
Comparative study of Bitcoin price prediction using
WaveNets, Recurrent Neural Networks and other

Machine Learning Methods
1st Leonardo Felizardo

Escola Poliécnica
Universidade de São Paulo

São Paulo, Brazil
leonardo.felizardo@usp.br

2nd Roberth Oliveira
Escola Poliécnica

Universidade de São Paulo
São Paulo, Brazil

roberth.oliveira@usp.br

3nd Emilio Del-Moral-Hernandez
Escola Poliécnica

Universidade de São Paulo
São Paulo, Brazil

emilio.delmoral@usp.br

4nd Fabio Cozman
Escola Poliécnica

Universidade de São Paulo
São Paulo, Brazil
fgcozman@usp.br

Abstract—Forecasting time series data is an important subject
in economics, business, and finance. Traditionally, there are sev-
eral techniques such as univariate Autoregressive (AR), univari-
ate Moving Average (MA), Simple Exponential Smoothing (SES),
and more notably Autoregressive Integrated Moving Average
(ARIMA) with their many variations that can effectively forecast.
However, with the recent advancement in the computational
capacity of computers and more importantly developing more
advanced machine learning algorithms and approaches such as
deep learning, new algorithms have been developed to forecast
time series data. This article compares different methodologies
such as ARIMA, Random Forest (RF), Support Vector Machine
(SVM), Long Short-Term Memory (LSTM) and WaveNets for
estimating the future price of Bitcoin.

Index Terms—Convolution Neural Networks, Recurrent Neu-
ral Networks, ARIMA, Time Series, Bitcoin

I. INTRODUCTION

Inspired by recent studies such as Saad, Prokhorov and
Wunsch [1]; Jou-fan Chen, Wei-lun Chen and Huang [2];
Selvin, Vinayakumar and Gopalakrishnan [3]; Gamboa [4],
this paper aims to present a comparative study of neural
network architectures - Long-Short Term Memory (LSTM),
WaveNet, support vector machine (SVM) Random Forest (RF)
and Auto regressive integrative moving average (ARIMA) to
predict future prices in the Bitcoin time series. Bitcoin price
has a high volatility and due Efficient Market Hypothesis, is
theoretically difficult to predict. Models tend to perform badly
since the future prices can be aleatory. We verify the results
presented by many authors and explore the efficacy of the
models to predict the Bitcoin price. We realized that, for this
kind of time-series, linear models tend to perform better then
recent machine learning models.

When dealing with machine learning models with a large
number of hyper-parameters combination, the comparability
between two models can be difficult because the search for
hyper-parameters should be even. We propose a method to
avoid this problem when testing the models and show how the
choice of hyper-parameters can influence the results. We used
the same technique to find hyper-parameters for all the models,

CAPES

thus eliminating subjective aspects of the hyper-parameter
choices. Models are compared by a t−student test to identify,
which is the best statistically.

II. LITERATURE REVIEW

A. Autoregressive Integrated Moving Average

The Box-Jenkins methodology refers to a set of procedures
for identifying and estimating of time series models within the
class of autoregressive integrated moving average (ARIMA)
models. ARIMA models are a class of models that have
capabilities to represent stationary time series and to produce
accurate forecasts based on a description of historical data of
a single variable. The ARIMA (p,d,q) model has three parts
corresponding to three parameters [5]:

• p: The autoregressive part is a linear regression that
relates past values of data series to future values;

• d: The integrated part indicates how many times the data
series has to be differentiated to get a stationary series;

• q: The moving average part that relates past forecast
errors to future values of data series.

The practical and pragmatic approach of Box-Jenkis method-
ology in order to build ARIMA models is based on the
following steps: (1) Identification, (2) Parameter Estimation
and Selection, (3) Diagnostic checking, (4) Model’s use.
Mathematically, the ARIMA (p,d,q) model can be expressed
as [5]:

Wt = µ+
Θ(B)

Φ(B)
at (1)

where:
• t: Time index;
• Wt: D’nd difference of the variable of interest zt;
• µ: Reference point of the process level;
• Θ(B): Moving averages operator Θ(B) = (1−Θ1(B1)−

Θ2(B2)− ...−Θq(Bq));
• Φ(B): Auto regressive operator Φ(B) = (1−Φ1(B1)−

Φ2(B2)− ...− Φp(Bp));
• Bp: Reverse operator Bpzt − zt−p;
• at: ”white noise” or random error.

ARIMA (p,d,q) stands for Auto Regressive Integrated Moving
Average and can be expanded, as in equation 2

Wt = Θ0+Φ1Wt−1+...+ΦpWt−p+at−Θ1at−1−...−Θqat−q

(2)
Where:

Θ0 = µ(1− Φt − ...− Φp). (3)

B. Random Forest

The Random Forest [6] is a Machine Learning Algorithm
based on Decision Trees. This algorithm lies in the class of
ensemble classifiers, and it has gained a significant interest in
the recent past, due to its quality performance in several areas
[7], [8].

Given a training dataset, Z = (x1, y1), (x2, y2), ..., (xn, yn)
, the Random Forest (RF) creates a set of B bootstrap samples,
created from a random resampling on the training set itself (
[9]). For each bootstrap sample Zb, b = 1, 2, ..., B, a decision
tree is constructed. When building these decision trees, each
time a split is considered, a random sample of m predictors
is chosen as split candidates from the full set of p predictors.

When growing the tree, the idea behind selecting a random
sample of m < p predictors to consider in each step leads to
very different (or uncorrelated) trees from each sample. In this
way, the bias increases in exchange for a decrease in variance.

Let gb(x) be the prediction function obtained from the b-th
tree. The prediction function obtained by the Random Forest
algorithm is expressed by equation 4 [10]:

grf (x) =
1

B

B∑
b=1

gb(x). (4)

According to [11], the Random Forest technique is more
accurate than other approaches, such as artificial neural net-
works and vector machines. In addition, this technique can
avoid overfitting and is less sensitive to noise [6].

C. Support Vector Machine

Support Vector regression (SVM) is a powerful method
for building a classifier for classification and regression,also
know as Support Vector Regression (SVR),first identified by
Vladimir Vapnik and his research team in 1992 [12].

The SVM algorithm creates a decision boundary, known as
the hyperplane, between two classes that allow predicting la-
bels from one or more feature vectors. This decision boundary
is oriented such that it is as far as possible from the closest
data points from each of the classes. These closest points are
called support vectors.

Given a labeled training dataset, Z =
(x1, y1), (x2, y2), ..., (xn, yn), x1 ∈ Rd and yi ∈ (−1,+1).
The optimal hyperplane can then be defined as equation 5:

wxT + b = 0. (5)

where w is the weight vector, x is the input feature vector,
and b is the bias.

The hyperplanes can be described by the following equa-
tions:

wxTi + b ≥ +1 if yi = 1 (6)

wxTi + b ≤ −1 if yi = −1 (7)

The objective of training an SVM algorithm is to find w
and b in order that the hyperplanes separates the data and
maximizes the margin 1/||w||2.

Originally proposed to construct a linear classifier, the SVM
algorithm can be used to model higher dimensional or non-
linear models using the kernel function ([10]). For instance,
in a non-linear problem, the kernel function can be used to
provide additional dimensions to the raw data and turn it into
a linear problem in the resulting higher dimensional space.
The kernel function can provide faster calculations which need
computations in high dimensional space.

The kernel is an internal product, which can be linear or
nonlinear (Polynomials), RBF (Radial-Basis Function), and
the Sigmoid ([10]). It is defined as:

K(x, y) =< f(x), f(y) > (8)

The results of this technique are comparable and often
superior to those obtained by other learning algorithms, such
as artificial neural networks ([13]).

D. Long-Short Term Memory

First proposed by Alex Graves [14], LSTM purpose it to
deal with the vanish gradient problem perceived by the general
Recurrent Neural Network architecture. To store information
over extend time intervals the vanilla RNN suffers from the
decay error backflow. The LSTM can learn dependencies in
1000 discrete time-steps with the enforcing error flow through
special units (LSTM cells) with multiplicative gate units to
open and close access to constant error flow.

Commonly used for stock price prediction, LSTM is in
the state of art for time series prediction. The LSTM model
prediction performance for financial time series is compared
with many other model such as ARIMA [15] , GARCH [16],
SVM [17], RF and vanilla MLP [18].

E. WaveNet

WaveNet is a neural network based on the Convolution
Neural Network architeture; Therefore, to better undertand the
WaveNet, we explain the origin and how convolution neural
networks works. The convolutional neural networks (CNN) are
algorithms that can also be considered as bioinspired, in the
article published by Hubel and Wiesel [19] since they have the
concept of using a receptive field and the cellular structure
in layers. Using the Hubel and Wiesel model, Fukushima
proposes the neocognitron [20], which follows the concept
of hierarchical structure: LGB (lateral geniculate body) −→
simple cells −→ complex cells −→ hypercomposite cells
lower order −→ higher order hypercomplex cells. Thus, larger

receptive fields are more insensitive to the change of stimulus
pattern, being the cells of greater order and greater complexity
that responds more selectively. Neocognitron is able to recog-
nize patterns in the image very similar to convolutional neural
networks, however, if the concept of convolution between the
layers is used.

Although CNN is famous for image classification and object
recognition problems, recently this kind of neural networks has
been employed for time series analysis. The model is almost
the same, but some modification may be necessary (eg. using
1 dimensional convolution neural network). In the literature,
other works have already explored CNN as a forecaster for
time series stock prices, such as trend prediction with CNN of
two dimensions [21], using CNN with a sliding window [3],
and commom predictions using CNN [22].

WaveNet [23] is a variation of the CNN architecture fist
created to solve text-to-speech problems. That architecture
does not rely on neurons and activation functions but only on
weights of the filters of each convolution layer. The window
of weights is slide across the input series. The WaveNet relies
on a causal structure, as show in Figure 1

Fig. 1. Architecture proposed by the WaveNet autors [23]

III. METHODOLOGY

In this section the methods used in every model tested and
the choices for hyper-parameters and variables are explored.
We also explore the data processing used for the variables
to remove the inconsistencies of the models and to improved
training and test performance.

A. Data evaluation and processing

In this section we discuss the Bitcoin price time-series
characteristics and we explore the main impacts of each choice
on every aspect of the data processing.

We extracted the data from a repository base of finan-
cial time series (https:\investing.com). The data include the
Bitcoin close price, open, high, low, percentage of change
and the volume of transactions. This repository extract data
from brokers Application Program Interface (API), in this
case, from Bitfinex. After the collection, we checked data
for outliers and possible inconsistencies. Since a very few
registers were considered wrong after our analysis, we decided
to exclude them from the dataset. The exclusion does not cause
a great impact because of the volume of data available. The
data is already extracted in csv format, is one of the standards
for data to be worked with in Python. From the data we created

others variables (further described) and exclude missing data.
For data visualization we plotted the time series in a temporal
graph. We chose different intervals to work with for working
in a stable regime that could affect the model comparison.
From a graph analysis we could identify the periods impacting
the model accuracy randomly. The function present in those
time periods seems to be completely different and should
be modeled apart. From Figure 2, the parts excluded from
analysis are explicit.

Fig. 2. Bitcoin price time series with respective moving averages 10D and
50D

We excluded the year 2018 and 2017 from the analysis
since they are outliers and undergo great variance and random
aspects. To model these last two years, a different model
should be trained with fewer data. In our case, we used
data from years 2012, 201, 2014, 2015 and 2016. From this,
we normalized the data using minmax scaling. The minmax
scaling is expressed by equation 9, where the x = (x1, ..., x2)
represents the data to be normalized and zi is the i element
normalized. We stored the data and to provide public access
to it (https://doi.org/10.6084/m9.figshare.7445855).

zi =
xi −min(x)

max(x)−min(x)
(9)

In order to better compare models we provided four pre-
diction windows: prediction of the next day price,the price for
5 days in the future, price of 10 days in the future and price
for 30 days in the future. We also assumed a window for past
data we considered a hyper-parameter.

B. Variables selection

The variables selected were chosen based on the literature
for time series of stock prices prediction or Forex (currency)
prediction. The analyses test only variables associated with
price such as Bitcoin close, open, high and low price and
volumn (for one representative exchange). As Chen and Bahar
[2], [24], we used moving average of the variables to generate
new variables to capture different informations that could be
hidden due to the high noise generated, characteristic of a
highly volatile asset. Also, as [24], we used Gold an Death
Cross, very common data for technical analysis. Some indexes,
such as Stochastic Oscillator and Stochastic Momentum are
used to measure the distances between assets. Stochastic
Oscillator was used to calculate the distance between the
Current Close and Recent High/Low Range for n-period and
Stochastic Momentum Index calculated the distance of Current
Close relative to the center of High/Low Range.

https:\investing.com
https://doi.org/10.6084/m9.figshare.7445855

C. Hyper-parameters optimization

To optimize the performance of a model, one important
aspect to be considered is the choice of hyper-parameters.
We here tried to perform the same kind of hyper-parameter
optmization in order to be equally fair to the models compared.
To select Hyper-parameters of the models, we used random
search, which can be considered a more efficient way for
the hyper-parameter search than grid search on the neural
networks models, being a more natural base-line for the tests
[25]. As proposed in Bergstra work [25], hyper-parameters
random search is computationally more efficient since not all
hyper-parameters are equally important to tune. Grid search or
trial search from an expert can be better but does not seems
fair for a model comparison.

To fairly compare all the machine-learning technique of
this work, random search was a good option for the hyper-
parameters search. The only model that we do not used random
search was the ARIMA, since using Auto ARIMA is fairly
standard and all is important to tune all parameters (p, d, q).

First all the hyper-parameters are defined for each model.
This can be done somehow sense subjectively, but we here
tried to work with as many as possible and relevant hyper-
parameters. For each hyper-parameters we determined a subset
of discrete possible values (eg. number of neurons of a
neural network would assume only values in the subset of
50, 100, 200).

D. Performance evaluation

To evaluate the system, different approaches can be em-
ployed and bench mark is normally an a index, a random
walk or a similar risk asset Buy and Hold strategy. In this
case, we compared the error metrics between the models and
tested them with the t-student test to verify the null hypothesis.
The error is evaluated through error metrics: mean error (ME),
mean absolute error (MAE), root mean square error (RMSR),
mean percentage error (MPE), mean absolute percentage error
(MAPE).

For each metric error generated for a combination of hyper-
parameters we also performed a 5-fold validation. This cross-
validation is different since we work with time series and there
is a temporal correlation between the train set and the test set.
To solve this, we used a sliding train and test set in a larger
data set. First, we fixed 600 registers as our minimum data set
(MD), dividing it into train set (540 registers) and test set (60
registers). We have a total data set of 1006 (D) registers for
the Bitcoin price time series along with the others variables
correlated and created. To move train and test window, we
considered the number of cross-validations (NCV) required
and moved at a proportional rate.

The Figure 3 demonstrate the concept of how we do
the cross-validation for time series without losing the time
correlation of the train set and the test set. This is also used
in some others works [26].

Fig. 3. The construction of a k-fold for time series maintaining the train and
test size for a not limit data set

E. Autoregressive Integrated Moving Average (ARIMA)

For selecting the parameters for the ARIMA model, the
Auto ARIMA procedure was used. The Auto ARIMA ap-
proach is used to perform a grid search over multiple values of
p, d, q considering the AIC (Akaike Information Criterion) and
BIC (Bayesian Information Criterion) criteria. These generated
values are used to determine the best combination of param-
eters. The mode parameters of the 5-fold were selected to fit
the final model. A residual analysis was performed to verify if
the final model adequately represented the data. The estimated
residues of the model were verified to be uncorrelated.

F. Random Forest

For the Random Forest model, we chose the hyper-
parameters to provide a better performance in the segmentation
of the data so as not to obtain an over fitted model. The hyper-
parameters varied were: n estimators, which representing the
number of trees in the forest; criterion, which corresponds
to the function to measure the quality of a split; max depth,
the maximum depth of the tree; min samples split, the min-
imum number of samples required to split an internal node;
min samples leaf, the minimum number of samples required
to be at a leaf node; and max features, the number of features
to consider when looking for the best split.

G. Support Vector Machine

In the Support Vector Machine model, our choices of
variable hyper-parameters were: kernel, which specifies the
kernel method to be used in the algorithm for dividing the
data edges; degree, degree of the polynomial kernel, but these
are ignored by all the other kernels; gamma and C, responsible
for defining a large or small edge between data segmentation.

H. Long-Short Term Memory

For the LSTM model, we fixed some of the hyper-parameter
in the random search for providing a better performance in the
search since they are more stabilized in the literature and can
increase the process time without improve the metric errors.
We assumed an Adam optmizer [27] that has been widely used
in recent works. For the number of layers we assumed three

layers because this satisfies the universal theorem requirements
without compromising the performance. Some recent CNN
networks using many layers (more than 20 layers) are having
outstanding accuracy in the image classification problem, but
for some problems, this increase in layers does not increase
the accuracy as we verified for some small tests. Activation
functions are many, but since the universal theorem is proved
for many of than, we use the hyperbolic tangent activation
function.

The hyper-parameters that varied were: dropout rate, win-
dow of time series input mentioned in the data processing
section, number of neurons (equal for every layer), number of
epochs and number of batches.

I. WaveNet
The input and output of the WaveNet model is the same

of LSTM. We used a one-dimensional WaveNet for the time
series prediction. All the hyper-parameters used for LSTM are
also used for CNN. There are two main differences: the filter
size and the number of convolutions. In each layer we made
fewer convolutions since the main characteristics are extracted
from the latest layers Regarding the padding, we adopted a
padding that results in an output of the same size as the input.
The activation function adopted is the Leaky ReLU. We added
a batch regularization to improve the generalization power of
the model. The convolutions occur with the one-dimensional
vector with the size of the filter.

IV. RESULTS

To compare all the results we considered all the error
metrics. Since the MAE has the bias of the absolute value,
it is difficult to compare depending on the period. in order to
present all the results we also considered the best model of all
hyper parameters tested for each future window of prediction
(D1, D5, D10 and D30). The results in each table are the
mean of all the 30 cross-validation of each model. We also
highlight the best model(s) in bold. To consider the best model
we did the t − student test. If the null hypotheses is not
satisfied, we highlight the best models among which we could
not determine the best.

From Table I, we can identify that ARIMA and SVR are
the best models considering most error metrics. The only error
metric in which SVR was better was MAPE, a relative absolute
metric. For the D1 prediction, we can infer that SVR is the best
model, especially when contrasted with the compared neural
networks.

TABLE I
D1 RESULTS

Model MAE MSE RMSE MAPE MPE
ARIMA 10.73 260.125 15.048 3.342 -0.552

RF 42.490 5401.505 53.628 7.656 6.714
SVR 11.416 376.615 17.154 2.615 0.024

LSTM 47.043 4320.829 54.815 10.934 4.357
WaveNet 61.294 7252.899 72.992 13.534 11.155

For the D5 prediction presented in Table II, we verify a
high increase in the error, as expected. WaveNet, LSTM and

RF did suffer that impact since they also performed badly
for D1. As expected, all the results are negatively impacted
by the increase in the prediction distance from the present,
since present information values decay. As observed in D1,
the ARIMA model has a negative MPE that indicates a bias
different from the other models.

TABLE II
D5 RESULTS - MODEL ERROR COMPARISON

Model MAE MSE RMSE MAPE MPE
ARIMA 22.494 1076.328 29.437 5.985 -1.076

RF 57.162 7617.765 68.015 11.040 9.401
SVR 26.412 1642.078 34.927 5.897 3.225

LSTM 52.273 5572.884 62.864 12.159 3.477
WaveNet 51.704 5755.911 63.488 11.840 6.235

Notice that with the prevision gap increases, the error
between the models get closer. The ARIMA and SVR still
perform better than the other models but the difference be-
tween them is diminishing. Two hypotheses can be raised:
Information is lost as we try to predict more distant data in the
future and all the models tend to perform equally bad; neural
networks are best suited for long-term predictions since they
capture the non-linear aspects of the time-series that are not
relevant in the short-term; in this case, ARIMA and SVR that
can estimate linearly, are best suited for the short-term.

TABLE III
D10 RESULTS - MODEL ERROR COMPARISON

Model MAE MSE RMSE MAPE MPE
ARIMA 36.267 2188.530 41.409 8.6901 -2.108

RF 65.097 9488.238 76.525 12.919 11.784
SVR 42.493 3798.064 54.151 9.161 5.598

LSTM 59.812 7316.629 72.203 14.390 7.742
WaveNet 53.432 5640.600 65.340 12.546 6.341

For previsions of D30, the results are interesting since we
expected WaveNet or the LSTM to perform better for long
gaps of prevision, but it seems that all the models perform
equally badly, and they are not statistically different in terms
of the error metrics. This can also be a problem related to the
complexity to optimize the neural networks architectures for an
specific problem. All the results can also be tested using codes
provided in https://github.com/leokan92/model comparison.

TABLE IV
D30 RESULTS - MODEL ERROR COMPARISON

Model MAE MSE RMSE MAPE MPE
ARIMA 69.074 9035.703 80.466 17.586 -7.141

RF 77.512 13153.947 94.599 15.628 11.585
SVR 67.894 8619.621 80.560 14.121 11.018

LSTM 64.854 8990.969 76.763 14.193 9.260
WaveNet 70.758 9651.507 82.918 15.739 8.909

V. CONCLUSION

As expected, the error metrics indicate that all models
perform worst as the prediction gap increases. The models
of ARIMA and SVR tend to perform equally well in all

https://github.com/leokan92/model_comparison

the predictions gaps except for D30. For long-term predic-
tions all models tend perform equally badly, which indicates
the random component gets more important and affect the
accuracy. These results are compatible with the Efficient
Market Hypothesis confirming that linear models or auto
regressive models can be more efficient in the a time-series
that has a important random component. AIRIMA also has
less important hyper-parameters then neural networks and
machine learning methods in general, which facilitates the
hyper-parameter search for better performance converging to
a minimum faster.

For future works, the tests on neural network hyper-
parameters could be improved to match the SVR and ARIMA
models for understand how to search hyper-parameters for
a problem of cryptocurrency time series prediction. Other
techniques such as adaptive searches can be used to fairly
search for hyper-parameters. Also, a wide range of hyper-
parameters could also be tested to validate the results here
presented. Another approach that could be followed is to take
the best models and combine them to verify if this approach
can improve accuracy. The bias can be a indication of which
models we can combine and how.

The team have found that work with time series is so
complex that one should consider the continuous aspect of
the time series for the cross validation. Also, data with
great variation due external facts could impact the models
negatively; we thus decided to work with fewer data to turn
the experiment and comparison more reliable. In the Bitcoin
time-series, is clear the importance of a compatible model for
different time-series.

ACKNOWLEDGMENT

We acknowledge the support from Coordination for the
Improvement of Higher Education Personnel (CAPES) and
Escola Politécnica da Universidade de São Paulo (EP-USP)
- Brazil.

REFERENCES

[1] E. W. Saad, D. V. Prokhorov, and D. C. Wunsch, “Comparative study
of stock trend prediction using time delay, recurrent and probabilistic
neural networks.” IEEE transactions on neural networks / a publication
of the IEEE Neural Networks Council, vol. 9, no. 6, pp. 1456–1470,
1998.

[2] J.-f. Chen, W.-l. Chen, and C.-p. Huang, “Financial Time-series Data
Analysis using Deep Convolutional Neural Networks,” in 2016 7th
International Conference on Cloud Computing and Big Data, 2016, pp.
99–104.

[3] S. Selvin, R. Vinayakumar, E. A. Gopalakrishnan, V. K. Menon, and
K. P. Soman, “Stock price prediction using LSTM, RNN and CNN-
sliding window model,” 2017 International Conference on Advances in
Computing, Communications and Informatics, ICACCI 2017, vol. 2017-
Janua, pp. 1643–1647, 2017.

[4] J. C. B. Gamboa, “Deep Learning for Time-Series Analysis,” 2017.
[Online]. Available: http://arxiv.org/abs/1701.01887

[5] G. Box and G. M. Jenkins, Time Series Analysis: Forecasting and
Control. Holden-Day, 1976.

[6] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1,
pp. 5–32, Oct 2001. [Online]. Available: https://doi.org/10.1023/A:
1010933404324

[7] M. L. Calle and V. Urrea, “Letter to the editor: Stability of
random forest importance measures,” Briefings in bioinformatics,
vol. 12, no. 1, p. 8689, January 2011. [Online]. Available:
http://bib.oxfordjournals.org/cgi/content/full/12/1/86

[8] X. Chen and H. Ishwaran, “Random forests for genomic data analysis,”
Genomics, vol. 99, no. 6, pp. 323 – 329, 2012. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0888754312000626

[9] J. Han, M. Kamber, and J. Pei. (2012) Data mining concepts and
techniques, third edition. Waltham, Mass. [Online]. Available: http:
//www.amazon.de/Data-Mining-Concepts-Techniques-Management/dp/
0123814790/ref=tmm hrd title 0?ie=UTF8&qid=1366039033&sr=1-1

[10] T. Hastie, R. Tibshirani, and J. Friedman, The elements of statistical
learning: data mining, inference and prediction, 2nd ed. Springer, 2009.
[Online]. Available: http://www-stat.stanford.edu/∼tibs/ElemStatLearn/

[11] R. Caruana and A. Niculescu-Mizil, “An empirical comparison
of supervised learning algorithms,” in Proceedings of the 23rd
International Conference on Machine Learning, ser. ICML ’06. New
York, NY, USA: ACM, 2006, pp. 161–168. [Online]. Available:
http://doi.acm.org/10.1145/1143844.1143865

[12] I. Guyon, B. E. Boser, and V. Vapnik, “Automatic capacity tuning of
very large vc-dimension classifiers,” in NIPS. Morgan Kaufmann, 1992,
pp. 147–155.

[13] S. Haykin, Neural Networks: A Comprehensive Foundation. Prentice
Hall, 1999.

[14] A. Graves, “Long Short-Term Memory,” Neural Computation, vol.
1780, pp. 1735–1780, 1997. [Online]. Available: https://doi.org/10.
1162/neco.1997.9.8.1735

[15] S. Siami Namin and A. S. Namin, “Forecasting Economic and Financial
Time Series: Arima Vs. Lstm,” Tech. Rep., 2018. [Online]. Available:
https://arxiv.org/pdf/1803.06386.pdf

[16] H. Y. Kim and C. H. Won, Forecasting the Volatility of Stock
Price Index: A Hybrid Model Integrating LSTM with Multiple
GARCH-Type Models. Elsevier Ltd, 2018. [Online]. Available:
http://linkinghub.elsevier.com/retrieve/pii/S0957417418301416

[17] T. Gao, Y. Chai, and Y. Liu, “Applying long short term momory neural
networks for predicting stock closing price,” Proceedings of the IEEE
International Conference on Software Engineering and Service Sciences,
ICSESS, vol. 2017-Novem, pp. 575–578, 2018.

[18] D. M. Q. Nelson, A. C. M. Pereira, and R. A. D. Oliveira, “Stock Market
’ s Price Movement Prediction With LSTM Neural Networks,” in 2017
International Joint Conference on Neural Networks (IJCNN), no. Dcc,
2017, pp. 1419–1426.

[19] T. N. Wiesel, “Receptive Fields and Functional Architecture of Monkey
Striate Cortex,” J.Physiol, pp. 215–243, 1968.

[20] K. Fukushima, “Neocognition: A Self-organizing Neural Network Model
for a Mechanism of Pattern Recognition Unaffected by Shift in Position,”
vol. 202, 1980.

[21] M. U. Gudelek, S. A. Boluk, and A. M. Ozbayoglu, “A deep learning
based stock trading model with 2-D CNN trend detection,” 2017 IEEE
Symposium Series on Computational Intelligence (SSCI), pp. 1–8, 2017.
[Online]. Available: http://ieeexplore.ieee.org/document/8285188/

[22] S. Ghoshal and S. Roberts, “Reading the Tea Leaves: A Neural
Network Perspective on Technical Trading,” in KDD 2017. University
of Oxford, 2017. [Online]. Available: http://www-bcf.usc.edu/{∼}liu32/
milets17/paper/MiLeTS17{ }paper{ }4.pdf

[23] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals,
A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu,
“WaveNet: A Generative Model for Raw Audio,” pp. 1–15, 2016.
[Online]. Available: http://arxiv.org/abs/1609.03499

[24] H. H. Bahar, M. H. F. Zarandi, and A. Esfahanipour, “Generating
ternary stock trading signals using fuzzy genetic network programming,”
in 2016 Annual Conference of the North American Fuzzy Information
Processing Society (NAFIPS), 2016, pp. 1–6. [Online]. Available:
http://ieeexplore.ieee.org/document/7851630/

[25] J. Bergstra and U. Yoshua Bengio YOSHUABENGIO, “Random Search
for HyperParameter Optimization,” Journal of Machine Learning Re-
search, vol. 13, p. 281305, 2012.

[26] X. Zhou, Z. Pan, G. Hu, S. Tang, and C. Zhao, “Stock Market
Prediction on High Frequency Data Using Generative Adversarial Nets,”
Mathematical Problems in Engineering, vol. 0, no. 0, 2018.

[27] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,”
pp. 1–15, 2014. [Online]. Available: http://arxiv.org/abs/1412.6980

http://arxiv.org/abs/1701.01887
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
http://bib.oxfordjournals.org/cgi/content/full/12/1/86
http://www.sciencedirect.com/science/article/pii/S0888754312000626
http://www.amazon.de/Data-Mining-Concepts-Techniques-Management/dp/0123814790/ref=tmm_hrd_title_0?ie=UTF8&qid=1366039033&sr=1-1
http://www.amazon.de/Data-Mining-Concepts-Techniques-Management/dp/0123814790/ref=tmm_hrd_title_0?ie=UTF8&qid=1366039033&sr=1-1
http://www.amazon.de/Data-Mining-Concepts-Techniques-Management/dp/0123814790/ref=tmm_hrd_title_0?ie=UTF8&qid=1366039033&sr=1-1
http://www-stat.stanford.edu/~tibs/ElemStatLearn/
http://doi.acm.org/10.1145/1143844.1143865
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://arxiv.org/pdf/1803.06386.pdf
http://linkinghub.elsevier.com/retrieve/pii/S0957417418301416
http://ieeexplore.ieee.org/document/8285188/
http://www-bcf.usc.edu/{~}liu32/milets17/paper/MiLeTS17{_}paper{_}4.pdf
http://www-bcf.usc.edu/{~}liu32/milets17/paper/MiLeTS17{_}paper{_}4.pdf
http://arxiv.org/abs/1609.03499
http://ieeexplore.ieee.org/document/7851630/
http://arxiv.org/abs/1412.6980

	Introduction
	Literature Review
	Autoregressive Integrated Moving Average
	Random Forest
	Support Vector Machine
	Long-Short Term Memory
	WaveNet

	Methodology
	Data evaluation and processing
	Variables selection
	Hyper-parameters optimization
	Performance evaluation
	Autoregressive Integrated Moving Average (ARIMA)
	Random Forest
	Support Vector Machine
	Long-Short Term Memory
	WaveNet

	Results
	Conclusion
	References

