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Abstract This paper discusses models for manufacturing systems that are based on generalized stochastic Petri nets and on 
Markov decision processes.  We employ generalized stochastic Petri nets to model manufacturing processes with high degree of 
uncertainty due to the human operator behavior. We extend the usual generalized stochastic Petri nets by allowing imprecision 
about probabilities to be explicitly represented. We then consider the translation of the resulting models into Markov decision 
processes with imprecise probabilities, so as to compute optimal policies.  We introduce an algorithm that performs this transla-
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1    Introduction

The automotive industry is currently experienc-
ing a unique situation. There is now an overall over 
capacity among the largest producers, which makes 
them dispute consumers fiercely – thus handing over 
to the consumers the central decision power. With 
this decision power, consumers have become more 
demanding, wanting vehicles to be custom made for 
them, and not willing to wait to get what they desire. 
As a consequence, manufacturing plants must address 
mass customization [Anderson (2004)]; that is, must 
have the ability to quickly and efficiently (on de-
mand) produce customized products. This scenario 
has been the day-to-day experience of the first author,
in her work at a major car manufacturer.

Since automotive manufacturing lines have to 
cope with such a huge variety of models and content 
options, their lines are mixed model manufacturing 
lines; that is, lines where more than one product can 
be produced [Miller and Park (1998)]. The sequence 
of vehicles produced is obtained by scheduling the 
necessary operations. The scheduling problem is ba-
sically a sequential planning problem; that is, to de-
termine a sequence of operations that satisfies some 
given criteria. 

Automotive manufacturing lines share an impor-
tant characteristic: there are many workers doing the 
assembling at any given time. This fact inserts uncer-
tainty into scheduling, as human workers do not have 
standard time patterns and therefore their tasks are 
not always finished in preplanned amounts of time. 
To be able to model the human behavior in the as-
sembling job we must chose a method that can deal
with uncertainty. Our focus here is on scheduling 
problems under uncertainty, in situations where prob-
ability distributions are quite hard to assess. 

There are some methods that could be used I this 
planning problem, such as the Dempster-Shafer the-
ory of evidence [Shafer (1976)] or the Markov Deci-

sion Process (MDP). We decided to  use the former. 
It is widely used in planning problems under uncer-
tainty, and is reviewed in Section 2.2. In our case, we 
resort to Markov Decision Process with Imprecise 
Probabilities (MDPIP) [Buffet & Aberdeen (2005), 
Harmanec (1999), Satia & Lave Jr. (1973), Whilte III 
& Eldeib (1994)]., as we are interested in situations 
where probabilities are not exactly specified. The 
basic theory on MDPIPs is briefly reviewed in Sec-
tion 2.2.

The overall goal of this work is to develop tools 
so that scheduling under uncertainty (where not all 
probability distributions are precisely specified) can 
be tackled. Our starting point is to use MDPIPs as the 
core tool for schedule generation. However, MDPIPs 
have a clear downside in that modeling an MDPIP 
for a given manufacturing plant is far from trivial. 

In order to overcome this difficulty, the ideal so-
lution is to start with an intuitive and easy modeling 
language, and then to translate the resulting models to 
the language of MDPIPs for schedule generation. 
One of the first modeling tools that come to mind 
when discussing manufacturing systems modeling are
Petri Nets (PNs), as these are broadly used  in con-
nection with discrete systems, in particular manufac-
turing lines [Balbo et al (1995), Desrochers & Al-
Jaar (1995), Zhou & Venkatesh (1999), Haas (2004), 
Buzacott & Shanthikumar (1993)]. Petri nets are
well-known and simple, thus easing the modeling 
process. In the context of scheduling under uncer-
tainty, the appropriate kind of Petri net to use is the 
Stochastic Petri Net, reviewed in Section 2.3. 

Thus, the specific goal of this paper is to present 
a method that receives a stochastic Petri net where 
not all probabilities are precisely specified, and trans-
lates it into a MDPIP appropriate for schedule gen-
eration. After a brief review of the automotive manu-
facturing lines that have motivated our study, and a 
review of necessary background in Section 2, we 
present the method that converts stochastic Petri Nets 
into MDPIP in Section 3.  Section 4 concludes the 



paper, summarizing our contributions and indicating 
future work.

2   Background

2.1 Automotive Manufacturing Lines

In this section we briefly review how an automo-
tive manufacturing line and its line stopping system
work, as these systems have directly motivated our 
design choices concerning scheduling tools.

An automotive facility is usually organized in a
job-shop structure [Miller & Park (1998)]. There are
three main shops: the body shop, paint shop and gen-
eral assembly shop. The body shop is the shop where 
the vehicle body is welded together. The paint shop is 
where it receives chemical treatment and it is painted. 
After going through the paint shop, the vehicle goes 
through an assembly line where all the other parts are
installed.

Because the content of vehicles varies consid-
erably, the existence of an assembly line for each car 
configuration is not viable; therefore all models and 
configurations are usually assembled in the same 
general assembly line. This type of assembly line 
where different models and configurations are as-
sembled in the same line is called a mixed model line, 
and such a line is the focus of our work.

It is possible to model an assembly line regard-
less of the other shops since there is a buffer after the 
paint shop, and the models can be resequenced before 
going into the assembly shop. 

In order to understand how a general assembly 
line works, it is important to know how line stopping 
system works. There are many reasons for a line to 
stop: power shortage, equipment break down and 
others, but in this study the only factor to be consid-
ered and the focus of this work will be worker task 
time. A common scheme for line stoppage is the an-
dom system, which is a pull-cord system, in which the 
vehicles can’t go to the next station until all of the 
stations had their tasks completed. Each worker has 
access to the pull-cord system, and is supposed to 
push them when something unexpected happens.

The andom system has three states, the first one 
is the ideal state, which is the one when everything 
goes as expected and the cord has not been pulled.
Usually at that stage the worker has a standard behav-
ior that can be predicted and described. The second 
one is the warning state and is differentiated from the 
previous state by a yellow line on the floor. When the 
worker crosses this line while doing its task, he pulls 
the cord in order to inform everyone else that he may
not finish his task on time. When this state is reached 
usually the team leader comes to help the worker 
finish his task on time and the worker begins to work 
faster. When this state is reached, there is no known 
standard behavior since we can’t predict how faster 
the worker will work and whether or not the team 
leader will be able to come help out. The third state,

which is the one that must be avoided the most and is 
marked by a red line on the floor, is the line stoppage
state. It happens when, despite the fact that the cord 
was pulled and the worker was helped, the task was 
not completed in cycle time and the whole line must 
stop.

2.2 Markov Decision Processes (MDP) and Markov 
Decision Processes with Imprecise Probabilities 
(MDPIPs)

Markov Decision Processes are often used to 
produce schedules (that is, plans) [Trevizan et al 
(2006), Trevizan et al (2007), Russel & Norvig 
(2004)]. We wish to ultimately have our manufactur-
ing lines expressed through Markov Decision Proc-
esses so that scheduling can be automatically gener-
ated. 

The structure of Markov Decision Processes 
(MDPs) consists of states and actions, and the func-
tions that relate actions and states. For each state s
and action a a probability function that determines 
the next state must be given. An MDP possesses the 
Markov property, in which the next state s’ depends 
only in the present state s (therefore, a state is inde-
pendent from previous states).

 The main elements of an MDP are [Trevizan et al 
(2006), Trevizan et al (2007)]: a discrete and finite 
state space S, a non-empty set of initial states SS 0

, 

a goal given by a set SSG  , 
a non-empty set of 

actions AsA )(  representing the applicable actions 

in each state s, a state transition function SasF ),(
mapping state s and action )(sAa into a non-

empty set of states  (|F(s,a)|>=1), a positive cost 
C(s,a) for taking )(sAa  in s; a probabilistic distri-

bution )(0 P in 
0S and s probabilistic distribution 

),|( asP  in ),( asF  to all Ss and all )(sAa .

A state is the description of the system being stud-
ied. The description of the system must have all the 
information needed by the decision agent to make a 
decision, so it may vary depending on the goal and 
the method that will be used. In the MDP context, the 
space state is the finite set of all states that can be 
reached by the system.

To define a problem in the MDP form, it is neces-
sary to have, besides the state space, the non-empty 
set of initial states, and the non-empty set of goal 
states. Actions are interventions that the decision 
making agent can make in the system in order to 
chance it’s natural evolution of the states course. 
There must be a function F(s,a) that maps which 
states s’ can be reached from the present state s if the 
action a is taken. The last element of the MDP is the 

probabilistic distribution ),|( asP   that measures the 
probability to reach the state s’ given the present state 
s and the taken action a to all states mapped by 
F(s,a).
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There are some situations where there are not 
enough resources (people, equipment, time) to get a 
precise probability estimative, or the members of the 
team disagree on the probability value. In order to 
bypass these situations a level of imprecision needs 
to be added to the probability. One way to add this 
imprecision is to represent probability values by sets
of probability distributions, often referred to as cre-
dal sets [Lexi (1980)]. 

A credal set formalizes the imprecision in prob-
abilities, by listing all probability distributions that 
are deemed possible in a given problem. Credal set 
are usually taken to be closed, an assumption we 
adopt in this paper. Given a closed set of probability 
measures, the upper and lower bounds on any prob-
ability are called respectively upper and lower prob-
abilities.

An extension of MDP is the MDPIP (Markov 
Decision Process with Imprecise Probabilities), in 
which the effect of the actions is described by a cre-
dal set K over the space state [Buffet & Aberdeen 
(2005), Harmanec (1999), Satia & Lave Jr. (1973), 
Whilte III & Eldeib (1994)]. This representation is 
taken to mean that the probability distribution 

),|'( assP for the next states of S is represented by a 

non-empty credal set )(aKS
to all states Ss . The 

formal definition is [Trevizan et al (2006)]:
1. A discrete and finite state space S;
2. A non-empty set of initial states SS 0

;

3. A goal given by a set SSG  ;

4. A non-empty set of actions AsA )(  repre-

senting the applicable actions in each state s;
5. A state transition function SasF ),(  map-

ping state s and action )(sAa into a 

non-empty set of states  (|F(s,a)|>=1);
6. A positive cost C(s,a) for taking )(sAa  in

s;
7. A non-empty credal set KS(a) for all states s 

 S e actions a  A(s), representing the 
probability distribution P(s’/s,a) over the 
next states of S.

2.3 Petri Nets, Timed and Stochastic Petri Nets

Petri nets offer a language to model and analyze 
discrete event systems. It allows one to represent 
graphically and mathematically those systems [Balbo 
et al (1995), Desrochers & Al-Jaar (1995), Zhou & 
Venkatesh (1999), Haas (2004), Buzacott & Shanthi-
kumar (1993)].  In this section will review the basics 
of PN regarding only the elements needed for the 
modeling of an assembly line which is the focus of 
this method.

There are four graphical elements in Petri nets: 
places (circles), transitions (rectangles), oriented arcs 
and tokens (dots). Places represent elements of the 
system that suffer the action, usually representing a
specific type of resource in a determined stage of the 

process. The transitions represent actions of the sys-
tem, in our case the assembling processes. The di-
rected arcs represent the relationship between places 
and transitions, connecting transitions to places and 
places to transitions. They define what resources are 
needed for the transition and what its outcomes are.
The tokens are placed inside the places and represent 
the existence of a unit of the resource represented by 
the place. The disposition of tokens over the places is 
called the marking of the net. 

PN evolves in time by the firing of the transitions 
which represent that the action represented by the 
transitions occurred. When it happens, tokens are 
moved from the input places to the output ones. 

Transitions in Petri nets can have two states: en-
abled and disabled. In order to be fired, the transi-
tions must be enabled, meaning its pre conditions and 
post conditions must be satisfied. 

Pre-conditions refer to the input places. All the 
input places must have tokens, meaning the resources
for the operation are available. Post conditions refer 
to all the output places, usually representing physical 
space to put the product of the operation represented 
by the transition. The output places must have space 
to receive the output token.

There are situations when an enabled transition 
may not fire. This happens when there is a conflict
which will result in a non-deterministic behavior in 
the PN. A conflict is when two enabled transitions 
compete to use the same resource (token). In order to 
model these conflicts, a random switch is defined. 
Random switch is when a firing probability is associ-
ated to each transition. When there are many configu-
ration of conflicts there will be defined as many sets 
of probabilities as the number of configurations.

Timed Petri Net (TPN) [Desrochers & Al-Jaar 
(1995)] was developed due to the need to model the 
amount of time taken for an event to occur. The in-
clusion of time can be done in two ways. The first 
one is by attaching time to transitions, creating Timed 
Transition Petri Net (TTPN), and the second one é 
by attaching time to places resulting in Timed Place 
Petri Net (TPPN). Stochastic Petri Nets are a special 
case of TTPN.

Figure 1 – Example of TTPN firing.



In a TTPN the transition is fired as soon as the 
inputs arrive to their places. Although the input to-
kens are taken right away from the input places, they 
will only be placed in the output places after the tran-
sition time has elapsed. Timed transitions are repre-
sented by white rectangles. An example of its dynam-
ics can be seen in Figure 1.

Stochastic Petri Nets [Balbo et al (1995), Des-
rochers & Al-Jaar (1995), Zhou & Venkatesh (1999), 
Haas (2004), Miyagi (1996)] are special extensions
of TTPNs, in which the transition time is not deter-
ministic. This extension augments the modeling
power, allowing systems that are affected by non-
deterministic factors (in our case human behavior.) to 
be modeled. The transition firing time is usually de-
scribed by a probabilistic distribution, and commonly 
exponential distributions are used.

The formal definition of stochastic Petri net (P, 
T, I, O, M0,) is given bellow [Zhou & Venkatesh 
(1999)]:
1. P={p1, p2, ..., pn}, n>0 : finite places set;
2. T={t1, t2, ..., ts}, s>0 : finite transitions set, given

PT≠ and PT=;
3. I:PxTN is the input function which defines the 

set of arcs directed from P to T where 
N={0,1,2,...};

4. O:PxTN is the output function which defines 
the set of arcs directed from T to P;

5. NPM : : marking in which for every place 
Pp  there are markings. The initial marking is 

denoted  Mo;

6. :TR+ firing function in which i is the firing 
rate of the transition ti.
There is a specific type of SPN called General-

ized Stochastic Petri Nets (GSPN) [Desrochers & Al-
Jaar (1995), Zhou & Venkatesh (1999)]. GSPN have 
instant transitions besides the stochastic time transi-
tion. We chose this kind of PN because it allows 
more complex modeling.

Figure 2 shows an example of GSPN, represent-
ing the car’s hang-ons assembly. Notice that the im-
mediate transitions (T1, T2 and T5) do not represent 
any action; they are just parallelizing the right and
left door assembly.

Each stochastic transition (T3, T4, T6 and T7) 
will receive a value for λi, which will represent the 
firing rate. For example, λ3=6 means that in average 
the transition T3 will fire six time over one unit of 
time.

Figure 2 –Example of GSPN.

3   The Conversion Method and an Example

In this section will show how to turn a GSPN that 
describes an assembly line into an MDPIP. Our prob-
lem is this. Suppose one models an automotive line 
using a GSPN where some probabilities are partially 
known. In the realm of automotive lines, a person 
will find it difficult to determine some probabilities 
connected with stops in the andom system: when the 
operator reaches the warning state, its behavior is 
hardly predictable, and estimating probabilities for 
that state is a difficult matter. Now the challenge is to 
translate the GSPN with imprecise probabilities into 
an MDPIP. 

Assume a line has already been modeled through 
a GSPN. Converting this GSPN into an MDPIP takes 
five steps:

1. Turning each transition probabilistic time dis-
tribution into a credal set;

2. Defining the states;
3. Defining of the set of actions;
4. Defining the probability distributions 

P(s’/s,a);
5. Defining the cost of each action.
The conversion will be illustrated by an example

as follows.

EXAMPLE 
The GSPN in Figure 3 represents a system with 

two workstations W1 and W2. Suppose there are 
three kinds of products that have to be made (C1, C2,
C3). In order to completely define the problem, be-
sides having the Petri net, we must have the table 
informing the mean task time for each work-
station/product combination, like shown in table 1.

Figure 3 –GSPN of the example.

The first step consists of turning each transition 
probabilistic time distribution into a credal set. No-
tice that the credal set and the probabilistic function 
will represent different entities. The probabilistic 
function will represent the time it takes for the task to 
be completed, while the credal set will represent the 
probability that the task will be finished before the 
cycle time has elapsed.

Workstation Product Mean Task Time
W1 C1 36
W1 C2 37
W1 C3 34
W2 C1 36
W2 C2 40
W2 C3 27

Table1 –Example’s firing rates.

If we were to convert the probabilistic transition 
time to a precise probability, it could be measured 
directly from the assembly time graph by looking at 
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the probability in the y axis at the time provided by 
the assembly line. But this probability value does not 
represent what is really happening, because once the 
worker realizes he might not finish his work on time, 
he might speed up and/or get help. When this stage is 
reached, the worker stops acting according to the 
curve, his behavior becomes unknown and this uncer-
tainty will have to me measured. We use credal sets 
to represent this uncertainty. 

In order to model the unknown behavior we must 
measure how much the work can be sped up. This
acceleration must be stated for each station consider-
ing how much can the worker speed up, how many 
other people might help and so on. This acceleration 
will be referred as the maximum compression rate. 

The lower probability will be defined by the 
probability the work would get done if the worker 
kept working at the same pace, and its upper prob-
ability is defined by the probability the work would
get done at the speed produced by the maximum 
compression rate in the warning zone. 

EXAMPLE
Suppose the line from the previously stated ex-

ample gives 40 seconds for the task to be completed. 
The inferior limit of the credal set can be determined 
by the firing probability graph. Graph 1 represents 
C1 in W1, so the lower probability is approximately 
67%. That means that 67%, the lower probability, is 
the minimum probability possible for the operator to 
finish its task, we can but sure that at least in 67% of 
the time this task will be completed.

The upper probability will be acquired from the 
altered probability graph, which is when it is exposed 
to the compression rate, beginning in the warning 
zone. In this problem will consider the warning zone 
begins at 37s. For this problem will consider that the 
man working at W1 works 20% faster under pressure 
and that he have a team leader that may come to help 
him. The compression rate would be 
(100%+20%)*2=240%. Applying this compression 
rate will get Graph2 and the upper probability equal 
to 75%. That means that in the best case scenario, 
there’ll be a 75% chance that the task will be finished 
on time (upper probability).

The next step is the definition of the states in the 
MDPIP. As it was mentioned in Section 2.3, the defi-
nition of the states depends on what we are trying to 
model. In this case, the main goal is to model the line 
stoppage, so this is one of the parameters considered 
while modeling. The number of states will depend on 
the number of vehicles to be scheduled because the 
number of assembly cycles is the number of vehicles 
plus the number of stations minus one, equation 1,
and each state will be described by the combination 
of what happened to the line in each assembly cycle.

Equation 1.

Accumulated Firing Rate Probability

0

20

40

60

80

100

120

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

Time (s)

A
c

c
u

m
u

la
te

d
 F

ir
in

g
 R

at
e

 P
ro

b
ab

ili
ty

 (
%

)

67
%

Graph 1.
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The values given to the states, OK and NOK, 
represent if the line stopped or not, respectively. The 
combination of the cycles and their states determines 
the possible MDPIP states, so, there are 2N states, 
where N is the number of cycles.
EXAMPLE

For our example, there are two stations and 
three products, so there are four cycles, as shown in 
Table 2. Since we have four cycles, will have 24

states.

Once the states have been defined, the next step 
is defining the set of actions that can be taken in each 
state. Defining the actions in this particular case is 
easy, since the action is choosing the next product to 
go into the line. The only restriction is that each 
product can only be chosen one time, so, in case it 
has been picked before it can no longer be chosen.

Cycle Description Values
1 1st product in M1 OK & NOK
2 1st product in M2 & 2nd in M1 OK & NOK
3 2nd product in M2 & 3rd in M1 OK & NOK
4 3rd product in M2 OK & NOK

Table 2 – States.

EXAMPLE
The actions in our case at the initial state could 

be C1, C2 or C3. At the next state they could be all 
but the one chosen at the initial, supposing we had 
chosen for example C2, in the second state we could 
only chose C1 or C3. At the third state we could 
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chose all but the ones selected on the previous states, 
supposing we had chosen C3 for the second one, at 
the third we could only chose C1.

Having defined states and its possible actions, 
we need to define the probabilities distributions 
P(s’/s,a). This is defined from the combinations of the 
credal sets of each station and the possibility that they
will or will not stop the line. When combining those 
probabilities it is important to notice that it will be 
done as if all the stations where in series, because 
stations in parallel may as well stop each other since 
the line works as a whole.

The cost of each action will be inversely pro-
portional to the probability of the action to stop the 
line. The higher the probability of stoppage the 
smaller will be the cost, since the method maximizes 
the cost; it will be minimizing the probability of line 
stoppage.

4   Conclusion

In this article we proposed a scheduling method-
ology that deals with uncertainties that are typically 
found in manufacturing lines, in particular in the 
automotive industry. In short, the methodology is to 
start with a model by stochastic Petri nets where 
some probability values may be left unspecified; to 
transform such a stochastic Petri net into a Markov 
Decision Process with Imprecise Probabilities; and 
finally to operate with this Markov process to pro-
duce policies if necessary. We have contributed with 
a method that turns a GSPN (with characteristics usu-
ally found in automotive assembling lines) into an 
MDPIP.

We are now starting tests with a real manufactur-
ing line in the automotive industry, and plan to report 
on results shortly. Because the method was devel-
oped considering automotive assembling lines, the 
most pressing future work is to apply our methodol-
ogy to other types of manufacturing lines. 
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