedure example.

rameters to fit in the non-local scheme, and 2.020.359 parameters in the local scheme. Models were
trained in a 5k datapoint batch with sliding window of 6 datapoints for training and 3 datapoints for
validation (a 67%/33% split of training/validation set). The Adam optimizer was used with a learning
rate of 1e-4. The models were trained for 5 iterations. The neural networks’ architectures used for
entities had 5 layers and 256 units/layer. All these hyperparameters — learning rate, number of layers
and number of units per layer — were tuned using grid search.

We then used the model to predict the water current at Bifurcation for the next 24h in a sequential
fashion. That is, we use data from the past 48h to predict the next measurement. We then shift our
time window to incorporate this prediction as if it were a measurement, and predict measurements for
the second 20 min interval of the day. We continue this way until all [24h]× [3 measurements/h] = 72
measurements have been predicted. A 2-step prediction example is shown in Figure 4. As stated
before, given that the objective is predicting the water current to the following 24h, 72-steps similar
to these showed in Figure 4 are needed.

Empirical tests indicated that average-imputation led to the best results, so we kept it. Testing
also indicated that for both local and non-local neural networks schemes (presented in Section 3),
learned models are successful in tracking the dynamic behavior of signals (i.e., both models are good
at following the signal behavior). In particular, predictions were able to fit the number of peaks in the
prediction period, a nontrivial behavior as the number of peaks is not constant, as shown in Figures
5 and 6. However, both models had difficulty adjusting to the value of peaks in signals. Overall mean
squared error is 0.02 knots2 for the non-local model and 0.10 knots2 for the local model (squared
error is measure by subtracting observed and predicted values across time).

Figure 5 depicts a prediction run, comparing our model with baseline models extensively used in
time series prediction — specifically, ARIMA [Brockwell and Davis 1987] and LSTM [Hochreiter and
Schmidhuber 1997]. Both baselines were trained in a 20k datapoint and 50 iterations. Our model
performs significantly better than ARIMA, and performs slightly better than LSTM, but with notable
data efficiency — less data points and iterations to train (about a fourth of data points). Comparing
the two graphical models, non-local and local, best results are attained with the first one, which
indicates that our hypothesis that a model could benefit from sharing and combining information
among its entities is true. Given that LSTM baseline and GNN non-local were the best models, we
also present in Figure 5 the squared error of both models along the time window.

Note that at the Bifurcation buoy, where we predicted current speed, the main current component
is the x-axis; positive current speed means, essentially, that the speed vector points to the east; a
negative current speed means that the speed vector points to the west.

5. CONCLUSION

We have described a real application where the structuring resources of Graphical Neural Networks
are advantageous: they simplify modeling, facilitate understanding of the model, and lead to accuracy
gains as related to purely local modeling. Besides, our application should be a paradigmatic example
for prediction scenarios that depend on sensor networks, as such networks usually operate with a
spatial structure. We thus believe that results reported here can be of great interest to practitioners
and researchers.
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Fig. 5. Results for a selected time window, comparing our models and baselines.
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Fig. 6. Results for a different time window.

Much can be done to refine our initial efforts. We feel there is room for improvement concerning
hyperparameters — explore hyperparameters’ space with local search heuristics — and some critical
design decisions, such as the use of 20 minute intervals; a more comprehensive study will require quite
some data manipulation and computation time but it may be worth the investment. Also, we should
explore other imputation techniques, as imputation is critical given that 43% of the input dataset is
missing; while our current solution is acceptable, we hope to run an EM-like iterative scheme. Finally,
we should compare our data-driven solution with existing hydrodynamic modeling tools; usually such
tools are not as flexible as one would like as they require extensive fiddling when conditions change, but
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they may provide valuable additional inputs, and at least they should offer an additional comparison.
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