
6th International Symposium on Imprecise Probability: Theories and Applications, Durham, United Kingdom, 2009

Representing and Solving

Factored Markov Decision Processes

with Imprecise Probabilities

Karina Valdivia Delgado

Instituto de Matemática e Estat́ıstica
Universidade de São Paulo

São Paulo – Brazil
kvd@ime.usp.br

Leliane Nunes de Barros

Instituto de Matemática e Estat́ıstica
Universidade de São Paulo

São Paulo – Brazil
leliane@ime.usp.br

Fabio Gagliardi Cozman

Escola Politécnica
Universidade de São Paulo

São Paulo – Brazil
fgcozman@usp.br

Ricardo Shirota

Escola Politécnica
Universidade de São Paulo

São Paulo – Brazil
ricardo.shirota@poli.usp.br

Abstract

This paper investigates Factored Markov Decision
Processes with Imprecise Probabilities; that is,
Markov Decision Processes where transition probabil-
ities are imprecisely specified, and where their speci-
fication does not deal directly with states, but rather
with factored representations of states. We first define
a Factored MDPIP, based on a multilinear formula-
tion for MDPIPs; then we propose a novel algorithm
for generation of Γ-maximin policies for Factored MD-
PIPs. We also developed a representation language
for Factored MDPIPs (based on the standard PPDDL
language); finally, we describe experiments with a
problem of practical significance, the well-known Sys-
tem Administrator Planning problem.

Keywords. Imprecise Markov Decision Processes
(MDPIPs), Probabilistic Planning and PPDDL,
Knowledge Representation Languages, Multilinear
programming.

1 Introduction

Sequential decision making is an essential activity in
many domains, ranging from operations research [22]
to robotics [29]. The last forty years have seen steady
interest in Markov Decision Processes with Imprecise
Probabilities (MDPIPs), since the seminal work by
Satia and Lave Jr. [24]. Several algorithms have been
developed for “flat” representations of MDPIPs, that
is, representations that explicitly deal with individual
states and transitions between states [13, 28, 34].

In this paper we focus on factored representations for
MDPIPs. A factored representation deals with state
variables that compactly encode a possibly large set

of states. Factored versions of Markov Decision Pro-
cesses (MDPs), where all probabilities are precisely
specified, have received considerable attention [3],
particularly in connection with large planning prob-
lems that arise in artificial intelligence. In fact, the
leading representation language for probabilistic plan-
ning, PPDDL, is essentially a fragment of first-order
logic that can specify Factored MDPs by using predi-
cates to encode states [35]. In our previous work [28],
we have briefly discuss Factored MDPIPs as we ex-
amined algorithms for “flat” MDPIPs. In the present
paper we aim to: (1) give a definition of a factored
MDPIP; (2) present an algorithm for policy genera-
tion; (3) propose a language for compact specification
of factored MDPIP and (4) show some experiments
with a well-known practical problem.

In Section 2 we review basic concepts on Factored
MDPs. In Section 3, we describe the theory of
“flat” MDPIPs and the relevant literature. In Sec-
tion 4 we define factored representations and the
PDL1 language, a variant on PPDDL. In Section 5 we
present an algorithm, which we call FactoredMPA

(Factored Multilinear programming-based approxi-
mation), that produces Γ-minimax policies by re-
sorting to Approximate Nonlinear Programming, and
we show the performance of this algorithm in a
well-known sequential decision problem described in
PDL1, the System Administrator Planning problem.

2 Markov Decision Processes and

their Factored Representations

In this section we review basic facts about MDPs and
the high-level representation language PPDDL.

Markov Decision Processes (MDPs) encode possibly
infinite sequences of decisions under uncertainty [1,
22]. We are interested in MDPs that consist of (i)
a countable set T of stages, such that a decision is
made at each stage; (ii) a finite set S of states; (iii)
a finite set of actions A(s) for each state s; (iv) a
conditional probability distribution Pt that specifies
the probability of transition from state s to state s′

given action a at stage t, such that probabilities are
stationary (do no depend on t) and written P (s′|s, a);
(v) a reward function Rt that indicates how much is
gained (or lost, by using a negative value) when action
a is selected in state s at stage t, such that the reward
function is stationary and written R(s, a).

The state obtained at stage t is denoted st; the action
selected at stage t is denoted at. The history ht of
an MDP at stage t is the sequence of states and ac-
tions visited by the process, [s1, a1, . . . , at−1, st].
The Markov assumption for MDPs adopts
P (st|ht−1, at) = P (st|st−1, at). The main con-
sequence of the Markov condition is that P (ht|s1)
factorizes as P (st|st−1, at−1)P (st−1|st−2, at−2) . . . ×
P (s3|s2, a2)P (s2|s1, a1). A decision rule dt(s, t)
indicates the action that is to be taken in state s at
stage t. A policy π is a sequence of decision rules,
one for each stage. A policy may be deterministic
or randomized; that is, it may prescribe actions with
certainty, or rather it may just prescribe a proba-
bility distribution over the actions. A policy may
be history-dependent or not; that is, it may depend
on all states and actions visited in previous stages,
or just on the current state. A policy that is not
history-dependent is called Markovian. A Markovian
policy induces a unique probability distribution
over histories. Moreover, a Markovian policy needs
only specify the prescribed action for each state:
π : S → A(s), where π(s) is the action recommended
by the policy π for the state s.

To compare different policies we adopt the discounted
expected reward with infinite horizon [22]; in this case
the solution is given by the Bellman equation as fol-
lows. First, introduce the concept of value function
Vπ : S → R, that defines the value of state s based on
the values of the possible successor states s′ ∈ S:

Vπ(s) = R(s, π(s)) + γ
∑

s′∈S

P (s′|s, π(s))Vπ(s′).

The factor γ in this expression is called the discount
factor of the MDP [22, p. 125].

For MDPs the optimal value function, represented by
V ∗, is the value function associated with any optimal
policy. Then, the Bellman equation is [14]:

V ∗(s) = max
a∈A(s)

{R(s, a) + γ
∑

s′∈S

P (s′|s, a)V ∗(s′)}.

The Bellman equation can be also formulated as a
linear program [18]:

min
V ∗

:
∑

s

V ∗(s) (1)

s.t. : V ∗(s) ≥ R(s, a) + γ
∑

s′∈S

P (s′|s, a)V ∗(s′),

∀s ∈ S, a ∈ A(s).

Basically, we force V ∗(s) to be greater than or equal
to maxa{R(s, a) + γ

∑
s′∈S P (s′|s, a)V ∗(s′)}; by min-

imizing
∑

s V ∗(s), we obtain the maximum value of
the righthand side.

We now consider factored representations of MDPs;
that is, MDPs where states are compactly specified
using variables/predicates. In a Factored MDP, states
~x are represented by a set Λ = {X1, X2, ..., Xn} of
variables. Thus, a state ~x ∈ S is represented as a
tuple {x1, x2, ..., xn} where xi is the value of the state
variable Xi. Note that the size of S is exponential
in the number n of variables.1. Recent results have
shown that it is possible to solve a Factored MDP
with billions of states [12, 3].

In a Factored MDP, the reward function R(~x, a) can
be defined by the sum of local-rewards Ri(~x, a).

R(~x, a) =

kR∑

j=1

Rj(~x, a). (2)

The scope of each local-reward function Rj is typ-
ically restricted to some subset of variables Dj ⊂
Λ = {X1, ..., Xn}, defined for each pair ~x ∈ S and
a ∈ A(~x).

The next step is to encode the transition probabili-
ties. For each action a we define probabilities using
a Dynamic Bayesian Network (DBN); that is, a di-
rected acyclic graph with two layers: one represent-
ing the actual state and other representing the next
state (Figure 1a). The nodes are denoted by Xi and
X ′

i for variables in the actual state and next state, re-
spectively. Edges are allowed from nodes in the first
layer into the second layer, and also between nodes in
the second layer. We denote by pa(X ′

i) the parents
of X ′

i in the graph. The graph is assumed endowed
with the following Markov condition: a variable X ′

i is
conditionally independent of its nondescendants given
its parents. This implies the following factorization of
transition probabilities:

P (~x′|~x, a) =

n∏

i=1

P (x′
i|pa(X ′

i), a); (3)

1Although the complexity of an MDP is P-Complete, i.e, an
MDP problem is solved in a polynomial time in the size of the
state space, it is exponential in the number of variables [20, 21].

Figure 1: a) A DBN for an action a; b) a conditional
probability table for the state variable X ′

2.

that is, the probability to go to ~x′ ∈ S, given the agent
is in state ~x ∈ S and executes the action a ∈ A(~x), is
the product of the conditional probability of the agent
being in a state where X ′

i = x′
i given the parents of

X ′
i and the action a ∈ A(~x) (Figure 1 b). We call Pa

the set of conditional probability tables of a DBN for
action a.

There are many methods to generate exact and
approximate optimal policies for MDPs and Fac-
tored MDPs, including value and policy iteration.
The technique of Approximate Linear Programming
(ALP) [25] has recently been revisited as one of the
most promising methods for solving complex Factored
MDPs. Refinements for the ALP approach, geared to-
wards Factored MDPs, have been developed over the
past few years. The basic idea is to solve an MDP,
formulated as Problem (1), by defining a set of ba-
sis functions and by using them to construct an ap-
proximation of the optimal value function, denoted by
V̂ (~x). Basis functions are provided by domain experts
or automatically generated [21, 17]. Given ~x ∈ S and
a set of of basis functions H = {h1, ..., hk}, V ∗(~x) can
be approximated using a linear combination of H :

V̂ (~x) =
k∑

j=1

wjhj(~x). (4)

The quality of the approximation depends on the algo-
rithm used to find w = (w1, ..., wk), such that Equa-
tion (4) is a good approximation for V ∗(~x). Thus, the
ALP formulation of an MDP, given (1), (2) and (4),
is the linear program:

min
w

:
∑

~x

k∑

i=1

wihi(~x) (5)

s.t. :
k∑

i=1

wihi(~x) ≥

kR∑

j=1

Rj(~x, a) +

γ
∑

~x′∈S

P (~x′|~x, a)

k∑

i=1

wihi(~x
′),

∀~x ∈ S, a ∈ A(~x).

The number of variables in the linear program (5)
can be smaller than |S|, depending on the number
of basis functions we have. However, the number of
constraints does not change. ALP does not provide
computational gains if we do not exploit the factored
structure. In Section 5 we will discuss this fact in
more detail.

In the last few years, many knowledge representa-
tion languages have been proposed for specifying fac-
tored MDPs. The most popular such language is
Probabilistic Planning Domain Description Language
(PPDDL)[35], a language based on first-order logic
that has been applied to practical planning problems.
In Section 4 we extend PPDDL to factored MDPIPs,
and there we present the language in more detail.

3 Markov Decision Processes with

Imprecise Probabilities

An MDPIP is simply an MDP where transition prob-
abilities may be imprecisely specified. Note that the
term MDPIP was proposed by White III and Eldeib
[34], while Satia and Lave Jr. [24] adopt instead the
term MDP with Uncertain Transition Probabilities.

To specify an MDPIP, one must specify all elements
of an MDP except the transition probabilities; now
one must specify a set of probabilities for each tran-
sition between states. We refer to these sets as tran-
sition credal sets. We assume stationarity for the
transition credal sets K(s′|s, a). We also assume
that each history ht is associated with stationary
probability distributions P (st|st−1, at−1) that them-
selves satisfy the Markov condition (and of course
P (st|st−1, at−1) ∈ K(st|st−1, at−1)). That is, our
MDPIPs are elementwise-stationary [28].

A few definitions are needed. We adopt elementwise
conditioning: K(X |A) is obtained from K(X) by con-
ditioning every distribution in the credal set K(X) on
the event A. The notation K(X |Y) represents a set
of credal sets: there is a credal set K(X |Y = y) for
each nonempty event {Y = y}. Given a credal set
K(X), we can compute lower and upper probabili-
ties respectively as P (A) = infP∈K P (A) and P (A) =
supP∈K P (A). We can also compute lower and
upper expectations for any bounded function f(X)
as E[f] = infP∈K E[f] and E[f] = supP∈K E[f],

and likewise for conditional lower/upper probabili-
ties/expectations. We assume all credal sets to be
closed, so infima and suprema can be replaced by min-
ima and maxima.

There are several criteria of choice for selecting poli-
cies in a given MDPIP, even if we fix a single util-
ity and focus on discounted infinite horizon. The
Γ-maximin criterion selects a policy that yields the
supremum of lower expected reward. In the context
of discounted infinite horizon, there is always a de-
terministic stationary policy that is Γ-maximin [24];
moreover, this policy induces a value function that is
the unique solution of

V ∗(s) = sup
a

inf
P

(
R(s, a)+γ

∑

s′

P (s′|s, a)V ∗(s′)

)
,

(6)
subject to the fact that probabilities must belong to
given transition credal sets. Given our assumption
that sets of actions are finite and credal sets are closed,
we can replace sup and inf respectively by max and
min in this expression.

A few other criteria of choice are worth mention-
ing. The Γ-maximax criterion [24] selects a pol-
icy that yields the supremum of upper expected re-
ward [33], while the Γ-maximix criterion selects a
policy that yields the maximum of α(maxP Vπ) +
(1 − α)(minP Vπ), for some α ∈ (0, 1). Other crite-
ria seek sets of admissible policies, such as the Inter-
val Dominance, Maximality and E-admissible criteria
[15]. There are strong foundational reasons to side
with the most restrictive of the last three criteria;
that is, to adopt E-admissibility [26]. However, in
this paper we adopt the Γ-maximin criterion due to
its popularity in the existing literature on MDPIPs.
We certainly hope to examine other criteria in our
future work on Factored MDPIPs.

There are algorithms for solving flat MDPIPs based
on dynamic programming [24, 34]. Additional algo-
rithms have been proposed to solve special cases of
MDPIPs [10, 31].

4 Defining and representing Factored

MDPIPs

We define a Factored MDPIP, intuitively enough, as
an MDPIP where states are compactly specified us-
ing variables/predicates. Thus we have a Factored
MDP where transition probabilities are not unique,
but rather given by transition credal sets. The chal-
lenge then is to specify such transition credal sets in
a manner that is itself compact. We suggest that
Dynamic Credal Networks (DCNs) offer the adequate
language to express transition credal sets.

A DCN has the same structure as a DBN (Figure
1), but now each variable X is associated with a
set of conditional credal sets; that is a credal set
K(X |pa(X) = k) for each value k of pa(X). In this
paper we assume that every DCN represents a joint
credal set over all of its variables, and this joint credal
set is exactly the strong extension of the credal net-
work [5, 6]. That is, the DCN represents a joint credal
set where each distribution satisfies the following ex-
pression:

P (~x′|~x, ~p, a) =

n∏

i=1

P (x′
i|pa(X ′

i), ~p, a); (7)

where each P (x′
i|pa(X ′

i), ~p, a) comes from an appro-
priate credal set associated with the DCN.

Consider the generation of Γ-maximin policies; that
is, solution of Equation (6). It does not seem pos-
sible to produce a linear programming solution like
the linear programming for MDP (Problem 1). How-
ever in our previous work [28] we have shown that it
is possible to generate solutions using well know pro-
gramming problems. First, the Equation (6) can be
reduced to a bilevel programming problem:

min
V ∗

:
∑

s

V ∗(s) (8)

s.t. : V ∗(s) ≥ R(s, a) +

γ
∑

s′∈S

P (s′|s, a)V ∗(s′), ∀s ∈ S, a ∈ A;

P ∈ arg min
∑

s′∈S

P (s′|s, a)V ∗(s′),

s.t. : P (s′|s, a) ∈ Ka(s′|s)

Then, the bilevel problem (8) can be transformed in
an equivalent multilinear programming problem:

min
V ∗,P

:
∑

s

V ∗(s) (9)

s.t. : V ∗(s) ≥ R(s, a) +

γ
∑

s′∈S

P (s′|s, a)V ∗(s′),

∀s ∈ S, a ∈ A(s), P (s′|s, a) ∈ Ka(s
′|s, a).

Note that the solution of multilinear programs is far
from trivial, thus our previous solution can only deal
with relatively small flat MDPIPs.

We now specialize Problem (9) for Factored MDPIPs.
The factored value function of a Factored MDPIP is
given by Equation (4) restricting the scope of each
basis function to some small subset of state variables
Ci ⊂ Λ = {X1, ..., Xn}. We can use the factored value
function (4), the reward function (2), the transition
probabilities (7) and replace them in Problem (9) in

order to obtain the factored multilinear programming
problem:

min
w,~p

:
∑

s

∑

i

wihi(~x) (10)

s.t. :
∑

i

wihi(~x) ≥

kR∑

j=1

Rj(~x, a) +

γ
∑

~x′∈S

P (~x′|~x, ~p, a)
∑

i

wihi(~x
′),

∀~x ∈ S, a ∈ A(~x).

P (~x′|~x, ~p, a) ∈ Ka(~x
′|~x)

where:

P (~x′|~x, ~p, a) =
n∏

i=1

P (x′
i|pa(X ′

i), ~p, a)

This particular nonlinear program will be studied in
the next section; the main contribution of this paper is
an algorithm for the generation of Γ-maximin policies
in Factored MDPIPs that solves Problem (10). Be-
fore we plunge into that, we spend the remainder of
this section discussing the representation of Factored
MDPIPs.

As we have mentioned before, the Probabilistic Plan-
ning Domain Description Language (PPDDL) [2] is
a high-level language for the specification of Factored
MDPs, with a relatively simple syntax. Every plan-
ning problem is expressed in two parts: the domain

contains directives, constants, and descriptions of ac-
tions; the problem basically contains a description of
the initial state and the desired goal. We wish to fo-
cus on the syntax and semantics of domains, so we
present the relevant pieces of the syntax here. The
basic BNF for domains is:
<domain> ::= (define (domain <NAME>)

(:requirements :adl)

[<types>][<constants>][<predicates>]

<action>*)

<action> ::= (:action <NAME>

[<param>] [<prec>] [<effect>])

<prec> ::= (:precondition <p-formula>)

<effect> ::= (:effect {<nd-eff>|<det-eff>})

<nd-eff> ::= <prob>|<one-of>

<prob> ::= (probabilistic <p-eff>+)

<p-eff> ::= <RATIONAL> <det-eff>

<one-of> ::= (oneof <det-eff>+),

where: <types>, <constants>, <predicates> and
<param> refer to lists of names or logical variables
(possibly typed); <RATIONAL> denotes a rational num-
ber; <p-formula> is a formula containing either
atoms, or conjunction of p-formulas, or universal
quantification over p-formulas, or inequality of two
given names as (not (= <NAME> <NAME>)); and a

<det-eff> is a formula containing either atoms, or
negation of atoms, or conjunction of det-effs, or uni-
versal quantification over det-effs, or the conditional
operator when. This conditional operator has syntax
(when <p-formula> <simple-eff>),
where simple-eff is a formula containing ei-
ther atoms, or negations of atoms, or conjunc-
tion of det-effs, or universal quantification over
simple-effs.

In PPDDL, a probabilistic action is understood as a
probabilistic transition given by a Dynamic Bayesian
Network [35]. PPDDL also allows an action to con-
tain oneof elements, where a nondeterministic choice
is made and one of the effects listed in the scope of
the oneof element is selected and pursued. There
are no probabilities attached to such nondeterminis-
tic choices. We call these conventions the standard
semantics of PPDDL. Note that the standard seman-
tics of PPDDL takes us beyond Markov Decision Pro-
cesses (MDPs) given the presence of nondeterminism;
however the expressivity of PPDDL is still far from
general MDPIPs, because in PPDDL each action may
contain either a probabilistic effect or a nondetermin-
istic effect. For instance, a domain may contain two
actions, one with probabilistic effects, and the other
with nondeterministic effects. What is not allowed in
PPDDL is the mixture of probabilistic and nondeter-
ministic effects in the same action.

In a previous publication we have explored the facili-
ties of PPDDL to express planning problems where
probabilistic and nondeterministic choices (in the
PPDDL sense) are mixed, but only allowing that
all probabilistic choices precede all nondeterministic
choices in an action [30]. The reason for this re-
striction is that the ensuing planning problems are
instances of MDPIPs were all transition credal sets
are given by infinitely monotone Choquet capacities.
We refer to PPDDL with this added flexibility as
PDL2, and we refer to PPDDL with no restrictions
on the combination of probabilistic and nondetermin-
istic choices as PDL1. We note that PDL1 can specify
Factored MDPIPs with clear syntax; to illustrate this
fact, we consider the well-known System Administra-
tor Problem [12].2

Example 1 Consider the problem of optimizing the
behavior of a system administrator that works with a
network of computers. There are many possible con-
figurations; for example, the cycle network where com-

2This example is actually a variant on the original Factored
MDP for the System Administrator problem, because some ad-
ditive aspects cannot be encoded in PPDDL [23]. The way
we solve this limitation was to start with a high reward value
and decrease every time the action reboot was executed (effect
(decrease (reward) 1) from Figure 2).

puter i is connected to computer i + 1. One of these
computers is designated as server, while the rest are
clients. Each computer is associated to a binary vari-
able Xi, the value of a variable indicates whether the
respective machine is up (1) or down (0). At each
time step the administrator receives a payment (re-
ward) for each machine that is working. Since the
server is the most important computer in the network
it is given a greater reward if it is working. The job
of the system administrator is deciding which of the
machines should reboot. So, there are n+1 possible
actions at each step: reboot one of the n machines or
not reboot any machine. After executing the action
reboot the machine i, the probability of machine i to
be working on the next step is high. At each step each
computer has a low probability to stop working, which
grows dramatically if their neighbors are not working.
The machines can begin working spontaneously with a
small probability.

In the original PPDDL for the System Administra-
tor Domain [23], the probability of a computer i

start working in the next state, given that the action
reboot(i) was executed, is 0.9; and with the prob-
ability 0.1 the state remains unchanged. Also, with
probability 0.6 the state variable xi (computer i) be-
comes false in the next state, when it is connected
with other computer that it is not working (and the
computer i has not been rebooted); and with proba-
bility 0.4 the state remains unchanged.

Figure 2 presents a PDL1 specification of a Factored
MDPIP that represents the System Administrator
Problem, where experts disagree on the probability
distributions. With probability between 0.6 and 0.8
the state variable xi (computer i) becomes false in the
next state, if it is connected with other computer that
it is not working (and the computer i has not been
rebooted). Considering an instance of the domain de-
scribed in Figure 2 with 3 state variables, which im-
plies 8 states and 3 actions: a1 for reboot computer 1,
a2 for reboot computer 2 and a3 for reboot computer 3,
the corresponding factored MDPIP have the following
set of constraints:

P (X′

i = 1|X1 = 0, ai) = 0.9

P (X′

i = 1|X1 = 1, ai) = 1

And for i 6= j we have:

P (X′

i = 0|Xi−1 = 0, Xi = 0, aj) = 1

0.6 <= P (X′

i = 0|Xi−1 = 0, Xi = 1, aj) <= 0.8

P (X′

i = 0|Xi−1 = 1, Xi = 0, aj) = 1

P (X′

i = 0|Xi−1 = 1, Xi = 1, aj) = 0

Instances such these are solved by the algorithm pre-
sented in the next section.

(define (domain sysadmin)

(:requirements :adl)

(:types comp)

(:predicates (up ?c)(conn ?c ?d))

(:action reboot

:parameters (?x - comp)

:effect

(and (decrease (reward) 1)

(probabilistic 0.9 (up ?x))

(oneof

(forall (?d - comp)

(probabilistic

0.6 (when (exists (?c - comp)

(and (conn ?c ?d)

(not (up ?c))

(not (= ?x ?d))))

(not (up ?d))

)))

(forall (?d - comp)

(probabilistic

0.8 (when (exists (?c - comp)

(and (conn ?c ?d)

(not (up ?c))

(not (= ?x ?d))))

(not (up ?d))

)))))

)

(define

(problem sysadmin-3)

(:domain sysadmin)

(:objects x1 - comp x2

- comp x3

- comp)

(:init (conn x1 x2)

(conn x2 x3)

(conn x3 x1))

(:goal (forall (?c - comp)

(up ?c)))

(:goal-reward 500)

)

Figure 2: The System Administrator domain in
PDL1, with action reboot (probabilistic and nonde-
terministic). This domain defines a Factored MDPIP
(adapted from [23]). One limitation of this language
is do not allow to express local-reward and basis func-
tions for approximated solutions of MDPs and MD-
PIPs.

5 FactoredMPA: Solving a Factored

MDPIP

Koller and Parr [16] show that if we are working with
a Factored MDP (Problem 5), a necessary condition
to efficiently apply the ALP technique is to restrict
the scope of each basis function to some small subset
of state variables Ci ⊂ Λ = {X1, ..., Xn} and also to
assume small dependency in the DBN3. Guestrin et
al. [12] then exploited these conditions and developed
an efficient algorithm for Factored MDPs. The suc-
cess of their FactoredLPA algorithm is due to: (i)
the use of a method to simplify the computation of
each constraint of the ALP problem, named Backpro-
jection algorithm [16]; and (ii) the FactoredLP algo-
rithm that creates a new and smaller set of equivalent
constraints for the linear programming problem (5).
There are other efficient algorithms that use general
techniques to solve linear problems with large number
of constraints [21, 8, 9] (e.g., constraints generation),
and that somehow, have improved the approach pro-
posed by Guestrin [12].

Based on those ideas, we want to solve a Factored
MDPIP formulated as an Approximated Multilinear
Programming (Problem 10). First, the same efficient
and general techniques that solve linear problems with
large number of constraints [21, 8, 9] cannot be ap-
plied directly on the multilinear problem. However,
the FactoredLPA algorithm can be adapted to solve
a factored MDPIP as we show in this section. The
new algorithm we will name as FactoredMPA.

Shortly, FactoredMPA first simplifies the computa-
tion of each constraint applying the same Backprojec-
tion algorithm used by Guestrin for factored MDP,
then it calls the FactoredMP algorithm to create a
new and smaller equivalent set of constraints for the
Multilinear Programming (Problem 10). Finally, in
order to obtain wi and ~p, it calls a nonlinear solver
with the new equivalent problem.

5.1 Simplifying the computation of each

constraint

We can also take advantage of the fact that the tran-
sition model for MDPIPs is factored and the basis
functions have scope restricted to a small set of vari-
ables in order to efficiently compute the constraints.

From problem (10), given ~x ∈ S and a ∈ A(~x), we
have the following constraint:

X

i

wihi(~x) ≥

kRX

j=1

Rj(~x, a) + γ
X

~x′∈S

P (~x′|~x, ~p, a)
X

i

wihi(~x
′)

3Although this assumption seems too restrictive, there is a
large set of applications that it can be done [11].

Now, we can reorder the sum and obtain:

X

i

wihi(~x) ≥
kRX

j=1

Rj(~x, a) + γ
X

i

wi

X

~x′∈S

P (~x′|~x, ~p, a)hi(~x
′)

| {z }

Let the underbrace term be renamed as ga
i (~x, ~p). Note

that, for MDPIPs, ga
i (~x, ~p) is a polynomial expression,

i.e. it is described in terms of probability variables
and has the following canonical form (with d0 = 0
and di a constant):

d0 +
∑

i

di

∏
pij (11)

This term can be precomputed in a efficient way us-
ing the Backprojection algorithm [16]. For a further
computation improvement, the set of constraints can
be rewritten as:

0 ≥
kRX

j=1

Rj(~x, a) +
X

i

wi

γga
i (~x, ~p) − hi(~x)

| {z }

!

Again, let the underbrace term be renamed as
ca
i (~x, ~p). This term can be precomputed resulting also

in the polynomial form (11). Finally ∀~x ∈ S, a ∈ A(~x)
we obtain:

0 ≥
kRX

j=1

Rj(~x, a) +
X

i

wic
a
i (~x, ~p) (12)

Even with this simplified form to rewrite constraints
for the Approximate Multilinear Programming, we
are still working with the complete set of constraints
(|S|∗|A|+m2), where m2 is the number of constraints
related to the probabilities pij . Since the direct use
of general non-linear solvers [19], geometric solvers [4]
or multilinear solvers [27] for Problem (10), can only
solve problems with small state space, we have to find
a way to reduce the number of constraints.

5.2 The FactoredMP algorithm

We extend the FactoredLP technique proposed by
Guestrin [12] in order to obtain a new and smaller
equivalent multilinear program for Problem (10). We
call this new algorithm FactoredMP.

The basic idea is to replace the set of constraints
in (12) by an equivalent set of non-linear constraints
∀a ∈ A(~x), given by:

0 ≥ max
~x

8
<

:

kRX

j=1

Rj(~x, a) +
X

i

wic
a
i (~x, ~p)

9
=

;

So, for an action a, we have to compute the following
maximization:

0 ≥ max
~x

8
<

:

kRX

j=1

Rj(~x) +
X

i

wici(~x, ~p)

9
=

;
(13)

Note that Rj(~x) and ci(~x, ~p) are functions of ~x and we
want to do max over ~x. Now we can, instead of adding
all terms and do the maximization, do the maximiza-
tion over state variables one by one. To do so we
use a modification of the general variable elimination
algorithm proposed by Guestrin [12].

For example, if we want to eliminate variable X1 we
do as following. If R1 is the only local-reward function
that depends on X1 and c1 is a function that depends
on (X1, X4) and there is no other function ci that
depends on X1, we can push the maximization over
X1 inwards to obtain:

0 ≥ max
X2...Xn

8
<

:

kRX

j=2

Rj(~x) +
X

i=2

wici(~x, ~p)+

max
X1

{R1(X1) + w1c1(X1, X4, ~p)}

ff

For each variable Xl we want to eliminate, Fac-
toredMP selects L relevant functions, renamed as
ue1 ... ueL . A relevant function is the one whose scope
contains Xl. We can now replace the maximization
over the relevant functions for Xl by the following new
function:

uenew

Z = max
Xl

L∑

j=1

uej (14)

Where Z is the union of all variables in func-
tions ue1 ... ueL minus Xl. In the above exam-
ple, the relevant functions are ue1

X1
= R1(X1) and

ue2

X1,X4
= w1c1(X1, X4, ~p). The term uenew

Z is uenew

X4
=

maxX1

{
ue1

X1
+ ue2

X1,X4

}
, resulting in the following

constraint:

0 ≥ max
X2...Xn

8
<

:

kRX

j=2

Rj(~x) +
X

i=2

wici(~x, ~p) + u
enew
X4

9
=

;

In order to enforce the definition of uenew

Z as the max-
imum over Xl (Eq. 14), FactoredMP introduces the
following set of constraints for any assignment z to Z:

uenew

Z ≥
L∑

j=1

uej∀xl

In the example we need to introduce four constraints:
one constraint for each configuration of X4 and for
each configuration of X1.

This procedure is repeated until all variables have
been eliminated. At the end, all the remaining func-
tions uei will have empty scope and the following con-
straint must be added:

0 ≥
∑

j=i

uei

 1

 100

 10000

 1e+06

 1e+08

 1e+10

 1e+12

 1e+14

 0 5 10 15 20 25 30 35 40

N
u

m
b

er
 o

f
co

n
st

ra
in

ts
 (

lo
g

 s
ca

le
)

Number of computers

Multilinear Solution

Original
FactoredMPA

Figure 3: The number of constraints for the System
Administrator domain, with imprecise probabilities,
for problems with n computers; there are 2n number
of states and n + 1 actions in this problem.

Notice that, the same process must be applied for all
actions a ∈ A. The FactoredMP algorithm reduces
a structured multilinear programming problem (10)
with exponentially many constraints to a new smaller
equivalent set of constraints. This property is inher-
ited from the FactoredLP procedure.

5.3 Experimental Results

In order to analyze the scalability of the proposed al-
gorithm, we have calculated the original number of
constraints and the number of constraints after ap-
plying the algorithm FactoredMPA for the prob-
lem (10). In order to do this, we consider the System
Administrator domain (described in the previous sec-
tion). Figure 3 shows the result for problems varying
the number of computers from 2 to 40. The graph
shows the original number of constraints grows expo-
nentially while the constraints generated by the Fac-

toredMPA algorithm grows quadratically with the
number of computers.

We have implemented the FactoredMPA algorithm
using Matlab as frontend, and MINOS as the non-
linear solver (to handle the reduced multilinear pro-
grams). In Figure 4 we show the running times for
the System Administrator domain described as in Fig-
ure 2 using a simple set of basis functions: the con-
stant function h0 = 1 and hi(Xi = 1) = 1 and
hi(Xi = 0) = 0. These results show that with the
FactoredMPA algorithm it is possible to solve large
problems, e.g. we solve in 300 seconds a problem with
40 computers which in the original AMP formulation
would have more than 240 ∗ 41 constraints.

 0

 50

 100

 150

 200

 250

 300

 0 5 10 15 20 25 30 35 40

T
im

e
(s

ec
o

n
d

s)

Number of computers

Multilinear Solution

Figure 4: Running time of FactoredMPA for the
System Administrator Domain Example 1

6 Conclusion

In this paper we have investigated Markov Decision
Processes with Imprecise Probabilities, a class of mod-
els that adds considerable flexibility and realism to the
popular Markov Decision Processes. We have defined
a Factored MDPIP problem based on a multilin-
ear formulation for MDPIPs [28] and Factored MDPs
[12]. We also developed a representation language to
specify Factored MDPIPs, named PDL1, which ex-
tends PPDDL by allowing free mixtures of probabilis-
tic and nondeterministic operators. Although PDL1

does not allow to specify basis and local-reward func-
tions, it is an original and practical high-level lan-
guage to express factored MDPIPs. Further, we can
take advantage of the fact the PPDDL language has
largely been used as a benchmark language to solve
probabilistic planning problems and, with a simple
modification on those problems to obtain a PDL1

specification, we can have a variety of MDPIP prob-
lems.

Our main contribution is a new algorithm, named
FactoredMPA, to find Γ-maximin policies for Fac-
tored MDPIPs. The algorithm is an adaptation of
the FactoredLPA (Factored Linear Programming-
based Approximation) algorithm used to solve Fac-
tored MDPs [12, 21]. To evaluate the Fac-

toredMPA algorithm, we have modified the System
Administrator problem by introducing imprecision in
probability values. We thus obtain Factored MDPIPs
with varying sizes. Our experiments show that by
exploiting the factored representation of a sequential
decision problem, and by making the assumption of
a restrict scope for variable dependences, relatively
large problems can be solved (note that the number
of constraints and cpu-time grows quadratically with
the number of variables).

Acknowledgements

This work has been supported by FAPESP grant
2008/03995-5; the first author is supported by
CAPES; the third author is partially supported
by CNPq; and the fourth author is supported by
FAPESP. Tests were run in MATLAB and AMPL
that calls a multilinear programming solver MINOS.

References

[1] D. P. Bertsekas and J. N. Tsitsiklis. An analy-
sis of stochastic shortest path problems. Math.
Oper. Res., 16(3):580–595, 1991.

[2] B. Bonet and R. Givan. International Planning
Competition: Non-deterministic track — Call for
Participation, December 2005.

[3] C. Boutilier, T. Dean, and S. Hanks. Decision-
theoretic planning: Structural assumptions and
computational leverage. Journal of Artificial In-
telligence Research, 11:1–94, 1999.

[4] S. Boyd, S.-J. Kim, L. Vandenberghe, and
A. Hassibi. A tutorial on geometric program-
ming, 2004.

[5] F. G. Cozman. Credal networks. Artificial Intel-
ligence, 120:199–233, 2000.

[6] F. G. Cozman. Graphical models for imprecise
probabilities. International Journal of Approxi-
mate Reasoning, 39(2-3):167–184, 2005.

[7] G. de Cooman and M. C. M. Troffaes. Dynamic
programming for deterministic discrete-time sys-
tems with uncertain gain. International Journal
Approximate Reasoning, 3(2-3):257–278, 2005.

[8] D. P. de Farias and B. Van Roy. On constraint
sampling in the linear programming approach
to approximate dynamic programming. Math.
Oper. Res., 29(3):462–478, 2004.

[9] D. A. Dolgov and E. H. Durfee. Symmet-
ric approximate linear programming for factored
MDPs with application to constrained problems.
Ann. Math. Artif. Intell., 47(3-4):273–293, 2006.

[10] R. Givan, S. Leach, and T. Dean. Bounded-
parameter Markov decision processes. Artificial
Intelligence, 122:71–109(39), 2000.

[11] C. Guestrin, D. Koller, R. Parr, and S.
Venkataraman. Efficient solution algorithms for
factored MDPs. Journal of Artificial Intelligence
Research (JAIR), 19:399–468, 2003.

[12] C. E. Guestrin. Planning under Uncertainty in
Complex Structured Environments. PhD the-
sis, Stanford University, 2003. Adviser-Daphne
Koller.

[13] D. Harmanec. Generalizing Markov decision
processes to imprecise probabilities. Journal of
Statistical Planning and Inference, 105:199–213,
2002.

[14] R. A. Howard. Dynamic Programming and
Markov Process. The MIT Press, 1960.

[15] D. Kikuti, F. G. Cozman, and C. P. de Campos.
Partially ordered preferences in decision trees:
computing strategies with imprecision in prob-
abilities. In IJCAI Workshop on Advances in
Preference Handling, pages 118–123, Edinburgh,
United Kingdom, 2005.

[16] D. Koller and R. Parr. Computing factored value
functions for policies in structured MDPs. In IJ-
CAI, pages 1332–1339, 1999.

[17] S. Mahadevan. Samuel meets Amarel: Automat-
ing value function approximation using global
state space analysis. In AAAI, pages 1000–1005,
2005.

[18] A. S. Manne. Linear programming and sequential
decision models. In Management Science, volume
6(3), pages 259–267, 1960.

[19] B. A. Murtagh, M. A. Saunders, W. Murray, P.
E.Gill, R. Raman, and E. Kalvelagen. Minos: A
solver for large-scale.

[20] C. Papadimitriou and J. N. Tsitsiklis. The com-
plexity of Markov decision processes. Math.
Oper. Res., 12(3):441–450, 1987.

[21] R.-E. Patruscu. Linear Approximations for Fac-
tored Markov Decision Processes. PhD thesis,
University of Waterloo, 2004.

[22] M. L. Puterman. Markov Decision Processes.
Wiley series in probability and mathematical
statistics. John Wiley and Sons, New York, 1994.

[23] S. Sanner. How to spice up your planning un-
der uncertainty research life, 2008. In Workshop
on A Reality Check for Planning and Scheduling
Under Uncertainty at ICAPS, 2008.

[24] J. K. Satia and R. E. Lave Jr. Markovian decision
processes with uncertain transition probabilities.
Operations Research, 21:728–740, 1970.

[25] P.J. Schweitzer and A. Seidmann. Generalized
polynomial approximations in Markovian deci-
sion processes. Journal of Mathematical Analysis
and Applications, 110:568–582, 1985.

[26] T. Seidenfeld. A contrast between two deci-
sion rules for use with (convex) sets of probabili-
ties: γ-maximin versus E-admissibility. Synthese,
140(1-2), 2004.

[27] H. D. Sherali and C. H. Tuncbilek. A
global optimization algorithm for polynomial
programming problems using a reformulation-
linearization technique. Global Optimization,
2:101–112, 1992.

[28] R. Shirota, F. G. Cozman, F. W. Trevizan, C. P.
de Campos, and L. N. de Barros. Multilinear
and integer programming for markov decision
processes with imprecise probabilities. In 5th
ISIPTA, pages 395–404, Prague,Czech Republic,
2007.

[29] S. Thrun, W. Burgard, and D. Fox. Probabilistic
Robotics. MIT Press, 2005.

[30] F. W. Trevizan, F. G. Cozman, and L. N. de Bar-
ros. Mixed probabilistic and nondeterministic
factored planning through Markov decision pro-
cesses with set-valued transitions. In Workshop
on A Reality Check for Planning and Scheduling
Under Uncertainty at ICAPS, 2008.

[31] F. W. Trevizan, F. G. Cozman, and L. N. de Bar-
ros. Planning under Risk and Knightian Uncer-
tainty. In Proc. of IJCAI, pages 2023 – 2028,
Hyderabad, India, 01 2007. AAAI.

[32] M. C. M. Troffaes. Learning and optimal control
of imprecise Markov decision processes by dy-
namic programming using the imprecise Dirichlet
model. pages 141–148, Berlin, 2004. Springer.

[33] L. V. Utkin and T. Augustin. Powerful algo-
rithms for decision making under partial prior
information and general ambiguity attitudes.
ISIPTA, pp. 349–358, 2005.

[34] C. C. White III and H. K. El-Deib. Markov deci-
sion processes with imprecise transition probabil-
ities. Operations Research, 42(4):739–749, July-
August 1994.

[35] H. L. S. Younes, M. L. Littman, D. Weissman,
and J. Asmuth. The first probabilistic track of
the international planning competition. Journal
of Artificial Intelligence Research, 24:851–887,
2005.

