5th KDMiLe — Proceedings October 02-04, 2017 — Uberlandia, MG, Brazil

Parameter Learning in ProbLog with Probabilistic Rules

Francisco H. O. V. de Faria® and Arthur C. Gusm3o! and Glauber De Bona'
and Denis D. Maua? and Fabio G. Cozman'

YEscola Politécnica and 2Instituto de Matematica e Estatistica — Universidade de S3o Paulo, Brazil

Abstract. Probabilistic logic programs under the distribution semantics offer a flexible language to specify determin-
istic rules and probabilistic assessments. State-of-art inference and learning algorithms are now available in the freely
available ProbLog package. In this paper we describe techniques that speed up the learning algorithms in ProbLog,
both for complete and incomplete datasets, by exploring a new approach for likelihood maximization. Our experiments
show that our techniques significantly speed up the learning process.

Categories and Subject Descriptors: 1.2.6 [Artificial Intelligence|: Learning

Keywords: parameter learning, probabilistic logic programming, ProbLog

1. INTRODUCTION

There is a myriad of ways to combine first-order logic and probability, thus allowing reasoning about
relational structures while handling uncertainty. Examples are relational Bayesian networks [Jaeger
1997], Markov logic networks [Richardson and Domingos 2006] and a variety of probabilistic logics
[Halpern 1990; Ognjanovic and Ragkovic 2000]. A well-explored path is to endow logic programs with
probabilities. In fact, many are the proposals to extend the logic programing framework of Prolog
with probabilistic semantics [Getoor and Taskar 2007; De Raedt et al. 2008]. A particularly popular
semantics for probabilistic logic programs is due to Sato, and usually referred to as the distribution
semantics. The idea is that we have rules, as in logic programming, such as

cares(X,Y) :— person(X), person(Y'), neighbor(X,Y). (1)

and probabilistic facts such as 0.8 :: neighbor(X,Y’), meaning that the probability that any X and Y
are neighbors is 0.8.

Usually, one is interested in assigning probabilities not only to facts, but also to rules. For instance,
we may want to express that person(X) and person(Y’) yields a proof for cares(X,Y) with probability
0.8. Then we could write

0.8 :: cares(X,Y") :— person(X), person(Y'). (2)

The syntax we just used can be found in the ProbLog package, a freely available system that
implements state-of-art algorithms for inference and learning in the context of probabilistic logic
programming [Fierens et al. 2015]. ProbLog adopts Sato’s distribution semantics, together with
probabilistic facts and probabilistic rules. Inference in ProbLog is done by model counting, and
parameter learning relies on the Expectation-Maximization algorithm (EM). One important feature

F. H. O. V. de Faria is supported by a scholarship from Toshiba Corporation. A. C. Gusmao is supported by a
scholarship from CNPq. G. De Bona is supported by Fapesp, Grant 2016/25928-4. F. G. Cozman and D. D. Mau4 are
partially supported by CNPq.

Copyright(©2017 Permission to copy without fee all or part of the material printed in KDMiLe is granted provided that
the copies are not made or distributed for commercial advantage, and that notice is given that copying is by permission
of the Sociedade Brasileira de Computagao.

Symposium on Knowledge Discovery, Mining and Learning, KDMILE 2017.

27

5th KDMiLe — Proceedings October 02-04, 2017 — Uberlandia, MG, Brazil

2 . F. H. O. V. de Faria and A. C. Gusm3o and G. De Bona and D. D. Mau4 and F. G. Cozman

of ProbLog’s EM-like algorithm is that it requires introducing a latent variable for each probabilistic
rule in the program of interest. This is a major source of inefficiency, that we fix in this paper.

In this work, we offer an alternative approach to learning parameters in probabilistic program with
probabilistic rules. Instead of inserting unobservable variables, we exploit the intrinsic semantics of
probabilistic rules to express the likelihood of the observations in function of the parameters, which is
a main ingredient of parameter learning. The lesser number of latent variables speeds up the learning
task, especially with complete data, when we can dispense with the EM algorithm altogether.

This article is structured as follows: Section 2 presents ProbLog’s probabilistic programs; Section 3
brings an overview of how parameter learning is implemented in ProbLog; our approach to parameter
learning with probabilistic rules is put forward in Section 4; in Section 5, we present the results of
experiments comparing the performance of our algorithm to ProbLog’s implementation.

2. PRELIMINARIES

We follow the syntax and semantics of probabilistic logic programs from the ProbLog framework
[De Raedt et al. 2007; Fierens et al. 2015].

2.1 Syntax
Consider a vocabulary with logical variables X, Y ..., predicate symbols r, s,... and constants a, b,
Each predicate symbol has an associated arity. An atom is an expression of the form 7(¢1,%a,...,tm)

where r is a predicate symbol with arity m, and each t; is a term, which is either a constant or a
logical variable. An atom is ground if it has no logical variables. An atomic proposition is an 0-arity
predicate symbol, which is also a ground atom. A grounding is a function taking logical variables and
returning constants. A literal is an atom (A) possibly preceded by not (not A). A (deterministic) rule
is an expression of the form H :— By, ..., B,., where H is an atom, called the head, and each subgoal
B; is a literal, with By, ..., B, being the rule’s body. A fact is a rule with empty body (H :— .). If
an atom is in the head of some rule, it is said to be a derived atom. A set of rules is a logic program.
The grounding of a rule is a ground rule obtained by applying the same grounding to each atom. The
grounding of a program is the propositional program obtained by applying every possible grounding
to each rule and fact, using only the constants in the program.

For a given logic program, the dependency graph contains its ground atoms as nodes and arcs (A, B)
only if there is a ground rule with A in the body, possibly negated, and B in the head. A logic program
is acyclic if its dependency graph is acyclic.

ProbLog programs are formed by standard logic programs together with probabilistic facts, which
have the form p :: F., where p € [0, 1] is a real number and F is an atom, called probabilistic. Similarly
to rules, a probabilistic fact can be grounded to form a set of ground probabilistic facts. Formally, we
define a probabilistic program as a pair (P, PF), where P is a logic program, PF is a set of probabilistic
facts and probabilistic atoms are not derived in P.

2.2 Semantics

The semantics of a relational probabilistic program is simply defined through the semantics of its
grounding, so we focus on the propositional case. ProbLog’s semantics for probabilistic programs is
based on the standard semantics of Prolog. It is convenient to view a ground atom A in a program
as random variables taking values in {0, 1} (false and true), and we write P|=A=1 (P = A=0) iff
A (A) is entailed by the logic program P.

Let T = (P,PF) be a probabilistic program, and let {p; :: F;.|]1 <i < n} be the grounding of PF,
for p1,...,pn € [0,1] and a set of ground atoms F' = {F}y,..., F,}. T implicitly defines a probability

Symposium on Knowledge Discovery, Mining and Learning, KDMILE 2017.

28

5th KDMiLe — Proceedings October 02-04, 2017 — Uberlandia, MG, Brazil

Parameter Learning for ProbLog with Probabilistic Rules . 3

distribution over the logic programs, Ppr(PUF’) = [»: I (1 — pi), where F’ is a subset
Fi€F' FieF\F’
of F. For the given T = (P,PF), we can define the probability Pr of a given set of ground atoms

Q ={Q1,...,Qn} have the truth value ¢ = {q1,...,qn) € {0,1}" (@ = q), by employing Ppr:
Pr(Q=q) =) {Ppr(PUF)| PUF' EQ=¢}. (3)

Given some evidence E = e, which is a set of ground atoms (E) and their observed values (e), the
probability of @ = ¢ becomes the conditional probability Pr(Q = ¢|EF = e) = Pr(Q = ¢,F =
e)/Pr(E =e), as usual. If Q is a set of random variables, P(Q) denotes its probability distribution.

ExampLE 2.1. Consider the following probabilistic program T':

0.2 :: Burglary. 0.3 :: Fire. Alarm :— Burglary. Alarm :— Fire.

Suppose we want to compute Pr(Alarm = 1). With two probabilistic facts, there are four total
choices F' C {Burglary, Fire}. Taking P = {Alarm :— Burglary., Alarm :— Fire.}, PU F’ = Alarm =1
for any non-empty F'. Hence, Pr(Alarm =1) = 0.2 x 0.3 4+ 0.2 X 0.7+ 0.8 x 0.3 = 0.44.

2.3 Adding Probabilistic Rules

We can augment the syntax and semantics of probabilistic programs to allow for probabilistic rules,
like p :: H :— By,...,B,., where probabilities are annotated to deterministic rules with non-empty
bodies. In this case, a probabilistic program would be a pair T = (P,PR), where P is a logic
program and PR is a set of probabilistic rules. Grounding the probabilistic rules, one would have
aset {p; = R;.|]1 <4i <n}, where R = {Ry,...,R,} is a set of ground (deterministic) rules. Then
the probability of a total choice R’ C R entails the probability of a logic program Ppr((P UR’)) =

II » 1] (1—p;), which analogously defines a probability of a set of ground atoms @) have truth
R,eER’ R;€ER\R’
value ¢:

Pr(Q=q) =) {Per(PUF')|PUF = Q=q}. (4)

Using only probabilistic facts though, one can simulate probabilistic rules as well. Each prob-
abilistic rule p :: H :— By,...,B,. is equivalent to a pair formed by a deterministic rule H :—
By,...,B,,prob(id). and a probabilistic fact p :: prob(id)., where id is an identifier corresponding to
this rule, and prob(id) does not occur anywhere else |Fierens et al. 2015]. Due to this equivalence,
ProbLog internally works only with probabilistic facts, not probabilistic rules, implicitly transforming
each p .+ H :— By,...,B,. into H :— By,...,B,,prob(id). and p :: prob(id).. When we refer to
a probabilistic program, we mean the more economic definition notion without probabilistic rules,
unless stated otherwise, knowing that probabilistic rules can be simply seen as syntactical sugar.

3. PARAMETER LEARNING IN PROBLOG

Here we take parameter learning to be the the task of, given some training data, finding the maximum-
likelihood probabilities for a probabilistic program (P, PF), where both P and the atoms of PF (the
program structure) are fixed. Formally, let At(7T") be the set of all ground atoms from a probabilistic
program T = (P,PF). An observation E = e denotes a set of ground atoms E C At(T) together
with their truth value e € {0,1}/?l, and a dataset is a set of observations. The parameter learning
problem is defined via its input and output:

—Input: (i) alogic program P and a set of facts { F1, ..., F,,} (the structure of a probabilistic program
T, = (P,PF) where the set of probabilistic facts is PF = {p; :: F;,1 < ¢ < n} and the parameters
are p = (p1,...,pn)); (ii) a dataset D = {Ey = ey, ..., Ey = e} (the training examples);

Symposium on Knowledge Discovery, Mining and Learning, KDMILE 2017.

29

5th KDMiLe — Proceedings October 02-04, 2017 — Uberlandia, MG, Brazil

4 . F. H. O. V. de Faria and A. C. Gusm3o and G. De Bona and D. D. Mau4 and F. G. Cozman

—Output: the maximum-likelihood probabilities p = (p1, ..., pn), where

p = argmax, Pr, (D) = argmax, H Pr,(E; = e;). (5)
i=1

In the following, we briefly sketch the algorithms implemented in ProbLog to tackle the parameter
learning problem, which are implemented in its function LFI (after “Learn From Interpretations”)
[Fierens et al. 2015].

3.1 Complete Data (Full Observability)

When an observation E = e is such that £ = At(T,), we say it is complete. A dataset D is complete
if each of its observation is so. In such case, the maximum-likelihood parameters can be computed
straightforwardly via counting.

Consider a probabilistic program T = (P, PF), with a probabilistic fact p; :: F; € PF that can
be grounded to form p; :: Fj;.. By definition, probabilistic atoms appearing in PF are not derived
in P. Consequently, the probability of the ground probabilistic atom Fj; being true, Pr(F;; = 1), is
exactly the probability associated to the probabilistic fact p; :: F;. € PF — that is, Pp(F;; = 1) = p;.
Hence, the parameters p that maximize likelihood for a given complete dataset can be computed
simply through the ratio of the groundings of the probabilistic fact p; :: F; observed to be true.

Formally, let F' = {F\,..., F,} be the set of probabilistic facts, and let {F;; | 1 < j < Z;} be the set
of possible groundings of Fj, for each 1 < i < n. For a complete dataset D = {Ey = e1,...,Ep = em},

the maximum-likelihood parameters p = (p1,...,p,) are given by, for 1 <i < n:
1 &, N 1if Fy; € By
5. — k ko _ iJ k>
pi mZ; Z Z 0i.j> Where 0 { 0 otherwise. (6)

k=1 j=1

The normalization factor mZ; is the number of groundings of the probabilistic atom F; observed
through the whole dataset D. In the propositional case, Z; = 1 for every 1 < i < n. Typically, learning
parameters for a relational probabilistic program is possible with a single observation D = {E = e},
as a large Z; >> 1 guarantees many observable groundings for the same probabilistic fact p; :: F;.

3.2 Incomplete Data (Partial Observability)

In practice, learning with incomplete data is a common scenario. As the direct counting approach
from the previous section is not an option when there is unobserved ground probabilistic atoms!, the
Expectation-Maximization (EM) algorithm [Dempster et al. 1977] has been the main tool to learn
parameters in this situation. The idea behind the EM algorithm implemented in ProbLog is: (E-step)
for each observation Ej, use a set of parameters p' to compute the probability of each unobserved
ground fact Fj; being true given Ej, which is the expected value of 65 ; (from Equation (6)); (the
M-step) employs these expected values and the observed 55]- to obtain new parameters p'*! via
Equation (6).

Formally, ProbLog’s parameter learning function takes as input a logic program P, a set of facts
{F1,...,F,} and a dataset D = {Ey = e3,...,E, = en}. Let Fj1,..., F;z denote the groundings
of the fact F;, for each ¢, and let T}, = (P, {p1 :: F1,...,pn :: F,}) denote the probabilistic program
determined by the parameters (pi,...,p,). After setting the value of each p; € [0, 1] randomly, the
LFI-ProbLog algorithm ([Fierens et al. 2015]) iterates between the two steps below, until the likelihood
(Pr, (D)) increment is less than a threshold:

With deterministic rules, observing the probabilistic atoms determine the truth value of derived atoms.

Symposium on Knowledge Discovery, Mining and Learning, KDMILE 2017.

30

5th KDMiLe — Proceedings October 02-04, 2017 — Uberlandia, MG, Brazil

Parameter Learning for ProbLog with Probabilistic Rules . 5

—(E-step): for each (i,j,k) s.t. 1 <i<n,1<j<Z,1<j<m,0;; =Pr,(Fyj=1|E = eg);

m

Z;
—(M-step): for each 1 <i <n, p} = - z '21 5.
==

When Fj; is in Ey, Pr,(F;; = 1|Ey = e) in the E-step is simply 1 or 0, and there is no need for
performing inference. In all other cases ProbLog must perform an inference for Pr, (Fj; = 1|Ey = ey),
although some optimizations are possible. For instance, ProbLog can detect when F;; is independent
from Ej, yielding Pr, (Fi; = 1|E) = e)) = p;. For more optimization details, see [Fierens et al. 2015].

3.3 Handling Probabilistic Rules

If the probabilistic program T}, whose parameters we want to learn from a dataset D, has a probabilis-
tic rule p :: H :— By,..., B,., ProbLog interprets it as H :— By, ..., By, prob(id). and p :: prob(id)..
Hence, the introduction of the new probabilistic atom prob(id) makes any observation incomplete. In
other words, a probabilistic rule p :: H :— Bj,..., B,. is inserted in the probabilistic program whose
parameters are to be learned, ProbLog applies the algorithm sketched above no matter the dataset
D, due to the fresh, unobserved atoms prob(id). Each ground probabilistic rule is responsible for one
of such new atoms and the larger the number of latent atoms, the slower is the convergence.

To circumvent that, the user himself could input probabilistic rules p :: H :— By,..., B,. already
translated into H :— By,..., By, prob(id). and p :: prob(id)., giving also the truth value of each
prob(id) within the input observations. Nonetheless, this approach is inviable mainly due to the fact
that these atoms are essentially not observable. For instance, if B; is false in an observation, H is
also false and there is no way to tell the value of prob(id). Furthermore, it may the case that two
probabilistic rules, py :: H :— By. and py :: H :— Bs, share the same head, and if H, By, B, are all
true, then there is no means to tell which prob(id) is true.

4. OUR APPROACH

In short: there is no need for inserting an auxiliary atom for each probabilistic rule to perform
parameter learning. Given a probabilistic program T}, = (P, PR) with probabilistic rules PR = {p; ::
R;. |1 <i < n}, we can adopt the augmented semantics from Section 2.3. Thus, one can compute
the likelihood of T), for an observation I = e directly through the expression for P, (E = e) given in
Equation (4). This expression is a function of the parameters p;, and its maximum yields the solution
to the parameter learning problem. Henceforth, we adapt the learning problem to allow probabilistic
rules: its input is a logic program P, a set of rules {Ry,...,R,} and a dataset D = {E; = ¢; |
1 <4 < m}; and its output is the parameter vector (pi,...,pn) yielding the probabilistic program
T, = (P,PR), with PR = {p; :: R; | 1 <4 < n}, that maximizes Pr, (D) (the likelihood).

4.1 Complete Data

When data are complete, we can write down the (log-)likelihood and maximize it directly. Let {4; =

ai,...,A, = a,} (F = e) be a complete observation. Using the dependency graph, we can factor
o

Pr,(E) in the usual way, employing the Markov condition: Pr,(E = e) = [] Pr,(A; = a;|Pa(A;)),
i=1

i
where Pa(A;) C F is the set of ground atoms that are parents of A; in the dependency graph —
{A;} U Pa(4;) is A;’s family. When considering a dataset D = {Ey = eg,...,E, = e}, we have

m
that Pr, (D) = [] Pr,(Er = ex), and each Pr, (Ejy = e) can be factored in this way.
k=1

Each of the terms Pr, (A; = a;|Pa(4;)) in Pr,(D) is a function depending only on the parameters
attached to rules sharing as head a same ground atom A,. Besides that, if A; and A; are groundings

Symposium on Knowledge Discovery, Mining and Learning, KDMILE 2017.

31

5th KDMiLe — Proceedings October 02-04, 2017 — Uberlandia, MG, Brazil

6 . F. H. O. V. de Faria and A. C. Gusm3o and G. De Bona and D. D. Mau4 and F. G. Cozman

of the same atom, Pr, (A;|Pa(A;)) and Pr,(A;|Pa(A;)) share the same parameters. If a set of ground
atoms A = {A;,..., A, } share the same predicate symbol r, we call the set AU{Pa(A4;) | A; € A} the
(predicate) family of r. Using predicate families, we can partition the factors Pr, (A; = a;|Pa(A;)) of
Pr, (D), and each partition can be maximized independently due to the disjoint parameters.

For instance, consider a probabilistic program T, where the predicate ro(-) appears in the head
of exactly two rules, p; :: ro(X) :— r1(X),notro(X). and ps :: ro(X) :— notri(X),r2(X)., and a
complete observation F = e. The family of rq(-) include all groundings of r¢(-), r1(-) and 73(+). For
each possible instantiation of X, let r(X) = (ro(X),r1(X),r2(X)) denote a set of ground atoms.
Suppose that, for ag different values of X, r(X) = (1,1,0) € E, for b values of X, r(X) = (0,1,0) €
E, for by values of X, r(X) = (1,0,1) € E and for b; values of X, r(X) = (0,0,1) € E. The
likelihood Pr,(E = e) then has a factor pi°(1 — pl)alpgo(l — p2)? (from 7¢’s family), maximized at
p1 = ao/(ap+ayr) and pa = by/(bo+b1) — and these are part of the (p1, ..., p,) maximizing Pr, (E = e).

We noticed that several other combinations of rules sharing the same head lead to likelihood fac-
tors whose maximizations have exact solutions. In our implementations we used exact solutions to
find maximum likelihood parameters whenever possible. When the likelihood expressions cannot
be maximized in a closed form, we resort to a gradient-based numerical optimization to find the
maximum-likelihood parameters (p1,...,pn).

In comparison to ProbLog’s method, our approach dispenses with the EM-like algorithm when the
data are complete, even with probabilistic rules. Consequently, the whole learning problem is solved
in a single numerical optimization for each predicate family.

4.2 Incomplete Data

When the data are incomplete, we employ an EM algorithm, although we can also avoid inserting
an auxiliary variable for each ground probabilistic rule. Suppose we have a probabilistic program
T, = (P,PR) and an incomplete observation E = e. Let Z = At(T},) \ E be the set of unobserved
ground atoms. For each complete observation F = e,Z = z, we can express the (log-)likelihood
in terms of the parameters p = (p1,...,pn), as explained in the section above. Thus, a probability
distribution over Z yields an expected value for the log-likelihood. As an observation E = e determines
a conditional probability distribution for Z, it also determines an expected log-likelihood. When
considering a dataset D = {E; = e1,..., B, = en}, the expected log-likelihood can be computed by
summing over the observations. Setting initially p; = 0.5 for each parameter p;, our implementation
of the EM algorithm iterates between the following steps until some convergence criterion is met:

—(E-step): Given a set of parameters p, for each Ey = ej, € D, compute Pr,(Z = z|E}, = e;,) for each
z € {0,1}1%l;

(M-step): Find the set of parameters maximizing the expected log-likelihood:

argmax,, Z Z Pr,(Z = 2|E), = ex) In(Pr,, (B} = e, Z = 2)). (7)
k=1 ze{0,1}17!

To compute the terms Pr, (Z = z|Ej, = ex), we employ ProbLog’s inference. In principle, for each
Ej = ey, each z would yield an inference in the E-step, but we can do much better. Let F(A4;) denote
the family of a ground atom A;. If ¢ € {0,1}/9l is a vector of truth values associated to a set @ of
ground atoms (Q = ¢), we use cg/ € {0, 1}|Q/‘ to denote the vector of truth values corresponding to
the subset Q' C Q. Now the expected log-likelihood, for a each Ey = e, can be rewritten as

Z Z Pr, (F(A;) = c|Ey, = ex) In(Pr,, (A; = ca,[Pa(4;) = cpa(a,)))- (8)
ALEAL(T,) ce{0,1117(A)]

Symposium on Knowledge Discovery, Mining and Learning, KDMILE 2017.

32

5th KDMiLe — Proceedings October 02-04, 2017 — Uberlandia, MG, Brazil

Parameter Learning for ProbLog with Probabilistic Rules . 7

Thus, assuming the observations are consistent with the model, we only need to make inferences
Pr,(F(A;) = c|E), = ey) for those ¢ such that Pr,(A4; = ca,|Pa(A;) = cpa(a,)) is a (non-constant)
function of the parameters, for the others can be ignored during the maximization. For instance,
suppose that the ground atom H is the head of a single ground probabilistic rule p :: H :— By, Bs..
There are eight possible values for ¢ regarding the H’s family {H, By, B2}. Nonetheless, we have to
consider only two of them, ¢ = (0, 1,1) and ¢ = (1,1, 1), for the other values of ¢ either yield a constant
PTP' (H = CH|PCL(H) = CPa(H)) =1or PTI,(]:(H) = C|Ek = €k) =0.

5. EXPERIMENTS AND RESULTS

The goal of the experiments is to compare our approach with LFI-ProbLog algorithm for varying
missing data rates and dataset sizes. To accomplish this, we used the following program:

0.3 :: fire(X) :— person(X). 0.9 :: alarm(X) :— burglary(X).
0.4 :: burglary(X) :— person(X). 0.8 :: cares(X, Y) :— person(X), person(Y).
0.7 :: alarm(X) :— fire(X). 0.8 :: calls(X,Y) :— cares(X,Y), alarm(Y), not samePerson(X,Y).

To generate the datasets we sampled from the model above for a given number of constants (dataset
size). For each constant ¢ deterministic facts person(c) and samePerson(c, c) were added to the model.
To impose a missing rate we discarded part of the generated observations using a pseudo random
function. All tests were run four times, each time with a new independently sampled dataset. Each
datapoint in Table 1 therefore corresponds to the average computation time among these four runs.

ProbLog’s stopping criteria is defined over the convergence of the log-likelihood values observed.
Notice, however, as ProbLog’s iterative process differs substantially from our algorithm’s, using the
same stopping criteria does not guarantee similar log-likelihood values are reached. In order to ensure
a valid comparison basis, we set a fixed Problog’s stopping criteria—1 x 1073, which means it stops
when the log-likelihood variation between subsequent iterations is smaller than 1 x 10~3—and set our
algorithm to stop whenever it reaches an equal or better log-likelihood value than ProbLog for the
same dataset.

All experiments were performed in parallel on a dedicated machine with the following specifications:
8 vCPU, 2900 MHz, 15 GiB RAM.

From the results we can see that our algorithm outperforms ProbLog in the vast majority of cases,
only losing for datasets with 5 constants and missing rate above or equal to 20%. It is also worth
noting that, when the size of the datasets increases, the ratio between our approach and ProbLog’s
computation time tends to decrease.

Dataset size is limited to 25 constants because for larger datasets ProbLog approximated the like-
lihood values to zero, returning an error when trying to calculate its log.

6. CONCLUSION

We have presented a new approach to learn the parameters for a probabilistic program with prob-
abilistic rules. We have shown how one can avoid the insertion of latent variables for probabilistic
rules. In particular, this avoids the need for using the EM-algorithm when the data are complete. Ex-
periments indicates significant gains in time, when comparing to ProbLog, even when there is missing
data. Future work includes applying these techniques to perform structure learning; that is, learning
the rules of a probabilistic program.

Symposium on Knowledge Discovery, Mining and Learning, KDMILE 2017.

33

5th KDMiLe — Proceedings October 02-04, 2017 — Uberlandia, MG, Brazil

8 . F. H. O. V. de Faria and A. C. Gusm3o and G. De Bona and D. D. Mau4 and F. G. Cozman

2,000 — 1,500 |- -
)
K
g 1,500 |- N
& 1,000 |- e
<
2
= 1,000 |- -
2|
=
g 500 - -
= 500 B
H
0 - 0 -
| | | | | | | | | |
5 10 15 20 25 5 10 15 20 25
Size of dataset Size of dataset
(a) 0% Missing Rate (b) 10% Missing Rate
3,000 = =
3,000 | .
z
g 2,000 - e
\%/ 2,000 |- N
<
2
=]
B2
] 1,000 |- e
< 1,000 | .
£
H
0 - 0 -
| | | | | | | | | |
5 10 15 20 25 5 10 15 20 25
Size of dataset Size of dataset
(c) 20% Missing Rate (d) 30% Missing Rate

Fig. 1: Time to learn parameters from incomplete relational data. Size of dataset is the the number of constants in the
program. Solid squares were generated by ProbLog; empty circles were generated by our algorithm.

REFERENCES

DE RaepT, L., Frasconi, P., Kersting, K., AND MuaGgLETON, S. H. Probabilistic inductive logic programming.
Springer, 2008.

DE RaepT, L., Kimmic, A., AND TorvoNEN, H. Problog: A probabilistic prolog and its application in link discovery,
2007.

DEMPSTER, A. P., Lairp, N. M., aND RuBIN, D. B. Maximum likelihood from incomplete data via the em algorithm.
Journal of the royal statistical society. Series B (methodological), 1977.

Fierens, D.; Van pEN Broeck, G., RENkENs, J., SHTERIONOV, D., GurmMANN, B., THoN, I.; JaNsseNs, G., AND
DE RaAEDT, L. Inference and learning in probabilistic logic programs using weighted boolean formulas. Theory and
Practice of Logic Programming 15 (3): 358—401, 2015.

GETOOR, L. AND TASKAR, B. Introduction to statistical relational learning. MIT press, 2007.

Havrpern, J. Y. An analysis of first-order logics of probability. Artificial intelligence 46 (3): 311-350, 1990.

Jaecer, M. Relational bayesian networks. In Proceedings of the Thirteenth conference on Uncertainty in artificial
intelligence. Morgan Kaufmann Publishers Inc., pp. 266-273, 1997.

OGNJANOVIC, Z. AND RaSkovic, M. Some first-order probability logics. Theoretical Computer Science 247 (1):
191-212, 2000.

RicHArRDSON, M. anD Domincos, P. Markov logic networks. Machine learning 62 (1): 107-136, 2006.

Symposium on Knowledge Discovery, Mining and Learning, KDMILE 2017.

34

