
Sentence Classification and Information
Retrieval for Petroleum Engineering

Thiago F. Ferraz1, Gabriel A. B. A. Ferreira1, Fabio G. Cozman1, Ismael Santos2

1Escola Politécnica – Universidade de São Paulo (USP)

2PETROBRAS

{thiago.fernandes.ferraz,gabriel.augusto.ferreira,fgcozman}@usp.br

Abstract. Classifying sentences in industrial, technical or scientific reports
can enhance text mining and information retrieval tasks with useful machine-
readable metadata. This paper describes a search engine that employs sentence
classification so as to search for abstracts from scholarly papers in Petroleum
Engineering. The sentences were classified into four classes, based on the pop-
ular IMRAD categories. We produced a dataset containing more than 2,200
manually labeled sentences from 278 scholarly articles in the field of Petroleum
Engineering in order to be used as training and testing data. The classifier with
best results was logistic regression, with an accuracy of 86.4%. The information
retrieval system built on top of the classification system yielded a mAP of 0.80.

1. Introduction

Recent decades have seen explosive growth of digital text repositories that contain tex-
tual documents of diverse kinds. The development and enhancement of information re-
trieval systems is extremely important in order to control and manage these repositories
[Ladeira and Alvarenga 2012].

Sentence classification can benefit information retrieval, text mining and
question answering processes, as it can generate useful machine-readable metadata
[Agarwal and Yu 2009, Furtado 2017]. The work reported in this paper focuses on sen-
tence classification within abstracts of scholarly documents (such as scientific papers)
in the domain of Petroleum Engineering, with the purpose of generating metadata that
can be explored by a search engine. Several authors have proposed machine learn-
ing techniques to classify sentences in scientific papers. Many of them are focused
on biological or medical fields. For instance, in [Agarwal and Yu 2009] the authors
manually labeled sentences from a collection of articles from PUBMED, also adopt-
ing the IMRAD classification. Using features such as bag-of-words and presence of
citations, they achieved 91.25% accuracy using SVMs. Other proposals can be found
that use machine learning methods on sentences in abtracts of scientific papers: Ref.
[McKnight and Srinivasan 2003] reports an accuracy of 89,2% and F1-score ranging from
52 to 86%, while [Yamamoto and Takagi 2005] reports an F1-score of 73-89%. The re-
search here reported was designed together with a large oil and gas company, and its re-
sults can be of practical use within a key economic sector. In practice, manually producing
the metadata to be used by the search engine may be an expensive and time-consuming
task. By proposing a system where it can be automatically generated with a certain degree
of quality, we both enhance the search task and manage to save valuable resources.

Table 1. Annotation class (left) and guidelines (right)

Introduction Background and previous work; not directly linked to present work.
Objectives Tells what the present work is about, i.e. ”in this work”, etc.
Methods Explains the methods used to achieve the Objectives

Results / Conclusion Results obtained by using the referred methods and/or conclusions

We have explored different machine learning tools, combining distinct classifiers
with various feature sets. Sentences are classified into four different categories that re-
flect the scientific discourse structure: Introduction, Objectives, Methods and Conclusion.
These categories were adapted from the commonly used IMRAD scheme (Introduction,
Methods, Results and Discussion), to better suit the structure of the abstracts (which usu-
ally do not contain discussion). One key contribution of this work is a manually built
dataset of labeled sentences extracted from abstracts and used to address the problem of
training an automatic classification system on the mentioned categories. This dataset will
be made publicly available and may be used by other researchers in the field.

After building a sentence classification system that achieves state-of-art perfor-
mance results, we use it to feed useful metadata into an information retrieval system. The
goal is to allow the user to search the documents more efficiently by letting her provide
both the keywords and sentence categories of interest. For instance, one may query “Re-
duce Costs” on the “Objectives” of the papers. Or “Finite Elements” on “Methods”. We
combined language models with word embeddings to consider not only exact matches but
also synonyms and related terms to those present on the queries (once initial tests showed
that this could enhance the information retrieval performance).

The paper is organized as follows. Section II shows an overview of the whole
contribution. Section III discusses the construction of our database and data labelling.
Section IV discusses the methods used to perform the classification experiments using
supervised learning. Section V presents the results for classification. Section VI and VII
show the Information Retrieval methods and results, respectively. Finally, Section VIII
presents the conclusions of this work and also discusses possible improvements and future
work.

Figure 1. An overview of the main steps of our pipeline.

2. Overview
Figure 1 illustrates the main steps involved in the development of our search engine. First,
we train a machine learning model on a previously labeled dataset (described in Section

Figure 2. Confusion matrix showing the agreements/disagreements between the
two judges that annotated the dataset. I, O, M and R respectively stand for:
Introduction, Objectives, Methods and Results/Conclusion.

III). This model is then used to predict sentence categories in unseen documents, with the
goal of creating relevant information and metadata that can be used by the Information
Retrieval system. The documents database is composed of scholarly documents abstracts,
in which we treat the sentences as independent units (the classifier assigns each sentence
a single class).

As a result of the combination of word embeddings and a language model, an In-
formation Retrieval system allows users to search keywords and also filter the sentences
by the categories of interest. Hence one can explore the information that was automati-
cally generated by our sentence classifier (detailed in Sections IV and V). We show that
the search engine is enhanced by the generated metadata and also by the usage of word
embeddings to smooth language models’ estimates (as shown in Sections VI and VII).

3. Dataset

In this section we describe the construction of our database and the methods that were
used for sentence annotation and quality control. We also discuss the choice of sen-
tence categories and the structure used to organize the data. The dataset is available
at http://github.com/thiago-ferraz/Sentence-Classification-and-Information-Retrieval-for-
Petroleum-Engineering.

First, we collected 278 papers and its abstracts from the Journal of Petroleum Ex-
ploration and Production Technology (from 2011 to 2018), as well as from IEEE Xplore
database. All papers were related to Petroleum Engineering. The paper abstracts were
then separated into sentences, counting 2420 sentences. Some abstracts were removed
from the database because they contained grammar/spelling errors or were poorly writ-
ten. We thus obtained 2263 sentences. These sentences were independently and manually
labeled by the first two of the authors of this paper into the proposed classes (Introduction,
Objectives, Methods, Results/Conclusion).

As the sentences were annotated by two judges independently, some guidelines
were established so as to reduce the ambiguities that could arise during the process. Ta-
ble 1 shows the annotation guidance for the different classes. Also, a hierarchy among
classes was determined to deal with situations where a single sentence was in more than
one category. It was decided that the most important class was Objectives, followed by

Table 2. Datasets created for the classification experiments. (1, 1) indicates only
unigrams and (1, 2) refers to unigrams and bigrams

Dataset
Number Positions PoS-Tags

Frequency
Preprocessing of

Numerical Strings
N-gram
Range

1 No No No (1, 1)
2 No No No (1, 2)
3 Yes No No (1, 1)
4 Yes No No (1, 2)
5 Yes Yes No (1, 1)
6 Yes Yes No (1, 2)
7 Yes No Yes (1, 1)
8 Yes No Yes (1, 2)
9 No Yes Yes (1, 1)

10 No Yes Yes (1, 2)
11 Yes Yes Yes (1, 1)
12 Yes Yes Yes (1, 2)

Results, Methods and, lastly, Introduction. Most of this methodology was also employed
by [Agarwal and Yu 2009].

After labeling, the confusion matrix for this process was computed to show agree-
ment between the judges (Figure 2). In 2094 cases, the judges labeled the sentences the
same way, representing 92.5% of all cases. There were 169 sentences (7.5%) with dis-
agreement. These sentences were discarded from the dataset, due to their ambiguities,
following usual procedure [Agarwal and Yu 2009].

A popular measure of agreement level between judges is the kappa score (or kappa
statistic) [Schütze et al. 2008]. This is a robust indicator of agreement as it compares the
proportion of matching cases to the probability of agreement by chance: κ = (p0 −
pe)/(1 − pe), where p0 stands for the proportion of agreement between judges, and pe is
the hypothetical probability of judges agreeing by chance (which is estimated from the
data), as defined by [Schütze et al. 2008]. Kappa score evaluation in our dataset yielded
0.897, a strong level of agreement [McHugh 2012]; hence we can assume that our dataset
was reliably labeled.

4. Classification Methods
In this section we present the methods used to perform the classification experiments
using supervised learning algorithms applied to different dataset configurations.

4.1. Features and feature selection
The input set of labeled sentences was randomly divided into 80% for training and 20%
for testing with the objective of preventing the overfitting of the classifiers to the data. This
division was stratified to preserve the ratios between sentence categories from the original
set in the training and testing sets. The best results achieved in the training set were then
applied to the test set in order to obtain an empirical estimate of their performance. These
empirical results are shown in Section 4.

The features used in the classification experiments were:

1. Bag-of-words, n-grams and numerical strings: The base feature set developed
was the bag-of-words representation for the text documents. Unigrams (individ-
ual words) and the combination of unigrams and bigrams were tested as attributes.
The features were extracted after simple preprocessing steps such as the removal
of punctuation and the conversion of words to lowercase. We also explored the
conversion of every numerical string to a symbol (#NUMBER#) ensuring that
numbers would be counted as a single feature [Agarwal and Yu 2009].

2. Position: This feature captures the position of a given sentence in the abstract,
varying linearly from 0 to 1, with ”0” indicating that the sentence comes first in
the abstract and ”1” indicating that it comes last. This feature is important as there
is correlation between the position of the sentence and its category. For example,
the introduction tends to come before the methods, and these, in turn, before the
conclusions and results.

3. PoS-Tags Frequency: The NLTK tool [Bird et al. 2009], pretrained on a large cor-
pus, was used in order to get the Part-of-Speech Tags for each word from our
dataset. The tags frequency counting was then selected as a new set of features
to be considered. For example, one observation (sentence) from our database can
have n verbs in the present, m verbs in the past, p adjectives, and so on.
Twelve dataset configurations (with different feature sets), shown in Table 2, were

explored in relation to the use of the sentence positions, preprocessed numerical strings,
the frequency of PoS-Tags and the n-gram range in the generation of features. All the
datasets presented in Table 2 were generated from the same 2094 sentences, but different
methods were used to extract features.

The models’s hyperparameters were manually adjusted through the application
of 5-fold stratified cross-validation in the training set and accuracy evaluation. The same
procedure was conducted to select a proper subset of features that maximized the accuracy
of each classifier for each dataset configuration.

Reduction of the high data dimentionality can increase the performance of clas-
sification tasks [Yun et al. 2007] by decreasing the cost of learning through the removal
of noisy/irrelevant data [Tu et al. 2007]. Several metrics can be used to select features,
such as Information Gain, Term Frequency, Pearson Chi-square, odd ratio, Gini in-
dex, Mutual Information, Document Frequency; we adopted the method proposed by
[Elssied et al. 2014] which consists of performing for each continuous predictor X a one-
way ANOVA F-test that checks whether all the classes of the target variable Y have the
same mean as X . For every variable the p-value based on the F statistic is calculated and
then used to rank them in descending order.

4.2. Classifiers
Three classifiers were chosen to be tested in our classification experiments, based on the
state of art for text categorization problems and on particularities of our database: Naive
Bayes, SVM and logistic regression. The classifiers predictive performances were eval-
uated based on the values of accuracy, precision, recall and F1-Score computed through
their application on the test set.

Introduced in text classification by [Mosteller and Wallace 1964], the Naive Bayes
classifier assumes that features (individual words, n-grams, etc.) are conditionally in-
dependent from each other given the class of the observation to which they belong

Table 3. Feature Selection, Accuracy and F1-Score Results

Dataset
Number

Naive Bayes SVM Logistic Regression
feat Acc F1 # feat Acc F1 # feat Acc F1

1 404 0.699 0.699 3701 0.733 0.733 3801 0.747 0.747
2 1351 0.718 0.718 4901 0.730 0.730 2101 0.740 0.740
3 301 0.721 0.721 4080 0.833 0.833 4320 0.847 0.847
4 701 0.721 0.721 8801 0.831 0.831 741 0.828 0.828
5 401 0.740 0.740 3901 0.845 0.845 4500 0.864 0.864
6 1101 0.747 0.747 8801 0.833 0.833 8000 0.847 0.847
7 211 0.711 0.711 4110 0.835 0.835 3951 0.845 0.845
8 661 0.721 0.721 8401 0.831 0.831 8810 0.840 0.840
9 501 0.718 0.718 3801 0.733 0.733 4001 0.752 0.752

10 1201 0.718 0.718 6301 0.740 0.740 5301 0.740 0.740
11 361 0.735 0.735 3451 0.847 0.847 3901 0.857 0.857
12 1121 0.754 0.754 1141 0.838 0.838 811 0.850 0.850

[Jurafsky and Martin 2018]. Such strong conditional independence assumptions lead
the classifier to overestimate evidences for cases in which the data contain highly cor-
related variables. Even so, empirical studies [Wang and Manning 2012] show that for
short textual documents (such as sentences) the Naive Bayes classifier is an effec-
tive tool. SVMs (Support Vector Machines) are also often used in text categoriza-
tion [Wang and Manning 2012]; we have used the linear kernel because of its supe-
rior performance in problems where the input data has a large number of dimensions
[Joachims 1999]. Finally, logistic regression has some valuable properties. For exam-
ple, for two perfectly correlated attributes f1 and f2, logistic regression will distribute the
weight in the classification process between the terms w1 and w2 (which multiply the vari-
ables), while the Naive Bayes classifier will treat them independently by multiplying their
probabilities (their weights) in the calculation of the maximum likelihood, overestimat-
ing the evidence [Jurafsky and Martin 2018]. Furthermore, logistic regression, as a linear
model, is very effective in handling sparse feature spaces, such as the ones generated by
the bag-of-words process.

5. Classification Results
Table 3 shows, for each classifier, the number of selected features (”# feat”) as well as
their performance in the test set in terms of accuracy (”Acc”) and F1-Score (”F1”).

The variation of the number of selected attributes was due to the search for the
combination that generated, in each case, the highest accuracy for the classifier in the
training set. The Naive Bayes algorithm got its maximum for an average of 693 fea-
tures, while the Support Vector Machines and logistic regressions required much higher
dimensional spaces (averages of 5116 and 4186, respectively).

The importance of feature engineering methods in the text classification task can
be seen in several cases presented in Table 3. Comparing the test results in datasets 1
and 3, for example, we can see how the position enhances the score performance. We
can observe that its simple addition generated an increase of approximately 13% in the
logistic regression accuracy (comparing dataset 1 against 3). The PoS-Tags frequency

Table 4. Accuracy, precision, recall and F1-Score for the tests performed with
datasets 5 and 11.

Dataset
Number

Naive Bayes SVM Logistic
Regression

Prec. Recall F1 Prec. Recall F1 Prec. Rec. F1

5

Intro 0.75 0.73 0.74 0.84 0.88 0.86 0.85 0.90 0.87
Obj 0.78 0.67 0.72 0.86 0.76 0.81 0.86 0.76 0.81

Methods 0.75 0.78 0.76 0.84 0.84 0.84 0.88 0.85 0.87
Results 0.70 0.74 0.72 0.85 0.86 0.85 0.87 0.89 0.88

Avg 0.74 0.74 0.74 0.85 0.84 0.84 0.86 0.86 0.86
Acc 0.740 0.845 0.864

11

Intro 0.74 0.73 0.74 0.85 0.87 0.86 0.86 0.88 0.87
Obj 0.79 0.66 0.72 0.86 0.76 0.81 0.88 0.76 0.81

Methods 0.73 0.78 0.75 0.83 0.84 0.83 0.86 0.85 0.86
Results 0.71 0.74 0.73 0.85 0.88 0.86 0.84 0.8 0.88

Avg 0.74 0.74 0.73 0.85 0.85 0.86 0.86 0.86 0.86
Acc 0.735 0.847 0.857

have also shown a great discriminative power as it can be seen in the results related to
datasets 3 (without those features) and 5 (containing those features). The Bigrams fre-
quency increased the accuracy for every test performed with the Naive Bayes classifier,
but had an opposite effect on the SVMs and logistic regression. Finally, the preprocessing
of numerical strings generated a mixed effect over the classifiers performance, sometimes
increasing their accuracy (tests performed with datasets 6 and 12) and sometimes decreas-
ing it (Naive Bayes and logistic regression tests in datasets 3 and 7).

It can be noted that logistic regression always outperformed the other classifiers
except for datasets 4 and 10. Logistic regression also obtained the best overall results of
85.7% and 86.4% in terms of accuracy, for the tests performed with the datasets 11 and 5,
respectively (as described by Table 2). For those cases (datasets 11 and 5), which had the
best score results, a more complete report is presented in Table 4. There, the precision,
recall and F1-Score for each class (Introduction, Objectives, Methods and Results) is
presented together with their average values.

In Table 5 we show some examples of sentences classified by our best model
(logistic regression trained on dataset 5). The table carries two sentence examples per
class: a correctly classified sentence and a misclassified one.

6. Information Retrieval Methods

In this section we describe the integration between the classification and the information
retrieval tasks. The latter benefits from being fed with metadata generated by the former.

The simplest IR strategy is Boolean retrieval, where queries are words combined
and connected with operators AND, OR and NOT. This method treats each document as
a set of terms; as the queries are Boolean, the results are either TRUE or FALSE, which
means a document is either relevant or not. There is no way of determining a scale or
scoring for relevance, or even a way of sorting the positive outputs.

To assign scores to each document given a certain query, one could use a prob-
abilistic language model, such as a unigram model. In such a model, we estimate the
probability of a document given a query, using the frequency of the terms present in both
the query and the document. The probability of a document given a query can be ex-
pressed as:

P (D|q) = P (q|D) · P (D)

P (q)
, (1)

where D stands for Document and q stands for query. According to
[Zhai and Lafferty 2004], (1) can be simplified to make P (D|q) ∝ P (q|D). The
probability of a query (consisting of words w1, . . . , wn) given the document can be then
expressed as:

P (q|D) =
∏
wi∈q

P (wi|D). (2)

When dealing with a unigram model, each word’s frequency is considered independently
of their order in the document. Hence, we can estimate P (w|D) as:

P̂ (w|D) = tf(w,D) = N(w,D)/||D||, (3)

where tf indicates the term frequency function, N(w,D) is the number of times a certain
word w appears in documentD and ||D|| represents the total number of words of a certain
document [Zhai and Lafferty 2004]. The main difficulty with this kind of model happens
when certain word w, present in the query, is missing in a document. In this case, the
probability in (3) will be zero and so will be the probability of the query, as seen in
(2). To address this problem, several authors propose smoothing methods that avoid the
assignment of zero probability to the estimate P̂ (w|D) [Chen and Goodman. 1998].

As previously discussed, one of our goals was to build an IR system that considers
not only perfectly matching words but is able to deal with synonyms and similar words.
Accordingly, we used a word embedding representation in order to represent the words
as vectors and then be able to define and compute distances between terms. We used a
pre-trained embedding model called ”Common Crawl” [Pennington et al. 2014]. It was
trained on Wikipedia Articles and more than 42 billion tokens were used, resulting in a
1.9M words vocabulary.

Our approach for IR consists in using a word embedding model to smooth the
language model estimates. [Ganguly et al. 2015] defines the probability of transforming
a term t′ into a term t, given a document:

P̂ (t | t′, D) =
sim(t, t′)∑

t′′∈D
sim(t, t′′)

, (4)

where sim(t, t′) represents the Cosine Similarity. By refining Expression (4), we propose
a smoothing expression that takes into account the most similar word in the document,
regarding each term in the query. Intuitively, it considers not only exact matches between
what is being searched and what is in the documents, but also synonyms or related words:

P̂β(w|D) = (1− β) tf(w,D) + β
1∑

w′∈D
sim(w′, w)

max
t′∈D

[sim(w, t′)]. (5)

Table 5. Examples of sentences from test set, with their respective ground-truth
label and predicted label (by our best model - logistic regression trained
on dataset 5).

Sentence Ground-truth Predicted
“In the Tahe oilfield in China, heavy oil is commonly

lifted using the light oil blending technology.” Introduction Introduction

“Xujiahe Formation is a set of terrestrial clastic rocks
with low compositional maturity, low cement

content, and medium textural maturity.”
Introduction Methods

“This paper investigates the potential of high acyl GLG
as additive for drilling mud.” Objectives Objectives

“The present work sought to determine whether or not
a commercially available simulator could accurately

simulate results from core flooding experiments.”
Objectives Results

“These flow rates were used to characterize
the performance of the jet pump.” Methods Methods

“The properties are controlled at such values that the
mud provides optimum performance.” Methods Introduction

“Furthermore, it has been concluded that
aquifer strength has a little effect on coning behavior

during oil production process”
Results Results

“Furthermore, simulations using the X model suggest
an incremental oil recovery factor of 11% OOIP

due to surfactant-polymer flooding.”
Results Methods

In Expression (5), β is a parameter that controls how much weight is given to the
occurrence of related words versus the exact matches. The expression is divided in two
complementary terms: the first one, multiplied by (1 − β), deals simply with the term
frequency (tf), as defined in Expression (3); and the second one, multiplied by β, deals
with the occurrence of synonyms and related words. β parameter must be tuned for each
specific application, as it happens in most smoothing techniques.

We integrate our smoothed language model with the sentence categorization task
by considering the probabilities of each sentence (document) belonging to the desired
class γ: P (γ|D). Hence, we define the score of a document given a query q and a desired
class γ as:

score(D, q, γ) = P (q, γ|D) = P (q|D) · P (γ|D)

=
[∏
w∈q

P̂β(w|D)
]
· P (γ|D). (6)

7. Information Retrieval Results
In our tests, the score for a particular article was then given by its sentence with the highest
score. In other words, the most relevant sentence dictates the score of the entire abstract.

To validate this method, a new dataset of 320 scientific papers, different from the
ones used in the training of the sentences classifier, was collected from the Journal of

Petroleum Exploration and Production Technology.

The importance of metrics such as precision and recall in the evaluation of IR
systems is related to the type of application. Some applications such as web searches tend
to favor precision because the user is much more interested in having relevant results on
the first page than obtaining all possible relevant results. On the other hand, on tax or legal
search systems, which involve more detailed tasks, sensitivity plays a more important
role because it may not be tolerable to lose certain results [Manning et al. 2008]. We do
not focus here on sensitivity, since our main concern is to evaluate the returned results
relevance rather than checking whether all useful results are found. In fact, in search
systems like ours, the larger the database, the lower the importance of the recall.

A set of 50 queries was evaluated (following guidelines in the literature
[Manning et al. 2008]). Queries were independently suggested by volunteers after they
quickly inspected the topics in the database. They were instructed to provide queries
consisting of keywords, with one to three words each, and to indicate, for each query,
one or more classes of sentences in which they were interested (Introduction, Objectives,
Methods or Results). Results were evaluated by the first two authors, who, independently,
indicated, for each result, whether it was relevant or not according to the corresponding
query. The results were only considered relevant when marked this way by both judges.

The analysis of the set of 50 queries yielded a mAP score of 0.80 with a stan-
dard deviation of 17.1%. The results retrieved first papers whose abstracts contained all
the words from the query and, after that, documents containing some of the query words
as well as related words (such as synonyms), indicating success of our algorithm. An
example of result is the following. Given the query (keywords: ”Reduce Costs”, class:
”Objectives”), the system returned documents containing: “reduce costs”, “cost reduc-
tion” and “eliminate expenditures”.

8. Conclusion
Our classification results match or exceed the results of similar efforts in the literature
[Agarwal and Yu 2009, McKnight and Srinivasan 2003, Yamamoto and Takagi 2005].
Our system was able to classify sentences from Petroleum Engineering abstracts into the
main categories of the scientific discourse, with an accuracy of 86% (comparable to the
best in the literature) and an F1-Score of 0.81-0.88 (higher than related work). We should
note that one of our contributions is a dataset that will be made publicly available. Most
of the literature focuses on biological and medical texts, while here we have dealt with a
literature of huge importance, namely the literature related to the oil industry. Although
we used scientific texts, our techniques can be successfully adapted to other industries. To
this end, two main aspects can contribute: 1) the level of vocabulary similarity between
technical reports and scientific papers’ excerpts; and 2) the conciseness typically present
on both abstracts and technical reports.

The results of the tests carried out on the IR system show, both qualitative and
quantitatively, that the desired result was reached: queries return on average 80% of rel-
evant results and, in addition, it is possible to find documents that contain similar words
to the ones in the query, but are not exact matches. In addition, filtering the automatically
categorized sentences has also proved to be a promising tool.

Future work that could improve the classification system includes increasing the

number of labeled observations in the training set, especially the Objectives class, aiming
at improving the classification accuracy and the recall of this class that presented lower
values in comparison to the others (0.76 recall for the best classifier). The annotation
process could also be improved by reducing its bias. This could be done by having mul-
tiple independent researchers labeling the sentences. Testing other classification methods
could also help to increase system accuracy. Regarding the IR system, some improve-
ments could be done in future work: 1) test different word embedding models (or even
train one on scholarly papers from a certain specific field); 2) test the proposed algorithm
on a more statistically significant sample (i.e. test on more examples); 3) reduce the bias
of the tests by having more judges. Another important step would be to actually test our
entire pipeline on documents of a distinct nature: reports generated by the industry, tech-
nical texts and guides, and so on. It would be important to validate the presented ideas and
provide helpful insights on how to adapt the models to other contexts of the real world.

Acknowledgements
The author Fabio G. Cozman has been partially supported by the Conselho Nacional de
Desenvolvimento Cientifico e Tecnologico (CNPq), grant 312180/2018-7. The work was
also supported by the Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP),
grant 2016/18841-0, and also by the Coordenação de Aperfeiçoamento de Pessoal de
Nivel Superior (CAPES) - finance code 001.

References
Agarwal, S. and Yu, H. (2009). Automatically classifying sentences in full-text biomed-

ical articles into introduction, methods, results and discussion. Bioinformatics,
25(23):3174–3180.

Bird, S., Klein, E., and Lopen, E. (2009). Natural Language Processing with Python:
Analyzing Text with the Natural Language Toolkit. O’Reilly Media, Inc.

Chen, S. F. and Goodman., J. (1998). An empirical study of smoothing techniques for
language modeling. Harvard Computer Science Group Technical Report.

Elssied, N. O. F., Ibrahim, O., and Osman, A. H. (2014). A novel feature selection based
on one-way anova f-test for e-mail spam classification. Research Journal of Applied
Sciences, Engineering and Technology, 7(3):625–638.

Furtado, P. H. T. (2017). Interpretação automática de relatórios de operação de equipa-
mentos. Master’s thesis, Pontifı́cia Universidade Católica do Rio de Janeiro.

Ganguly, D., Roy, D., Mitra, M., and Jones, G. J. (2015). Word embedding based general-
ized language model for information retrieval. In Proceedings of the 38th International
ACM SIGIR Conference on Research and Development in Information Retrieval, SI-
GIR ’15, pages 795–798, New York, NY, USA. ACM.

Joachims, T. (1999). Transductive inference for text classification using support vector
machines. In ICML, volume 99, pages 200–209.

Jurafsky, D. and Martin, J. H. (2018). Speech and Language Processing, volume 3. Pear-
son London.

Ladeira, A. P. and Alvarenga, L. (2012). Processamento de linguagem natural: em busca
de evidências temáticas nas publicações nacionais e contemporâneas.

Manning, C. D., Raghavan, P., and Schütze, H. (2008). Introduction to Information Re-
trieval. Cambridge University Press, New York, NY, USA.

McHugh, M. L. (2012). Interrater reliability: the kappa statistic. Biochemia medica:
Biochemia medica, 22(3):276–282.

McKnight, L. and Srinivasan, P. (2003). Categorization of sentence types in medical
abstracts. In AMIA Annual Symposium Proceedings, volume 2003, page 440. American
Medical Informatics Association.

Mosteller, F. and Wallace, D. (1964). Inference and disputed authorship: The federalist.

Pennington, J., Socher, R., and Manning, C. D. (2014). Glove: Global vectors for word
representation. In EMNLP, volume 14, pages 1532–1543.

Schütze, H., Manning, C. D., and Raghavan, P. (2008). Introduction to information re-
trieval, volume 39. Cambridge University Press.

Tu, C.-J., Chuang, L.-Y., Chang, J.-Y., and Yang, C.-H. (2007). Feature selection using
pso-svm. IAENG International Journal of Computer Science, 33(1):111–116.

Wang, S. and Manning, C. D. (2012). Baselines and bigrams: Simple, good sentiment
and topic classification. In Proceedings of the 50th Annual Meeting of the Association
for Computational Linguistics: Short Papers-Volume 2, pages 90–94. Association for
Computational Linguistics.

Yamamoto, Y. and Takagi, T. (2005). A sentence classification system for multi biomedi-
cal literature summarization. In Data Engineering Workshops, 2005. 21st International
Conference on, pages 1163–1163. IEEE.

Yun, C., Shin, D., Jo, H., Yang, J., and Kim, S. (2007). An experimental study on feature
subset selection methods. In 7th IEEE International Conference on Computer and
Information Technology (CIT 2007), pages 77–82. IEEE.

Zhai, C. and Lafferty, J. (2004). A study of smoothing methods for language models
applied to information retrieval. ACM Trans. Inf. Syst., 22(2):179–214.

