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2 Instituto de Matemática e Estat́ıstica, Universidade de São Paulo

Abstract. We present an algorithm that learns acyclic propositional
probabilistic logic programs from complete data, by adapting techniques
from Bayesian network learning. Specifically, we focus on score-based
learning and on exact maximum likelihood computations. Our main con-
tribution is to show that by restricting any rule body to contain at most
two literals, most needed optimization steps can be solved exactly. We
describe experiments indicating that our techniques do produce accurate
models from data with reduced numbers of parameters.
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1 Introduction

The goal of this paper is to present techniques that learn probabilistic logic
programs (plps) from complete data. Probabilistic logic programs have been
explored for some time [10, 13, 14, 16, 20], and are now the object of significant
literature [18, 19]; yet there is much to be developed when it comes to rule
learning. In this paper we wish to examine the extent to which, for some classes
of plps, we can find the exact optimal plp with respect to some score. That is,
we look for classes of plps have some guarantees concerning the optimization of
scores given data.

With this broad goal in mind, here we focus on algorithms that learn, in the
sense of maximization of minimum description length, acyclic sets of proposi-
tional rules with at most two literals in their bodies. This is admitedly a restricted
class of plps, but note that these plps can encode all “noisy” Boolean circuits
and can serve as starting point for more ambitious investigations.

Our main contribution is to show that, by focusing on this restricted class
of plps, we can exactly, in constant time, solve most optimizations involved in
description length minimization.

Because acyclic propositional plps are intimately related to Bayesian net-
works [17], we employ insights from Bayesian network learning, in particular
resorting to score-based learning where the score is based on minimum descrip-
tion length [11]. However most of our arguments apply to any decomposable



score that depends on likelihood; for example, analogues of K2 and BDeu scores
[11] could be easily adopted.

We briefly review the main features of relevant plps in Section 2. We then
introduce the score maximization problem we face (Section 3); this follows by
direct adaptation of methods from Bayesian network learning. In Sections 4
and 5 we derive an algorithm for score maximization that relies both on exact
maximization of polynomial equations for local optimization and on constraint
programming for global optimization. Experiments and results indicating that
our method is successful in recovering accurate models are reported in Section 6.

2 Probabilistic logic programs: a (very) brief review

Take a fixed vocabulary consisting of logical variables X,X1, . . . , predicates
r, rr, . . . , and constants a, b, . . . . A term is a constant or a logical variable; an
atom is written as r(t1, . . . , tn), where r is a predicate of arity n and each ti is a
term (a 0-arity atom is written as r). An atom is ground if it does not contain
logical variables. A normal logic program consists of rules

A0 :− A1, . . . , Am,not Am+1, . . . ,not An.,

where the Ai are atoms. The head of this rule is A0; the right-hand side is the
body. A rule without a body, written A0., is a fact. A literal is either A (positive)
or not A (negative), where A is an atom.

In this paper we only consider propositional programs; that is, programs
without logical variables.

The Herbrand base is the set of all ground atoms built from constants and
predicates in a program. We do not consider functions in this paper, hence every
Herbrand base is finite.

The dependency graph of a program is a directed graph where each predicate
is a node, and where there is an edge from a node B to a node A if there is a
rule where A appears in the head and B appears in the body (if B appears right
after not, the edge is negative; otherwise, it is positive). The grounded depen-
dency graph is the dependency graph of the propositional program obtained by
grounding.

An acyclic program is one with an acyclic grounded dependence graph. In
this paper we only consider acyclic programs.

There are several ways to combine logic programming and probabilities; in
this work we adopt a popular combination associated with Sato’s distribution se-
mantics [16, 20]. A probabilistic logic program, abbreviated plp, is a pair 〈P,PF〉
consisting of a normal logic program P and a set of probabilistic facts PF. A
probabilistic fact is a pair consisting of an atom A and a probability value α,
written as α :: A. (here we adopt the syntax of the ProbLog package [8]). Note
that we allow a probabilistic fact to contain logical variables.

To build the semantics of a plp, we first take its grounding. Suppose we have
a plp with n grounded probabilistic facts (some of them may be given as propo-
sitional probabilistic facts, others are obtained by grounding non-propositional



probabilistic facts). There are then 2n ways to select subsets of these propo-
sitional probabilistic facts. For each such subset, we can construct the normal
logic program consisting of the non-probabilistic part of the plp plus the atoms
in the selected probabilistic facts. That is, for each probabilistic fact α :: A.,
either keep fact A. with probability α, or erase A. with probability 1 − α. A
total choice is simply a subset of the set of ground probabilistic facts that is
selected to be kept (other grounded probabilistic facts are discarded). So, for
any total choice θ we obtain a normal logic program, denoted by P∪PF↓θ, with
probability

∏
Ai∈θ αi

∏
Ai 6∈θ(1 − αi). Hence the distribution over total choices

induces a distribution over logic programs.
Note that if P is acyclic, then for any total choice we have that P ∪ PF↓θ

is acyclic. So the semantics of the whole plp is relatively simple to describe:
the probability distribution over total choices induces a probability distribution
over interpretations, such that for each fixed total choice we obtain the truth
assignment of all atoms by applying the rules in appropriate order (that is, if all
atoms in the body of a rule are true, the head is true, and this is the only way
to render a head true).

A common pattern in plps is a pair rule/probabilistic fact such as

A0 :− A1, . . . , Am,not Am+1, . . . ,not An, F ., α :: F .,

meaning that with probability 1−α the whole rule is not “activated”. We write
such a construct as

α :: A0 :− A1, . . . , Am,not Am+1, . . . ,not An.,

again adopting the syntax of ProbLog [8].

Example 1 Here is an acyclic propositional plp:

0.1 :: burglary. 0.2 :: earthquake.
0.9 :: alarm :− burglary, earthquake.
0.8 :: alarm :− burglary,not earthquake.
0.7 :: alarm :− not burglary, earthquake.
0.1 :: alarm :− not burglary,not earthquake.

burglary earthquake

alarm

The dependency graph is presented at the right. �

The class of logic programs where each rule has at most k atoms in the body
is denoted LP(k) [5]; we analogously write plp(k) to denote the class of plps
where each rule has at most k literals in the body. And we use ap-plp to refer
to acyclic propositional plps. In this paper we focus on the class ap-plp(2).

3 Learning by score maximization

One may wish to learn, from data, both the rules of a plp and the associated
probabilities; that is, both the structure and the parameters of the plp. A gen-
eral strategy in structure learning is to add probabilistic estimation to Inductive



Logic Programming; usually such a strategy is referred to as Probabilistic Induc-
tive Logic Programming [18, 19]. Typically such mix of probabilities and logic
requires a search over the space of rules, under the assumption that some ex-
amples are “positive” and must receive high probability, while other examples
are “negative” and must receive low probability. Search schemes vary and are
almost universally based on heuristic measures, to guarantee that large datasets
can be processed [1, 6, 7, 25].

Another general strategy, when learning a probabilistic model, is to maximize
a score that quantifies the fit between model and data. This is the strategy
most often employed to learn the the structure of Bayesian networks, and the
strategy adopted in this paper. To grasp the main ideas behind score-based
structure learning, we first review the interplay between Bayesian networks and
probabilistic logic programs.

3.1 Bayesian networks and probabilistic logic programs

As noted in the Introduction, acyclic propositional plps are closely related to
Bayesian networks [17]. Recall that a Bayesian network consists of a directed
acyclic graph where each node is a random variable, and a probability distri-
bution over the same random variables, such that the distribution satisfies the
following Markov condition: a variable X is independent of its nondescendants
nonparents given its parents [15]. For any Bayesian network, its directed acyclic
graph is referred to as its “structure”. The parents of a variable X, denoted
by pa[X], are the nodes/variables that point to X. In this paper every random
variable has finitely many values (indeed all of them are binary). When a condi-
tional probability distribution over random variables with finitely many values
is encoded using a table, the latter table is often referred to as a CPT.

Any Bayesian network over binary variables can be encoded by an acyclic
propositional plp; conversely, any acyclic propositional plp can be viewed as
a Bayesian network. The last statement should be clear from Example 1: the
Bayesian network described by the plp has the structure given by the depen-
dency graph, and the parameters of the network are just the probabilities as-
sociated with probabilistic facts and rules. The converse is equally simple to
show, and consists of easily translating the probability assignments into rules
and probabilistic facts, as argued by Poole [16, 17].

The “structure” of an acyclic plp is related to the “structure” of the Bayesian
network associated to the plp. In fact, the dependency graph of the grounded
plp is the structure of the corresponding Bayesian network. However, a plp can
specify significantly more detail about the underlying probability distributions.
Suppose, for instance, that the distribution of a binary variable X, with parents
Y and Z, is given by a NoisyOr gate [15]; that is, X = Y Y ′ + ZZ ′ − Y Y ′ZZ ′,
with P(Y ′ = 1) = α and P(Z ′ = 1) = β. In this case the conditional probability
distribution of X given (Y,Z) is fully specified by two numbers (α and β), instead
of the four numbers that a complete specification requires. Note that a small set
of probabilistic facts and rules would have no trouble in encoding exactly this
NoisyOr gate with the needed two parameters. This is attractive: if a distribution



can be at all captured by a small number of parameters, a plp may be able to
do so.

Of course, there are other ways to capture conditional distributions with “lo-
cal” structure; that is, distributions that require few parameters to yield the
probabilities for some variable given its parents. One notable example in the
literature is the use of trees to represent conditional distributions [9]. The rep-
resentation of a conditional probability distribution using trees is sometimes
referred to as a CPT-tree [2]. Now it should be clear that CPT-trees and proba-
bilistic rules do not have the same expressivity; for instance a CPT-tree requires
three parameters to specify the NoisyOr gate in the previous paragraph (assum-
ing a convention that leaves unspecified branches as zero), while rules can specify
the NoisyOr gate with two parameters. So the question as to whether represen-
tations based on probabilistic rules are more compact than other representation
is meaningful, and this is the sort of abstract question we wish to address with
the current paper.

3.2 Score-based structure learning of Bayesian networks

Several successful structure learning methods are based on score maximization,
where a score s(B,D) gets a Bayesian network structure B and a dataset D,
and yields a number that indicates the fit between both. We assume that D is
complete (that is, there is no missing data) and consists of N observations of
all random variables of interest. Sensible scores balance the desire to maximize
likelihood against the need to constrain the number of learned parameters. It
is well-known that if the one maximizes only the likelihood, then the densest
networks are always obtained [11]. One particularly popular score is based on
minimum description length guidelines; the score is:

sMDL(B,D) = LLD(B)− |B| logN

2
, (1)

where: |B| is the number of parameters needed to specify the network, and
LLD(B) is the log-likelihood at the maximum likelihood estimates (that is, the
logartithm of p(D,ΘB,D|B) with p denoting the probability density of observa-
tions given a Bayesian network structure B for probability values ΘB,D. The
latter values are obtained again by likelihood maximization; that is, ΘB,D =
arg maxΘ p(Θ, D|B). We adopt the sMDL score throughout this paper.

The MDL score, as other popular scores such as the K2 and BDeu scores, is
decomposable; that is, the score is a sum of local scores, each one a function of
a variable and its parents. We call family a set consisting of a variable and its
parents.

The current technology on structure learning of Bayesian networks can han-
dle relatively large sets of random variables [4, 22, 3]. Most existing methods
proceed in two steps: first calculate the local score for every possible family;
then maximize the global score, usually either by integer programming [4] or
by constraint programming [22]. When one deals with structure learning of



Bayesian networks where conditional probability distributions are encoded by
CPTs, then maximum likelihood estimates ΘB,D are obtained in closed form:
they are, in fact, simply relative frequencies. If we denote by θijk the probability
P(Xi = xij |pa[Xi] = πk), where πk is the kth configuration of the parents of Xi,
then the maximum likelihood estimate is Nijk/Nij , where Nijk is the number
of times the configuration {Xi = xij ,pa[Xi] = πk} occurs in D, and Nik is the
number of times the configuration {pa[Xi] = πk} occurs in D. Thus the calcu-
lation of the scores is not really taxing; the real computational effort is spent
running the global optimization step.

4 A score-based learning algorithm for the class ap-plp(2)

Our goal is to learn a plp that maximizes the MDL score with respect to the
complete dataset D, with the restriction that resulting plps must belong to the
class ap-plp(2). We do so by following the two-step scheme discussed in the
previous section: first, we must compute the local score for each possible family,
and then we must run a global maximization step to obtain the whole plp.

We must of course translate the language of acyclic propositional plps into
the language of Bayesian networks. Each proposition in our vocabulary is viewed
as a binary random variable (0 is false and 1 is true), and the propositions that
appear in the body of a rule are the parents of the proposition in the head of
the rule. This is clearly consistent with the correspondence between plps and
Bayesian networks. Our dataset D is therefore a collection of N observations of
the propositions/variables of interest.

Because the MDL score is decomposable, we can globally maximize it by first
maximizing each local score separately, and then running a global maximization
step that selects a family for each variable. But there is a difference between
usual Bayesian network learning and plp learning: even within a family, we
must choose the rule set that relates the head of the family with its parents.

Example 2 Suppose we have propositions A1, A2, . . . , An. We must contemplate
every possible family; for instance, A1 may be a root (no parents), or A1 may be
the child of A2, or the child of A3, or the child of A2 and A3, and so on (we are
restricted to at most two parents). Suppose we focus on the family {A1, A2, A3}
for proposition/variable A1; that is, A1 is the head and {A2, A3} appear in the
bodies. How many possible rule sets can we build? Indeed, many. For instance,
we may have a simple rule such as

θ :: A1 :− A2, A3..

This single rule is equivalent to the following CPT:

A2 A3 P(A1 = true|A2, A3)

false false 0
false true 0
true false 0
true true θ



Or we may have three rules such as

θ1 :: A1. θ2 :: A1 :− A2,not A3. θ3 :: A1 :− not A2,not A3. (2)

These three rules are equivalent to the following CPT:

A2 A3 P(A1 = true|A2, A3)

false false θ1 + θ3 − θ1θ3

false true θ1

true false θ1 + θ2 − θ1θ2

true true θ1

Two lines of this table contain nonlinear functions of the parameters, a fact that
complicates the likelihood maximization step. �

How many different rule sets we must consider? Suppose first that we have a
family containing only the head A. Then there is a single rule, the probabilistic
fact θ :: A.. If we instead have a family containing the head A and the body
proposition B, there are six other options to consider:

θ :: A :− B. θ :: A :− not B.
θ1 :: A :− B.
θ2 :: A.

θ1 :: A :− not B.
θ2 :: A.

θ1 :: A :− B.
θ2 :: A :− not B.

θ1 :: A :− B.
θ2 :: A :− not B.

θ3 :: A.

Now suppose we have a head A with parents B and C. First, there are
9 possible rules where A is the head and no proposition other than B or C
appears in the body.3 Each one of the 29 subsets of these rules is a possible rule
set for this family; however, 13 of these subsets do not mention either B or C.
Thus there are 29 − 13 = 499 new rule sets to evaluate.

In any case, for each rule set we consider, we must maximize a likelihood
function that may be nonlinear on the parameters. For instance, take the set of
three rules in Expression (2). Denote by N000 the number of times that {A1 =
false, A2 = false, A3 = false} appear in the dataset; by N001 the number of times
that {A1 = false, A2 = false, A3 = true} appear in the dataset, and likewise each
Nijk stands for the number of times a particular configuration of A1, A2 and
A3 appear in the dataset. Then the local likelihood that must be maximized for
this candidate family is

(θ1;3)N100(1− θ1;3)N000(θ1;2)N110(1− θ1;2)N010θN101+N111
1 (1− θ1)N001+N011 ,

where we use, here and in the remainder of the paper, θi;j to denote θi+θj−θiθj .
3 These 9 rules are: θ :: A., θ :: A :− B., θ :: A :− not B., θ :: A :− C., θ :: A :−
not C., θ :: A :− B,C., θ :: A :− B,not C., θ :: A :− not B,C., θ :: A :−
not B,not C..



Hence, even at the local level, we face a non-trivial optimization problem. We
discuss the solution of this problem in the next section. For now we assume that
the problem has been solved; that is, each family is associated with a local score
(the log-likelihood of that family, with parameters that maximize likelihood,
minus a penalty on the number of parameters). Once the local score are ready,
we resort to the constraint-programming algorithm (CPBayes) by Van Beek and
Hoffmann [22] to run the global optimization step, thus selecting families so as
to have an acyclic plp. Clearly a selection of families leads to a plp, as each
family is associated with the rule set that maximizes the local score.

The CPBayes algorithm defines a set of constraints that must be satisfied in
the Bayesian network learning problem, and seeks for an optimal solution based
on a depth-first BnB search. When trying to expand a node in the search tree,
two conditions are verified: (1) whether constraints are satisfied, and (2) whether
a lower bound estimate of the cost does not exceed the current upper bound.
The constraint model includes dominance constraints, symmetry-breaking con-
straints, cost-based pruning rules, and a global acyclicity constraint. We remark
that other approaches for the global optimization can be used, and our contribu-
tion is certainly not due to our use of CPBayes in the global optimization step.
Thus we do not dwell on this second step.

5 Computing the local score

In this section we address the main novel challenge posed by score-based learning
of plps; namely, the computation of local scores. As discussed in the previous
section, this is not a trivial problem for two reasons. First, there are too many
sets of rules to consider. Second, likelihood maximization for each rule set may
have to deal with nonlinear expressions for probability values.

We deal with the first problem by pruning rule sets; that is, by developing
techniques that allow us to quickly eliminate many candidate rule sets.

First of all, we can easily discard rule sets that assign zero probability to some
configuration observed in the dataset (for instance, the first rule in Example 2
can be discarded if we observe {A2 = false, A3 = false}).

Second, and more importantly, suppose that we are learning rules with at
most k literals in the body. With 2k rules we can have a rule for each config-
uration of the parents: Example 1 illustrates this scenario. Note that for such
“disjoint” rules, likelihood maximization is simple as it is the same as for usual
CPT. And because any CPT can be exactly built with such 2k rules, any set of
rules with more than 2k rules cannot have higher likelihood, and thus cannot
be optimal (as the penalty for the number of parameters increases). In fact, any
other rule set with 2k rules that are not disjoint can be also discarded; these
sets can only produce the same likelihood, and will pay the same penalty on
parameters, but they will be more complex to handle. Thus we must only deal
with rule sets with at most 2k − 1 rules, plus the one set of 2k “disjoint” rules.
Hence:



Table 1. A probability pattern shared by several rule sets; first column presents the
rule sets, and following columns display the probability values for the configurations
of A1, A2, A3.

Rule sets 0,0,0 0,0,1 0,1,0 0,1,1 1,0,0 1,0,1 1,1,0 1,1,1

θ1 :: A1 :− A2.
θ2 :: A1 :− A2, A3.

θ3 :: A1 :− A2,not A3.
1 1 1 − θ1;3 1 − θ1;2 0 0 θ1;3 θ1;2

θ1 :: A1 :− A2.
θ2 :: A1 :− A2, A3.

1 1 1 − θ1 1 − θ1;2 0 0 θ1 θ1;2

θ1 :: A1 :− A2.
θ3 :: A1 :− A2,not A3.

1 1 1 − θ1;2 1 − θ1 0 0 θ1;2 θ1

θ2 :: A1 :− A2, A3.
θ3 :: A1 :− A2,not A3.

1 1 1 − θ2 1 − θ1 0 0 θ2 θ1

– If we have a family with k = 1, we only need to look at sets of one rule plus
one set containing two disjoint rules; that is, we only have to consider:

θ :: A :− B. θ :: A :− not B.
θ1 :: A :− B.

θ2 :: A :− not B.

Note that the last of these three rule sets corresponds to a typical CPT,
while the first two rule sets genuinely reduce the number of parameters in
the model. Estimates that maximize likelihood are easily computed in all
three cases.

– Now if we have a family with k = 2, we only need to look at sets of up to three
rules, plus one set containing four disjoint rules. There are 4 sets consisting
each of one rule, 30 sets consisting of two rules each, and 82 sets consisting
of three rules each (we cannot list them all here due to space constraints). In
this case probability values may have nonlinear expressions as discussed in
connection with Expression (2). Thus we still have a challenging optimization
problem, where we must find a rule set out of many.

To address the difficulty mentioned in the previous sentence, we resort to a
third insight: many of the rule sets obtained for k = 2 are actually restricted
versions of a few patterns. As an example, consider Table 1. There we find four
different rule sets, some with two rules, and one with three rules. The form of
their likelihoods is the same, sans some renaming of parameters. Note that the
maximum likelihood of the first three rule sets can always be attained by the
likelihood of the last rule set; consequently, it makes sense only to retain the last
pattern, which consists of disjoint rules.

By doing this additional pruning, we reach 14 distinct rule sets; amongst
them we must find a rule set that maximizes likelihood. The remaining difficulty
is that probability values are nonlinear functions of parameters, as we have
already indicated. However, most of them lead to likelihood expressions that
can be exactly maximized. For instance, consider the following expression, a
likelihood pattern that several rule sets (consisting of two rules) produce:

θN0
1 (1− θ1)N1(θ1 + θ2 − θ1θ2)M0(1− (θ1 + θ2 − θ1θ2))M1 ;



this function is maximized by:

θ1 =
N0

N0 +N1
, θ2 =

N1M0 −N0M1

N1M0 +N1M1
.

Similarly, consider the following likelihood pattern (produced by rules sets con-
sisting of three rules):

θN0
1 (1− θ1)N1(θ1 + θ2 − θ1θ2)M0(1− (θ1 + θ2 − θ1θ2))M1

(θ1 + θ3 − θ1θ2)Q0(1− (θ1 + θ3 − θ1θ3))Q1 ;

this function is maximized by:

θ1 =
N0

N0 +N1
, θ2 =

N1M0 −N0M1

N1M0 +N1M1
, θ3 =

N1Q0 −N0Q1

N1Q0 +N1Q1
.

Due to space constraints we omit the complete list of likelihood patterns and
their maximizing parameters. There are only four patterns that do not seem to
admit closed form solutions. Here is one example:

θN0
1 (1− θ1)N1(θ1 + θ2 − θ1θ2)M0(1− (θ1 + θ2 − θ1θ2))M1

(θ1+θ3−θ1θ3)Q0(1−(θ1+θ3−θ1θ3))Q1(θ1+θ2+θ3−θ1θ2−θ1θ3−θ2θ3+θ1θ2θ3)R0

(1− (θ1 + θ2 + θ3 − θ1θ2 − θ1θ3 − θ2θ3 + θ1θ2θ3))R1 .

By taking logarithms and derivatives, these maximization problems can then
turned into the solution of systems of polynomial equations. Such systems can
be solved exactly but slowly, or approximately by very fast algorithms (as we
comment in the next section).

The procedure we have developed is summarized by Algorithm 1. We firstly
generate all possible combinations of rules for all possible families, a possible
family consisting of a variable and its parent candidates. Combinations with
ensured lower score or zero likelihood are then pruned and parameters are locally
optimized for each of the combinations left. Each family is then associated with
the combination of rules that gives it the highest score. Finally, a global score
maximization algorithm is used to select the best family candidates.

6 Experiments

To validate our methods, we have implemented the learning algorithm described
previously, and tested it with a number of datasets. Our goal was to examine
whether the algorithm actually produces sensible plps with less parameters than
corresponding Bayesian networks based on explicit CPTs.

The algorithm was implemented in Python and experiments were performed
on a Unix Machine with Intel core i5 (2.7 GHz) processor and 8 GB 1867 MHz
DDR3 SDRAM. For local optimization of the likelihood scores, in the few cases
where that was needed, we used, and compared, two different algorithms: (1)



Algorithm 1 Learning algorithm for class ap-plp(2).

1: collect variables from dataset
2: for each family of variables in dataset do
3: build all possible rules
4: build all possible combinations of rules
5: gather rule sets into patterns
6: for each pattern do
7: prune combinations with ensured lower score
8: prune combinations with zero likelihood
9: for each combination left do

10: if there is an exact solution to the likelihood maximization problem then
11: calculate parameters
12: else
13: run numeric (exact or approximate) likelihood maximization

14: calculate local scores
15: for each family do
16: associate best rule set with family

17: call CPBayes algorithm to maximize global score

Limited-memory BFGS (L-BFGS) and (2) the Basin-hopping algorithm [23].
Both methods are implemented in the Python library scipy.optimize. The L-
BFGS algorithm approximates the BroydenFletcherGoldfarbShanno (BFGS) al-
gorithm [24], which is an iterative method for solving unconstrained nonlinear
optimization problems. The L-BFGS algorithm represents with a few vectors an
approximation to the inverse Hessian matrix; this approach leads to a significant
reduction on memory use. Nevertheless, it has a quite strong dependence on the
initial guess. The Basin-hopping is a stochastic algorithm that usually provides a
better approximation of the global maximum. The algorithm iteratively chooses
an initial guess at random, proceeds to the local minimization and finally com-
pares the new coordinates with the best ones found so far. This algorithm is
however much more time-consuming.

To begin, consider a fairly standard dataset that describes diagnoses of car-
diac Single Proton Emission Computed Tomography (SPECT) images [12]. The
training dataset contains 80 instances, while the testing dataset contains 187
instances. Examples have 23 binary attributes and there is no missing data. The
learning algorithm was tested with the same optimization methods and local
structure learning approaches. We compare results obtained for two different lo-
cal structure learning approaches: (1) accepting only combinations of rules that
encode complete probability tables and (2) or any combination of rules. Results
obtained are listed in Table 2.

We observe the significant reduction of the number of parameters needed for
representation. In addition, results obtained with both optimization algorithms
are the exactly same.

We then present results with data generated from a (simulated) faulty Boolean
circuit. The purpose of this experiment is to investigate whether our methods



Table 2. Heart Diagnosis experiments.

L-BFGS

Training set Testing set Complete CPT Any combination of rules

# Instances # Instances MDL Log-Likelihood Parameters MDL Log-Likelihood Parameters

80 187 -1341.73 -1281.78 63 -1316.18 -1263.85 55

Basin-hopping

Training set Testing set Complete CPT Any combination of rules

# Instances # Instances MDL Log-Likelihood Parameters MDL Log-Likelihood Parameters

80 187 -1341.73 -1281.78 63 -1316.18 -1263.85 55

Table 3. Binary Adder experiments.

L-BFGS

Training set Testing set Complete CPT Any combination of rules

# Instances # Instances MDL Log-Likelihood Parameters MDL Log-Likelihood Parameters

30 10000 -317635.87 -317590.82 61 -190628.02 -190592.57 48

60 10000 -282916.56 -282860.54 63 -211580.75 -211535.40 51

90 10000 -231156.16 -231096.56 61 -200133.73 -200086.83 48

120 10000 -281634.57 -281571.16 61 -197082.89 -197029.87 51

250 10000 -244964.95517 -244887.02 65 -251550.34 -251489.19 51

500 10000 -228706.11 -228617.04 66 -217679.01 -217608.84 52

1000 10000 -188356.10 -188236.10 80 -177142.65 -177049.65 62

Basin-hopping

Training set Testing set Complete CPT Any combination of rules

# Instances # Instances MDL Log-Likelihood Parameters MDL Log-Likelihood Parameters

30 10000 -344625.96 -344580.91 61 -190687.47 -190652.02 48

1000 10000 -188356.10 -188236.10 80 -177142.52 -177049.52 62

can capture nearly-deterministic systems with less parameters than a typical
Bayesian network. We should expect so: rules can encode deterministic relation-
ships compactly, so they should lead to a reduction in the number of necessary
parameters.

We simulated a digital circuit for addition in the binary numeral system. We
consider the addition of two 4-bit numbers and, therefore, 24 logic gates (XOR,
OR, AND). The circuit is used to generate binary datasets, where attributes
correspond to the gates outputs. The adder input values are randomly chosen
and each gate is associated with a 1% probability of failure, i.e. the likelihood
that a gate outputs 0 or 1 at random. Training datasets contain 30, 60, 90, 120,
250, 500 and 1000 instances, while testing datasets contain 10000 instances in
all cases. The learning algorithm is tested with both L-BFGS and Basin-hopping
optimization methods. Results obtained are listed in Table 3.

We note L-BFGS and Basin-hopping optimization methods perform fairly
similar. However, as Basin-hopping is much more time consuming, most tests are
run with L-BFGS. For smaller datasets, the algorithm proposed in this paper
scores better and requires fewer parameters. For larger datasets, both approaches
tend to converge in terms of score, but there is still a significant reduction on
the number of parameters.

7 Conclusion

We have described techniques that can learn a plp from a complete dataset
by exact score maximization. Despite the attention that has been paid to plps
in recent years, it does not seem that exact score-based learning has been at-
tempted so far. This paper offers initial results on such an enterprise; the main
contribution is to present cases where closed-form solutions are viable.



The techniques proposed in this paper apply to a restricted albeit powerful
class of plps. In essence, we have shown that for this class it is possible to
maximize the MDL score using a host of insights that simplify computation.

The class we have focused on is the class of acyclic propositional plps where
rules have at most two literals in their bodies. As acyclic propositional plps
are closely related to Bayesian networks, we were able to bring results produced
for Bayesian network learning into the challenging task of learning probabilistic
programs. However, plps have features of their own; an advantage is that they
can capture conditional distributions with less parameters than usual CPTs; a
disadvantage is that learning requires more complex optimization. Our results
identify a powerful class of plps for which the complexity of optimization can
be kept under control.

We have also implemented and tested our methods. We have shown that
learned plps contain less parameters than the correponding CPT-based Bayesian
networks, as intuitively expected. Whenever the model is nearly deterministic,
the expressive power of rules leads to improved accuracy.

In future work we intend to extend our techniques to relational but still
acyclic programs, and finally to relational and even cyclic programs. For those
cases non-trivial extensions will have to be developed as the direct relationship
with Bayesian network learning will be lost.
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