
Factored Markov Decision Process with Imprecise Transition Probabilities

Karina V. Delgado
EACH-University of Sao Paulo

Sao Paulo - Brazil

Leliane N. de Barros
IME-University of Sao Paulo

Sao Paulo - Brazil

Scott Sanner
NICTA-ANU

Camberra - Australia

Fabio Cozman
POLI-University of Sao Paulo

Sao Paulo - Brazil

Abstract

This paper presents a short survey of the research we
have carried out on planning under uncertainty where
we consider different forms of imprecision on the prob-
ability transition functions. Our main results are on ef-
ficient solutions for Markov Decision Process with Im-
precise Transition Probabilities (MDP-IPs), a general-
ization of a Markov Decision Process where the impre-
cise probabilities are given in terms of credal sets. Not-
ing that the key computational bottleneck in the solution
of MDP-IPs is the need to repeatedly solve an optimiza-
tion problem. Our results show how to target approx-
imation techniques to drastically reduce the computa-
tional overhead of the optimization solver while produc-
ing bounded, approximately optimal solutions.

Introduction
Markov Decision Processes (MDP) (Puterman 1994) have
become the de facto standard model for decision-theoretic
planning problems and a great deal of research in recent
years has aimed to propose efficient solutions to tackle large
and more realistic problems. Formally, an MDP is defined
by the tuple M = 〈S,A, P,R, T, γ〉, where S is a finite
set of fully observable states; A is a finite set of actions;
P (s′|s, a) is the conditional probability of reaching state
s′ ∈ S when action a ∈ A is taken from state s ∈ S;
R : S×A→ R is a fixed reward function associated with ev-
ery state and action; T is the time horizon (number of stages-
to-go) for decision-making; and γ = [0, 1) is a discount fac-
tor. An important research topic in this area is how to ex-
ploit structure in order to compactly represent and efficiently
solve factored MDPs (Boutilier, Hanks, and Dean 1999;
Hoey et al. 1999; St-Aubin, Hoey, and Boutilier 2000;
Guestrin et al. 2003). In many MDPs, it is often natural to
think of the state as an assignment to multiple state variables
and a transition function that compactly specifies the proba-
bilistic dependence of variables in the next state on a subset
of variables in the current state. Such an approach naturally
leads us to define a Factored MDP (Boutilier, Hanks, and
Dean 1999), where S = {~x}. Here, ~x = (x1, . . . , xn) where
each state variable xi ∈ {0, 1}.

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

The reward can simply be specified as R(~x, a). The tran-
sition probabilities in a factored MDP are encoded using
Dynamic Bayesian Networks (DBNs) (Dean and Kanazawa
1990). A DBN is a directed acyclic graph (DAG) with two
layers: one layer represents the variables in the current state
and the other layer represents the next state (Figure 3a).
Nodes xi and x′i refer to the respective current and next
state variables. The connection between these two layers
defines the dependences between state variables w.r.t. the
execution of an action a ∈ A. Directed edges are allowed
from nodes in the first layer into the second layer, and also
between nodes in the second layer (these latter edges are
termed synchronic arcs). We denote by paa(x

′
i) the parents

of x′i in the graph for action a and P (x′i|paa(x′i), a), the con-
ditional probability table (CPT). The graph encodes the stan-
dard Bayes net conditional independence assumption that a
variable x′i is conditionally independent of its nondescen-
dants given its parents, which incidentally for a DBN also
encodes the Markov assumption (the current state is inde-
pendent of the history given the previous state). The use of a
DBN leads to the following factorization of transition prob-
abilities:

P (~x′|~x, a) =
n∏
i=1

P (x′i|paa(x′i), a). (1)

However, in many real-world problems, it is simply im-
possible to obtain a precise representation of the transition
probabilities in an MDP. This may occur for many reasons,
including (a) imprecise or conflicting elicitations from ex-
perts, (b) insufficient data from which to estimate reliable
precise transition models, or (c) non-stationary transition
probabilities due to insufficient state information.

For example, in an automated navigation system, it can be
difficult to estimate the probability of reaching some loca-
tion after a move. The probabilities may change throughout
time due the environment conditions (such weather and road
conditions) and can make the navigation more difficult and
subject to failures. In general, it is hard to accurately model
all these changes since they can have many external depen-
dencies. In this case, it is better to have a policy optimized
over a range of possible probabilities in order to be robust
against transition uncertainty.

To accommodate optimal models of sequential decision-
making in the presence of strict uncertainty over the tran-



Figure 1: Examples of MDP, MDP-IP, MDP-ST and BMDP.

sition model, the MDP with imprecise transition probabil-
ities (MDP-IP) was introduced (Satia and Lave Jr. 1970;
White III and El-Deib 1994) where the imprecise probabili-
ties are represented by probabilistic parameters pi and a set
of constraints over them which define a credal set. While
the MDP-IP poses a robust framework for the real-world ap-
plication of decision-theoretic planning, its general solution
requires the use of computationally expensive optimization
routines that are extremely time-consuming in practice.

A particular sub-classes of MDP-IP is the Bounded-
parameter Markov Decision Process (BMDP) (Givan,
Leach, and Dean 2000), where the probabilities are speci-
fied by intervals. Givan proposes the Interval Value Itera-
tion algorithm (Givan, Leach, and Dean 2000) that can find
an optimal policy without requiring expensive optimization
techniques. Recent solutions to BMDPs include extensions
of real-time dynamic programming (RTDP) (Buffet and Ab-
erdeen 2005) and LAO* (Cui et al. 2006; Yin, Wang, and Gu
2007) that search for the best policy under the worst model.
However, a problem with general linear constraints over the
probability parameters, for example {0.3 ≤ pj ≤ 0.5, pj ≥
pi} can not be solved by these solutions. Another sub-class
of MDP-IPs is the Markov Decision Process with Set-valued
Transitions (MDP-ST) (Trevizan, Cozman, and de Barros
2007), where probability distributions are given over finite
sets of states. Examples of MDP-IP, BMDP and MDP-ST
are given in Figure 1.

In Figure 2 we show the relationship among different
types of planning under uncertainty which includes as spe-
cial cases the deterministic and nondeterministic planning
problems. Notice that BMDP and MDP-ST do not have the
same representational power, i.e., some MDP-ST problems
can not be reduced to BMDP, and vice versa. Note also that
since BMDPs and MDP-STs are special cases of MDP-IPs,
we can represent them as MDP-IPs, thus the algorithms for
MDP-IPs clearly apply to both BMDPs and MDP-STs.

To address the computational deficiency of solutions for
MDP-IPs, first we extended the factored MDP model by re-

Figure 2: Relationship among MDP-IP and its sub-classes.

placing the usual Dynamic Bayesian Network (DBN) (Dean
and Kanazawa 1990) used in factored MDPs with Dynamic
Credal Network (DCNs) (Delgado et al. 2009; Delgado,
Sanner, and de Barros 2011) to support compact factored
structure in the imprecise transition model of factored MDP-
IPs. Second, we have proposed efficient, scalable algorithms
for solving these factored MDP-IPs based on two different
approaches: dynamic programming (Delgado, Sanner, and
de Barros 2011) and multilinear programming (Delgado et
al. 2011).

MDPs with Imprecise Transitions
An MDP with imprecise transition probabilities (MDP-IP)
is simply an extension of the MDP where the transition prob-
abilities can be imprecisely specified. That is, instead of
a probability measure P (·|s, a) over the state space S, we
have a set of probability measures. that is referred to as a
credal set (Cozman 2000).

Definition 1. Transition credal set. A credal set contain-
ing conditional distributions over the next state s′, given a
state s and an action a, is referred to as a transition credal
sets (Cozman 2000) and denoted by K(s′|s, a). Thus, we
have P (·|s, a) ∈ K(·|s, a) to define imprecisely specified
transition probabilities.

We assume that all credal sets are closed and convex, an
assumption that is often used in the literature, and that en-
compasses most practical applications (Walley 1991). We
further assume stationarity for the transition credal sets
K(s′|s, a); that is, they do not depend on the stage t. While
K(s′|s, a) is non-stationary, we note that this does not re-
quire P (s′|s, a) to be stationary in an MDP-IP: distributions
P (s′|s, a) may be selected from the corresponding credal
sets in a time-dependent manner (Nilim and El Ghaoui
2005).

Formally, an MDP-IP is defined by MIP =
(S,A,K,R, T, γ). This definition is identical to the
MDP M, except that the transition distribution P is
replaced with a transition credal set K. We will represent
K implicitly as the set of transition probabilities consistent
with a set of side linear inequality constraints C over the
probability parameters.

There are several optimization criteria that can be used
to define the value of a policy in an MDP-IP. In the con-
text of the discounted infinite horizon setting focused on
this work, there is always a deterministic stationary policy
that is maximin optimal (Satia and Lave Jr. 1970) (i.e., no
other policy could achieve greater value under the assump-
tion that Nature’s selects P (s′|s, a) adversarially to mini-



mize value); moreover, given the assumption that A is finite
and the credal setK is closed, this policy induces an optimal
value function that is the unique fixed-point solution of

V ∗(s) = max
a∈A

min
P∈K

{
R(s, a) + γ

∑
s′∈S

P (s′|s, a)V ∗(s′)

}
. (2)

There are various algorithms for solving enumerated state
MDP-IPs based on dynamic programming (Satia and Lave
Jr. 1970; White III and El-Deib 1994). In this work, we build
on a value iteration solution to MDP-IPs (Satia and Lave Jr.
1970):

V t(s) = max
a∈A

min
P∈K

{
R(s, a) + γ

∑
s′∈S

P (s′|s, a)V t−1(s′)

}
(3)

Value iteration for MDP-IPs is the same as for MDPs except
that now for every state s, we optimize our action choice
a ∈ A w.r.t. the worst-case distribution P ∈ K that min-
imizes the future expected value. Thus we ensure that the
resulting value function and policy are robust to the worst
outcome that Nature could choose in light of the future value
V t−1(s′) that we expect to achieve.

The Bellman equation can be also solved through a mul-
tilinear program (Shirota et al. 2007):

min
V ∗,P

:
∑
s

V ∗(s) (4)

s.t. : V ∗(s) ≥ R(s, a) + γ
∑
s′∈S

P (s′|s, a)V ∗(s′),

∀s ∈ S, a ∈ A,P (s′|s, a) ∈ K(s′|s, a).

Notice that the constraints force V ∗(s) to be
greater than or equal to maxa∈AminP∈K{R(s, a) +
γ
∑
s′∈S P (s

′|s, a)V ∗(s′)}, considering all a ∈ A, and
then minimizing

∑
s V
∗(s) enforces that the minimal V ∗(s)

is obtained.

Factored MDP-IPs
The definitions of MDP-IP given in the previous section
models an enumerated MDP-IP (also called flat MDP-IP),
where states are seen as black boxes.

We have extended the factored MDP representa-
tion (Boutilier, Hanks, and Dean 1999) to compactly repre-
sent MDP-IPs. This requires modifying the DBN transition
representation to account for uncertainty over the exact tran-
sition probabilities.

Like the previous definition of an enumerated state MDP-
IP, the set of all legal transition distributions for a factored
MDP-IP is defined as a credal set K. The challenge then
was to specify such transition credal sets in a factored man-
ner that is itself compact. For this, we have proposed to use
dynamic credal networks (DCNs), a special case of credal
networks (Cozman 2000; 2005), as an appropriate language
to express factored transition credal sets.

Definition 2. Factored transition credal set. A credal
set containing conditional distributions over the values of a
variable xi, given the values of paa(xi) (the parents of xi in
the graph for action a), is referred to as a factored transition
credal set and denoted by Ka(xi|paa(xi)).

Definition 3. Dynamic credal network. A Dynamic
credal network (DCN) is a generalization of a DBN. Dif-
ferent from the definition of a DBN, in a DCN each vari-
able xi is associated with factored transition credal sets
Ka(xi|paa(xi)) for each value of paa(xi). We assume
that a DCN represents a joint credal set (Cozman 2005;
2000) over all of its variables consisting of all distributions
that satisfy the factorization in Equation (1), where each
CPT distribution P (x′i|paa(x′i), a) is an element of the tran-
sition credal set Ka(x

′
i|paa(x′i)) associated with the DCN,

i.e. P (x′i|paa(x′i), a) ∈Ka(x
′
i|paa(x′i)).

A DCN example is shown in Figure 3a. For each vari-
able x′i in a DCN, we have a conditional probability table
(CPT) with imprecise probabilities. If we examine the CPTs
in Figure 3b, we note that entries are specified by probability
parameters pij (i for variable x′i and j for the jth parameter
in the CPT for x′i). Furthermore, we note that we have a set
of side linear constraints on these pij (shown in the boxes
below the CPT, collectively call this constraint set C). We
use ~p to denote a vector containing all parameter values that
are free to vary within the given credal sets (i.e., that satisfy
the probability constraints C of the DCN).

We note that the joint transition probability may be non-
linear in the probability parameters ~p. However, we explic-
itly introduce the following restriction to prevent exponents
exceeding 1: a parameter pij may only appear in the CPT for
x′i. This restriction prevents the multiplication of pij by itself
when CPTs for each x′i are multiplied together to determine
the joint transition distribution in the DCN. This subset of
nonlinear expressions, where the exponent of each pij is ei-
ther 0 or 1, is referred to as a multilinear expression. To see
the multilinearity of the transition probability in Figure 3, we
observe P (x′1 = 1, x′2 = 1|x1 = 1, x2 = 1, notreboot) =
p11p21.

Exact Solution for Factored MDP-IPs

SPUDD-IP

SPUDD (Hoey et al. 1999) is an efficient factored version of
Value Iteration for MDPs that represents CPTs, rewards and
value functions as algebraic decision diagrams (ADDs) (Ba-
har et al. 1993). Inspired on that we have proposed SPUDD-
IP (Delgado, Sanner, and de Barros 2011) to solve factored
MDP-IPs.

ADDs compactly represent context-specific independence
(CSI) (Boutilier et al. 1996) that are not evident in the DBNs.
In order to compactly represent a CSI and shared function
structure in the CPTs for an MDP-IP, we have proposed
a novel extension of ADDs called parameterized ADDs
(PADDs) (Delgado, Sanner, and de Barros 2011) since the
leaves are parameterized expressions as shown in Figure 3c.
PADDs do not only allow us to compactly represent the
CPTs for factored MDP-IPs, but they also enable efficient
computations for factored MDP-IP value iteration opera-
tions.

We begin by expressing MDP-IP value iteration from (3)
in the following factored form using the transition represen-



Figure 3: a) DCN for action a. b) Conditional probability table for the state variables x′1 = 1 and x′2 = 1 and the constraints
related to the probabilities. c) The Parameterized ADD representation of P (x′1|x1, x2,a). Solid lines indicate the true (1) branch
of a variable test and dashed lines indicate the false (0) branch.

tation of (1) and operations on decision diagrams:1

V t
DD(~x) = max

a∈A

{
RDD(~x, a)⊕ γmin

~p
(5)

∑
~x′

n⊗
i=1

PDD(x′i|paa(x′i), a)V t−1
DD (~x′)


Because the transition CPTs in the MDP-IP DCN con-

tain parameters ~p, these CPTs must be represented in de-
cision diagram format as PADDs (PDD(x′i|paa(x′i), a) ∈
Ka(x

′
i|paa(x′i))). The rewardRDD(~x, a) can be represented

as an ADD since it contains only constants (for the purpose
of operations, recall that ADDs are special cases of PADDs).
Although it may appear that the form of V tDD(~x) is a PADD,
we note that the parameters ~p are “minimized”-out w.r.t. the
side constraints on ~p during the min~p� operation in (5)
(min~p� is the MinParameterOut operation on PADDs, that
performs the minimization over the parameters by calling a
nonlinear solver for each leaf and returns an ADD). Thus
the resulting V tDD(~x) computed from the maxa∈A has con-
stant leaves and can be expressed as the ADD special case
of PADDs.

To explain the efficient evaluation of (5) in more detail, we
can exploit the variable elimination algorithm (Zhang and
Poole 1994) in the marginalization over all next states

∑
~x′ .

For example, if x′1 is not dependent on any other x′i for i 6=
1, we can “push” the sum over x′1 inwards to obtain:

V
t
DD(~x) = max

a∈A

{
RDD(~x, a)⊕ γmin

~p
(6)

∑
x′
i
(i6=1)

n⊗
i=1(i6=1)

PDD(x
′
i|paa(x

′
i), a)

∑
x′1

PDD(x
′
1|paa(x

′
1), a)V

t−1
DD (~x

′
)


Then we can continue with x′2, multiplying this result by the
PDD(x

′
2|paa(x′2), a), summing out over x′2, and repeating

for all x′i to compute �. After this � does not contain any-
more the variables x′i, but only the variables xi.

The SPUDD-IP value iteration solution to factored MDP-
IPs returns a robust optimal policy and often yields an im-
provement over flat value iteration. Figure 4 shows that for

1We useDD for the functions represented by ADDs or PADDs.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

factory-22

factory-21

factory-19

traffic-14

traffic-12

traffic-10

indep-ring-8

indep-ring-7

indep-ring-6

bi-ring-8

bi-ring-7

bi-ring-6

uni-ring-8

uni-ring-7

uni-ring-6

T
im

e(
se

co
nd

s)

DNF DNF DNF DNF DNF

Exact SPUDD-IP Exact Flat Value Iteration

Figure 4: Time performance comparison for TRAFFIC,
SYSADMIN and FACTORY problems using SPUDD-IP and
Flat Value Iteration. The name includes the number of vari-
ables in each problem, so the corresponding number of states
is 2#variables.

large state spaces (212 to 222) flat Value Iteration does not
return a solution due to time and space limitations, while
SPUDD-IP can solve the largest problems.

Approximate Solutions for Factored MDP-IPs
As the number of state variables in a problem grows
larger SPUDD-IP also becomes inefficient. Thus in this sec-
tion we describe three approximate solutions for MDP-IP:
APRICODD-IP (Delgado, Sanner, and de Barros 2011) and
Objective-IP (Delgado, Sanner, and de Barros 2011), two
approximate versions of Value Iteration for MDP-IP; and
AMP (Delgado et al. 2011) an approximate Multilinear Pro-
gramming algorithm for MDP-IP.

Approximate Value Iteration
Approximate value iteration (AVI) is one way to trade off
time and space with error by approximating the value func-
tion after each iteration.

APRICODD-IP algorithm is an extension of the APRI-
CODD algorithm (St-Aubin, Hoey, and Boutilier 2000) that



provides an efficient way of approximating the ADD value
representation for a factored MDP, reducing its size and thus
reducing computation time per iteration. This is done by a
method that has two inputs: (1) a value function represented
as an ADD and (2) an approximation error to merge the
leaves. The output is a new ADD with the merged leaves.
The algorithm first collects all leaves of the ADD and de-
termines which can be merged to form new values without
approximating more than error. The old values are then re-
placed with these new values creating a new (minimally re-
duced) ADD that represents the approximated value func-
tion. This approach immediately generalizes to MDP-IPs
since the value function V tDD is also an ADD.

However, in solving (factored) MDP-IPs, the time is dic-
tated less by the size of the value function ADD and more
by the number of calls to the multilinear optimizer. Thus we
also proposed a new approximate algorithm, Objective-IP,
that attempts to make less calls to the solver by approximat-
ing the objectives (the mim of the optimization call) in an
attempt to avoid calling the solver altogether. Different from
APRICODD-IP, Objective-IP approximates the leaves of the
PADD just prior to carrying out the multilinear optimization.
The approximation method takes as input a PADD and the
maximum error and returns a new PADD with approximated
leaves using the upper and lower bounds of the parameters
pi. Note that each leave is approximated independently, this
can be done since each leaf corresponds to a different state
(or set of states) and the system can only be in one state at a
time. Furthermore, we can guarantee that no objective prun-
ing at the leaves of the PADD incurs more than error after
the multilinear optimization is performed.

In order to evaluate the policy returned by our approxi-
mate solutions, we compute the True Approximation Error
(TAE) given by:

max~x|V ∗(~x)− Vapprox(~x)| (7)

where Vapprox(~x) is the value returned by the approxi-
mate solutions and V ∗(~x) is the optimal value computed by
SPUDD-IP.

In Figure 5 we show a comparison of the True Ap-
proximation Error (TAE) vs. running times for the bi-ring-
6 problem of an imprecise version of the SysAdmin do-
main (Guestrin et al. 2003). The results echo one conclusion:
Objective-IP consistently takes less time than APRICODD-
IP to achieve the same approximation error and up to one
order of magnitude less time than APRICODD-IP (Delgado,
Sanner, and de Barros 2011). This time reduction can be ex-
plained by the decreased number of calls to the multilinear
solver.

Approximate Multilinear Programming
Another approximate solution for Factored MDP-IPs we
have proposed is the Approximate Multilinear Program-
ming (AMP) (Delgado et al. 2011). We extend previous
work (Guestrin et al. 2003) that obtain efficient approximate
linear programming solutions for Factored MDPs. In this ap-
proximate solution we use the approximate value function
denoted by V̂ (~x). Given ~x ∈ S and a set of basis func-

tions H = {h1, ..., hk}, V ∗(~x) is approximated using a lin-
ear combination:

V̂ (~x) =

k∑
j=1

wjhj(~x). (8)

We can use this approximate value function and replace it
in the multilinear formulation (Problem (4)) of an MDP-IP
so as to obtain the factored multilinear programming prob-
lem:

min
w,P

∑
~x

k∑
i=0

wihi(~x) (9)

subject to :

k∑
i=0

wihi(~x) ≥ R(~x, a) +

γ
∑
~x′∈S

P (~x′|~x, a)
k∑

i=0

wihi(~x
′),∀~x ∈ S, a ∈ A

P (x′i|pa(X ′i), a) ∈ Ka(X
′
i|pa(X ′i)),

P (~x′|~x, a) =
∏
i

P (x′i|pa(X ′i), a).

To solve this optimization problem, we exploit the Fac-
tored MDP-IP structure to reduce the number of constraints
generated and to compactly encode the remaining con-
straints that empirically leads to an exponential reduction in
the number of constraints for some problems.

In Figure 5 we compare the three approximate solution
methods, APRICODD-IP and Objective-IP and AMP. We
used simple basis functions (one for each variable in the
problem description) and pairwise basis functions (one for
each pair of variables that have a common child variable in
the DCN).

When it does finish within a limit of ten hours, AMP takes
only a few seconds to produce an approximate solution for
each problem (except for the FACTORY domain for which
it did not return a solution). Comparing the algorithms in
terms of their true approximation error, we observe that in
the bi-ring-6 problem, AMP with pair basis functions out-
performs APRICODD-IP and obtains a solution 2-3× larger
than the error of Objective-IP, but in significantly less time.
This experiment and the results obtained in other domains
lead us to conclude that Objective-IP consistently gives an
error at least 2-3× lower than AMP and sometimes runs
as fast as the AMP solution, while in other cases running
slower. However, the bottleneck of the AMP solution is to
define appropriate basis functions (Guestrin et al. 2003).

Concluding Remarks
In this work we make a short survey on our contribution
for Markov Decision Processes with Imprecise Probabilities
(MDP-IPs), a class of models that adds considerable flexibil-
ity and realism to probabilistic planning allowing the repre-
sentation of imprecise transition probabilities. We first pro-
pose a compact Factored MDPIP model, which represents
states throughout state variables and uses Dynamic Credal
Networks to specify the imprecise transition probabilities,
which can reveal the structure of an application domain and



 0

 1

 2

 3

 4

 5

 6

 0  100  200  300  400  500  600  700

T
ru

e 
A

pp
ro

xi
m

at
io

n 
E

rr
or

Time(seconds)

bi-ring-6

APRICODD-IP Pruning
Objective-IP Pruning

MPA Simple Basis
MPA Pair Basis

Figure 5: True Approximation Error vs. time required for
APRICODD-IP, Objective-IP and MPA with simple basis
and pairwise basis functions for SYSADMIN problem with
bidirectional-ring topology.

allows for the construction of efficient solutions. The pro-
posed solution, exact or approximate were of two types:
based on dynamic programming and based on multilinear
programming. The first extends the factored approaches for
MDPs, SPUDD and APRICODD, plus a new way of ap-
proximation that avoids calling the optimization solver. The
second extends the approximate linear programming solu-
tion for MDPs, to the Approximate Multilinear Program-
ming for MDP-IPs, that can be very efficient when we have
appropriate basis functions.

We are currently working on an asynchronous dynamic
programming, named RTDP-IP for MDP-IPs. The main
challenges of this solution are: (i) how to sample the next
state in a trial? (ii) how to ensure convergence of an asyn-
chronous dynamic programming solution, having a range of
possible probabilities in the state transition matrix? Another
work we are currently working is how to extract an MDP-IP
transition function from data.

References
Bahar, R. I.; Frohm, E. A.; Gaona, C. M.; Hachtel, G. D.;
Macii, E.; Pardo, A.; and Somenzi, F. 1993. Algebraic De-
cision Diagrams and their Applications. In Proceedings of
ICCAD, 188–191. Los Alamitos, CA, USA: IEEE Computer
Society Press.
Boutilier, C.; Friedman, N.; Goldszmidt, M.; and Koller, D.
1996. Context-specific Independence in Bayesian Networks.
In Proc. 12th UAI, 115–123.
Boutilier, C.; Hanks, S.; and Dean, T. 1999. Decision-
theoretic Planning: Structural Assumptions and Computa-
tional Leverage. JAIR 11:1–94.
Buffet, O., and Aberdeen, D. 2005. Robust Planning with
LRTDP. In Proc. of the IJCAI, 1214–1219.
Cozman, F. G. 2000. Credal Networks. Artificial Intelli-
gence 120:199–233.
Cozman, F. G. 2005. Graphical Models for Imprecise Prob-
abilities. International Journal of Approximate Reasoning
39(2-3):167–184.
Cui, S.; Sun, J.; Yin, M.; and Lu, S. 2006. Solving Uncertain

Markov Decision Problems: An Interval-Based Method. In
ICNC (2), 948–957.
Dean, T., and Kanazawa, K. 1990. A Model for Reasoning
about Persistence and Causation. Comput. Intell. 5(3):142–
150.
Delgado, K. V.; de Barros, L. N.; Cozman, F. G.; and Shirota,
R. 2009. Representing and Solving Factored Markov Deci-
sion Processes with Imprecise Probabilities. In 6th ISIPTA.
Delgado, K. V.; de Barros, L. N.; Cozman, F. G.; and Sanner,
S. 2011. Using mathematical programming to solve factored
markov decision processes with imprecise probabilities. Int.
J. Approx. Reasoning 52(7):1000–1017.
Delgado, K. V.; Sanner, S.; and de Barros, L. N. 2011. Ef-
ficient solutions to factored mdps with imprecise transition
probabilities. Artif. Intell. 175(9-10):1498–1527.
Givan, R.; Leach, S.; and Dean, T. 2000. Bounded-
parameter Markov Decision Processes. Artificial Intelli-
gence 122:71–109(39).
Guestrin, C.; Koller, D.; Parr, R.; and Venkataraman, S.
2003. Efficient Solution Algorithms for Factored MDPs.
JAIR 19:399–468.
Hoey, J.; St-Aubin, R.; Hu, A.; and Boutilier, C. 1999.
SPUDD: Stochastic Planning using Decision Diagrams. In
Fifteenth Conference on Uncertainty in Artificial Intelli-
gence, 279–288. Morgan Kaufmann.
Nilim, A., and El Ghaoui, L. 2005. Robust Control of
Markov Decision Processes with Uncertain Transition Ma-
trices. Oper. Res. 53(5):780–798.
Puterman, M. L. 1994. Markov Decision Processes. Wiley
Series in Probability and Mathematical Statistics. New York:
John Wiley and Sons.
Satia, J. K., and Lave Jr., R. E. 1970. Markovian Decision
Processes with Uncertain Transition Probabilities. Opera-
tions Research 21:728–740.
Shirota, R.; Cozman, F. G.; Trevizan, F. W.; de Campos,
C. P.; and de Barros, L. N. 2007. Multilinear and Integer
Programming for Markov Decision Processes with Impre-
cise Probabilities. In 5th ISIPTA, 395–404.
St-Aubin, R.; Hoey, J.; and Boutilier, C. 2000. APRICODD:
Approximate Policy Construction using Decision Diagrams.
In Proceedings NIPS, 1089–1095. MIT Press.
Trevizan, F. W.; Cozman, F. G.; and de Barros, L. N. 2007.
Planning under Risk and Knightian Uncertainty. In IJCAI,
2023–2028.
Walley, P. 1991. Statistical Reasoning with Imprecise Prob-
abilities. London: Chapman and Hall.
White III, C. C., and El-Deib, H. K. 1994. Markov Decision
Processes with Imprecise Transition Probabilities. Opera-
tions Research 42(4):739–749.
Yin, M.; Wang, J.; and Gu, W. 2007. Solving Planning
Under Uncertainty: Quantitative and Qualitative Approach.
In IFSA (2), 612–620.
Zhang, N. L., and Poole, D. 1994. A Simple Approach
to Bayesian Network Computations. In Proc. of the Tenth
Canadian Conference on Artificial Intelligence, 171–178.


