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Abstract
We present dPASP, a novel declarative proba-
bilistic logic programming framework for differ-
entiable neuro-symbolic reasoning. The frame-
work allows for the specification of discrete prob-
abilistic models with neural predicates, logic con-
straints and interval-valued probabilistic choices,
thus supporting models that combine low-level
perception (images, texts, etc), common-sense
reasoning, and (vague) statistical knowledge. To
support all such features, we discuss the several
semantics for probabilistic logic programs that
can express nondeterministic, contradictory, in-
complete and/or statistical knowledge. We also
discuss how gradient-based learning can be per-
formed with neural predicates and probabilistic
choices under selected semantics. We then de-
scribe an implemented package that supports in-
ference and learning in the language, along with
several example programs. The package requires
minimal user knowledge of deep learning sys-
tem’s inner workings, while allowing end-to-end
training of rather sophisticated models and loss
functions.

1. Introduction
Answer Set Programming (ASP) (Gebser et al., 2012; Lifs-
chitz, 2019) is a powerful declarative paradigm for specify-
ing domain knowledge by means of logic programming. For
example, the following program very intuitively describes
the causal relationships between stress, smoking and peer
pressure (Fierens et al., 2015).

smokes(X) :- stress(X).
smokes(X) :- influences(Y,X), smokes(Y).

The program can be extended with a database of known facts
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such as influences(anna,bill) and stress(anna), and used
to conclude that smokes(bill) must be true (according to
some selected semantics).

While powerful, ASP cannot cope with uncertainty, that
abounds in data-driven situations. For instance, suppose
that we only known (or are only willing to ascertain) that
Anna influences Bill with probability 0.8:

0.8::influences(anna,bill).

Such probabilistic facts appear quite naturally when they
are the output of perception models. In particular, when
differentiable models such as deep neural networks are used,
as is the case of image, text and speech recognition.

Once probabilistic facts are allowed, we enter the realm of
Probabilistic Answer Set Programming (PASP) (Cozman &
Mauá, 2020); and when the probabilistic facts are linked to
the output of neural probabilistic classifiers, we name the
resulting framework Neural-Probabilistic Logic Program-
ming (NPLP). Essentially, NPLP provides a tight coupling
of low-level reasoning models (e.g., image recognition) and
high-level reasoning (e.g., planning). By exploiting exist-
ing domain knowledge, NPLP allows, among other things,
end-to-end gradient-based weakly supervised learning of
neural models, thus providing an effective implementation
for neurosymbolic reasoning (Yang et al., 2020; Manhaeve
et al., 2021).

An important and mostly overlooked component of NPLP
systems is the interface connecting real-world objects, neu-
ral network models and logic programming languages. Ex-
isting implementations of NPLP such as DEEPPROBLOG
(Manhaeve et al., 2021) and NEURASP (Yang et al., 2020)
require the user to write the “glue” between the neural-
probabilistic logic language and the deep learning frame-
work themselves, a task which is not always straightfor-
ward. These frameworks are also limited: DEEPPROBLOG
forbids negative cycles and nondeterministic knowledge;
NEURASP disallows probabilistic facts; and neither of them
deals with contradictions or vague uncertain knowledge.

In order to fill those gaps, we introduce dPASP, a new NPLP
framework that features a large set of ASP constructs, can
learn from both probabilistic facts and neural atoms, and
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supports several semantics, from standard maximum entropy
probability measures to richer semantics that can accommo-
date contradictions and partial specification of probabilistic
knowledge.

2. Background
We review some background knowledge on logic and proba-
bilistic logic programming. We assume the reader has some
familiarity with the terminology and basics of logic pro-
gramming (Gebser et al., 2012), and focus on less common
concepts such as L-stable semantics, probability models and
the credal L-stable semantics (Rocha & Cozman, 2022).

2.1. Logic Programming

A logic program is a finite set of disjunctive rules of the
form:

h1; . . .; hk :- b1, . . ., bn, not bn+1, . . ., not bn+m.

where each hi and bj is an atom and not denotes default
negation. We say that head(r) = {hi}ki=1 is the head of
the rule, while the atoms right of :- are the body, denoted
body(r); sets body−(r) and body+(r) denote, resp., the
sets of negated (i.e., preceded by not) and non-negated
atoms in body(r). The rule is disjunctive if the head has
two or more atoms. It is called an integrity constraint if the
head is empty, and normal if the head is a singleton. And it
is a fact if it is normal and the body is empty.

The Herbrand base of a program is the set formed by all
ground atoms that can be built using predicate names and
constants in the program. The grounding of a program is
the propositional program obtained by grounding each rule,
that is, replacing variables with constants from the Herbrand
base in every consistent way. The semantics of a program
with variables is the semantics of its grounding.

Let t, f and u denote ground atoms which do not oc-
cur in a program L. A three-valued interpretation I , also
called a partial interpretation, is a function from the atoms
in the Herbrand base to {0, 0.5, 1} such that I(t) = 1,
I(f) = 0, I(u) = 0.5 We define It = {A | I(A) = 1},
If = {A | I(A) = 0} and Iu = {A | I(A) = 0.5} as the
sets of true, false and undefined atoms, respectively, accord-
ing to I . An interpretation is total if it assigns every atom
(other than u) to either true or false. The interpretation of
the positive body of a rule r is the minimum over the value
of its atoms, I(body+(r)) = min{I(A) | A ∈ body+(r)}.
The value of the negative body is the minimum of the com-
plements of the atom’s values, I(body−(r)) = min{1 −
I(A) | A ∈ body−(r)}. The interpretation of the body
is I(body(p)) = min{I(body+(r)), I(body−(r))}. Last,
the interpretation of the rule’s head is the maximum of its
atoms, I(head(r)) = max{I(A) | A ∈ head(r)}.

An interpretation satisfies a rule r if and only if
I(head(r)) ≥ I(body(r)). I is a model of a program if
it satisfies all of its rules. We define a partial order ≤ (re-
flexive, antisymmetric and transitive) of interpretations as:
I0 ≤ I1 if and only if I0(A) ≤ I1(A) for all A. A model I
is minimal if there is no model I ′ ≤ I such that I ̸= I ′. If
I is total then it is minimal if and only if It is ⊆-minimal.
Note that by (3) an interpretation that assigns undefined
to all atoms is always a model as long as the program can
be rewritten so it does not contain disjunctive rules nor in-
tegrity constraints. Thus, since ≤ is a partial order and the
Herbrand base is finite, every normal program admits one
or more minimal models (Przymusinski, 1991). This is in
contrast to complete (i.e., true/false) semantics, for which a
normal program might have none, one or multiple minimal
models.

The stability of a model I is connected to the notion of
the program’s reduct w.r.t. I , written P/I , obtained by the
modified Gelfond–Lifschitz transformation (Przymusinski,
1991). The transformation operates on each atom A ∈
body−(r) in the negative body of a rule r ∈ L and replaces
it by the atom t, f or u corresponding to its semantics in
I . Formally, it replaces A with: (i) t if A ∈ If ; or (ii) f if
A ∈ It; or (iii) u if A ∈ Iu. We say that I is a partial stable
model of L if I is a minimal model of L/I . This is the partial
stable model semantics (P-stable) for logic programs with
disjunctions and default negation (Przymusinski, 1991). A
stable model I0 is least undefined if there is no other stable
model I1 with Iu0 ⊂ Iu1 . That is, I is least undefined if
there is no other stable model that defines (as true or false)
more atoms than it. Then we say that I is a least undefined
stable model of L, or L-stable model, for short. This is
finally the L-stable model semantics of disjunctive logic
programs (Saccà & Zaniolo, 1997).

2.2. Probabilistic Logic Programming

Probabilistic logic programming extend logic programs with
annotated disjunctive rules (ADR) of the form

p1::a1;. . .;pk::ak :- b1,. . .,bn,not bn+1,. . .,not bn+m.

where p1, . . . , pk are nonnegative real values whose sum
is equal to one. We also allow ADRs where

∑
i pi < 1.

Semantically, this is a syntactic sugar where the head is
extended by atom f (which is never true) with probability
1−

∑
i pi. For example, a probabilistic fact is an ADR with

a singleton head and empty body, written as:

θ::a.

It is equivalent to the ADR

θ::a; 1− θ::f.
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A probabilistic logic program is a finite set of ADRs and
(non-probabilistic) rules. The semantics of probabilistic
logic programs extends that of Sato’s distribution semantics
(Sato, 1995), in which independent random choices induce
logic programs.

A total choice independently selects one atom of the head of
each ADR in a probabilistic logic program. Note that a total
choice can select different atoms for rules with the same
head (and different bodies). Each total choice θ induces
a logic program where each ADR r is transformed into a
normal rules

h :- b1, . . ., not bm.

where h is the atom selected by the total choice for rule r,
and b1, . . . , bm are the body.

An interpretation of a probabilistic logic program is simply
an interpretation of the logic program obtained by dropping
probabilities (i.e., turning ADRs into dijsunctive rules). Let
θ denote both a total choice and its induced logic program,
and Γ(θ) denote the selected models of θ, according to some
semantics. A probability model is a probability measure
P over the interpretations I of the program such that (i)
P(I) > 0 if and only if I is in Γ(θ), (ii) P(Γ(θ)) =

∏
r pr,

where the product runs over all ADRs in the probabilistic
logic program and pr is the probability annotating θ(r) in
rule r. The maximum entropy probability model, or max-
ent model for short, is the probability model that splits
P(Γ(θ)) evenly over each stable model, that is, P(I) =∑

θ:I∈Γ(θ)(1/|Γ(θ)|) for any stable model I .

The credal semantics assigns to each atom a a pair of lower
and upper probabilities such that P(a) = minP P(a) and
P(a) = maxP P(a), where the optimizations are over the
set of probability models (which is closed and convex).
The max-ent semantics assigns to a the probability of the
corresponding max-ent probability model. Note that by
definition we have that Pmax-ent(a) ∈ [P(a),P(a)].

Note that the previous probabilistic semantics are agnostic
with respect to the logic semantics used to produce Γ(θ), re-
quiring only that it is non-empty for each θ. In the literature,
such a set is more commonly selected as the set of stable
models (Cozman & Mauá, 2020) or well-founded models
(Fierens et al., 2015).

As we will discuss later, dPASP supports the combination of
either the stable, partial, L-stable or SMPROBLOG seman-
tics, for the logic part, and the credal or max-ent semantics,
for the probabilistic part. The result is thus one of eight
different semantics, to be selected by the user and according
to the task at hand. Not every feature is however available
for each selected semantics: for instance, learning under
credal or L-stable semantics remains an open problem.

3. The dPASP Framework
We now describe the language as well as inference and
learning routines of the dPASP framework.

3.1. Language

dPASP extends CLINGO’s syntax (Gebser et al., 2017) to
neural-probabilistic logic programs by including annotated
disjunctive rules and neural annotated disjunctive rule
(NADR). The latter are ADR whose probabilities are set by
a(n externally defined) neural network.

The neural networks that parametrize NADRs are specified
using standard deep learning frameworks such as PyTorch.
To facilitate the integration between the probabilistic logic
program and the deep learning framework, dPASP allows
the embedding of Python code within the program via the
#python guard. Code within this guard is executed and
all functions declared are available for use within special
predicates in the program. As an example, consider the
following #python code prototype for constructing a neural
network in PyTorch for MNIST.

#python
def net(): return ... # Neural network.
# (i=1)st or (i=2)nd half of train set as tensor.
def mnist_tr(i): return ...
# (i=1)st or (i=2)nd half of test set as tensor.
def mnist_te(i): return ...
#end.

The specification of the interface between raw data (that
is fed to the neural network in the python code part) and
program constants is managed by a special rule of the form

atom(x) ∼ test(@arg1), train(@arg2).

In that rule, atom is a user-defined one-place predicate name
used to represent an object fed into the neural network, x
is a constant identifying a particular object (since the same
network can be used several times in the same program) and
test and train are reserved predicates, whose arguments
are either paths to CSV files or Python functions as defined
in #python. As an example, consider the example of adding
two digit images classified by neural networks, as described
in Manhaeve et al. (2021); here, the network’s inputs are
images, with each grounding of the NADR representing one
of the two digits in the sum, and different images in the train
and test sets.

input(0) ∼ test(@mnist_tr(0)), train(@mnist_te(0)).
input(1) ∼ test(@mnist_tr(1)), train(@mnist_te(1)).

Note that 0 and 1 are arbitrary constants used to identify
the two distinct inputs of the same neural network. These
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constants are associated with pairs of images taken either
from the test or the train set, depending on the task being
solved.

A NADR’s head must contain a single (possibly non-ground)
atom of the form l::f(X, {v1,. . .,vk}), where l is either a ?,
indicating the neural ADR is learnable, or a !, in which case
its parameters are fixed during learning. Variable X is used to
ground the NADR according to its body, while v1,. . .,vk are
the possible values the annotated disjunctive rule may take.
Optionally, an interval may be passed as a shorthand; for
instance, 0..9 is equivalent to writing out all digits from 0 to
9. The network in the NADR is embedded by either passing
a function declared in #python or a GitHub repository in
PyTorch Hub format. If the NADR is learnable, then we
may optionally pass parameters to the PyTorch optimizer via
the with operator. Finally, the NADR must then be declared
with the data predicate as one of the subgoals in its body. In
our running MNIST addition example, the neural predicate
digit must cover all digits from 0 to 9.

?::digit(X, {0..9}) as @net :- input(X).

Data embedded into special data predicates (e.g. input(0)
and input(1) in the previous example) are passed as Py-
Torch tensors to the neural networks, allowing for efficient
parallelization in the CPU or GPU.

Regular ADRs are declared in a similar fashion to NADRs
in dPASP, except they allow setting an initial probability
value for the optimization when the rule is learnable. For
example:

0.5?::h1; ?::h2; ?::h3 :- b1, b2, . . ., b4.

When no initialization value is given, like in the case of h2
and h3, dPASP uniformly distributes the remaining mass to
the rest of the atoms. dPASP also supports credal facts in
order to specify a credal interval for imprecise inference,
where

[0.2, 0.7]::f.

indicates f may take a probability as low as 0.2 and as high
as 0.7.

Purely logic rules may contain arithmetic operations and
comparisons over variables of annotated disjunctive rules as
long as they are safe and appear in the body.

sum(Z) :- digit(0, X), digit(1, Y), Z=X+Y.
both_even :- digit(0, X), digit(1, Y), X\2=0, Y\2=0.

Querying a partial interpretation (possibly conditioned on
another interpretation) is done through the special directive
#query.

#query digit(0, 4). % P(digit(1, 4))
#query sum(8)|not both_even. % P(sum(4)|¬both_even)

The undef keyword may be used within #query for querying
the probability of an atom being undefined under the L-
stable or partial semantics. Each query returns either a
precise probability if under the max-entropy semantics, or
a pair of probabilities encoding lower and upper bounds if
under the credal semantics.

In order to define the semantics of the program, a special di-
rective #semantics may be used. It must receive at least one
of the supported logic or probabilistic semantics, i.e. stable
model, partial, L-stable, max-entropy or credal semantics.
If none is given, dPASP defaults to the credal and stable
models semantics. If only one is given, the missing one is
set to its respective default semantics.

#semantics lstable, maxent. % L-stable; max-entropy.
#semantics credal, partial. % Credal; partial.
#semantics stable. % Stable; credal.
#semantics maxent. % Max-entropy, stable.

The #learn directive specifies the learning procedure to
take place in the program, and receives as parameters the
training dataset with the observed atoms, as well as the
learning parameters such as learning rate, number of epochs
and batch size.

#learn @observed_atoms, lr = 0.001, niters = 5.

3.2. Inference

The most typical inference one draws with neuro-
probabilistic logic programming models is to compute
the probability of a query atom, possibly conditional on
some evidence. That is, if q = {q1, . . . , qm} and e =
{e1, . . . , en} are disjoint set of literals, then we are usually
interested in computing

P(q|e) =
∑

I|=q,e P(q, e)∑
I|=e P(e)

,

for some or all probability models P.

dPASP provides exact inference by enumerating total
choices and using CLINGO’s solver to enumerate all models
for each induced ASP program. Performing exact infer-
ence by that exhaustive approach, be it under the max-ent
or credal semantics, limits the scalability of inference to
programs with few NADRs and ADRs.

More scalable approximate inference based on knowledge
compilation (Totis et al., 2021), sampling (Tuckey et al.,
2021; Azzolini et al., 2023) and variational methods are
planned features for future versions of dPASP, which is
currently in early stage development.
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3.2.1. PARTIAL, L-STABLE AND SMPROBLOG
SEMANTICS

Internally, dPASP only accepts the stable model semantics
when performing inference or learning. To enable support
to different semantics, we implement translation procedures
to the stable model semantics.

The partial semantics in dPASP is implemented via the
translation described in (Janhunen et al., 2006). In a nut-
shell, dPASP creates an auxiliary atom and rule for each
non-probabilistic atom in the program and duplicates logic
rules in order to allow undefined values for non-probabilistic
atoms. The L-stable semantics is implemented by checking,
at each total choice, if there exists a stable model for the pro-
gram: in the positive case, dPASP performs inference over
the stable models of such a program, otherwise it queries
from the translated program’s partial stable models.

We also implement the SMPROBLOG semantics, introduced
in Totis et al. (2021). The main difference between the L-
stable and SMPROBLOG’s semantics is how to deal with
undefined atoms. While in L-stable a model may contain
undefined, true and false atoms, in SMPROBLOG, if an
atom is set to undefined in a model, then all atoms in this
model must also be undefined.

3.2.2. MAXIMUM ENTROPY SEMANTICS

If the max-ent semantics is selected, it is sufficient to simply
add up the (uniform) probabilities of each model that is
consistent with the query; this is the same procedure done in
Yang et al. (2020). More formally, the probability of some
observation O under the max-ent semantics is given by

P(O) =
∑
θ∈Θ

P(θ) · N(Iθ |= O)

N(θ)
, (1)

where Θ is the set of all total choices, and N(Iθ |= O) and
N(θ) return respectively the number of stable models that
are consistent with both θ and O, and the number of stable
models consistent with θ.

dPASP computes N(Iθ |= O) and N(θ) by calling
CLINGO’s solver and counting, for each total choice θ, how
many models are consistent with observation O and how
many models are in total. The probability P(θ) is easily
computable by simply multiplying the probabilities of each
probabilistic and neural component (i.e. probabilistic and
neural facts, rules and annotated disjunctions), as we assume
them to be marginally independent from each other.

3.2.3. CREDAL SEMANTICS

For the credal semantics, one is interested in the interval of
all probabilities P(q|e) obtained by some probability model.
That interval can be described by its lower and upper val-
ues, which in dPASP are obtained by the exact algorithm

described in Cozman & Mauá (2020). In short, given query
q = {q1, . . . , qm} and evidence e = {e1, . . . , en} literals,
we compute the lower P(q|e) and upper P(q|e) probabili-
ties by iterating over each total choice θ and counting the
models where (a) every model satisfies both q and e, (b)
some model satisfies both q and e, (c) every model satis-
fies e but does not satisfy some value in q, and (d) some
model satisfies e but does not satisfy some value in q. The
credal interval is then [0, 0] if b+ c = 0 and d > 0, [1, 1] if
a+ d = 0 and b > 0, and [a/(a+ d), b/(b+ c)] otherwise.

Credal facts in dPASP are only available when the credal
semantics is selected. To perform inference with credal
facts, dPASP constructs four multilinear polynomials cor-
responding to a, b, c and d; each term is a total choice θ,
each coefficient is the probability of θ, and variables in the
polynomial are x if X = 1 in θ or 1 − x otherwise. The
domain of the polynomial is the cartesian product of all
pairs of lower and upper probabilities in credal facts. The
functions a(x)/(a(x) + d(x)) and b(x)/(b(x) + c(x)) are
then optimized in order to find the two global minimum and
maximum respectively, with the first amounting to the lower
and the second the upper probabilities of the queries.

3.3. Parameter learning

dPASP currently implements three parameter learning rules
for the max-ent stable model semantics: (i) a fixed-point
learning procedure for non-neural programs, (ii) a Lagrange
multiplier derivation for gradient ascent, and (iii) an imple-
mentation of NEURASP’s learning procedure (Yang et al.,
2020). How to learn the parameters of programs in partial
or least undefined stable model semantics either under the
max-ent or credal semantics is an open problem.

We now describe the first two learning rules, which as far
as we are aware, are novel in the literature. Both rules
provide rules for maximizing the log-likelihood L(O) =∑

O∈O logP(O) of a set of observations O with respect to
the parameters p of the program, which are the probabilities
that annotate ADRs.

3.3.1. FIXED-POINT PARAMETER LEARNING

We start with the fixed-point learning procedure, which can
be used when we have only ADRs (but no NADR).
Proposition 3.1. Let P(X = x) be the probability of a
specific probabilistic component X we wish to learn from
the set of observations O. If the iterated application of the
rule

P(X = x) =
1

|O|
·
∑
O∈O

P(X = x,O)

P(O)
. (2)

converges, then it does so to a critical point of the log-
likelihood function.

The marginal P(X = x,O) can be computed by counting
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the models consistent with both the observation O and X =
x and weighting over the probability of the total choices.

3.3.2. LAGRANGIAN PARAMETER LEARNING

We now derive an update rule that applies also in the pres-
ence of NADRs, and is an alternative to NEURASP’s learn-
ing rule (Yang et al., 2020). To better understand the need
of our alternative parameter learning method, we must first
understand the shortcomings of the NEURASP’s learning
rule. The rule updates parameters by p← p− η∇ρL(O),
where η is a learning rate and the gradient components are:

∂

∂px
L(O) =

1

P(O)

∑
θx

P(θx)
P(X = x)

· N(Iθx |= O)

N(θx)

−
∑

x, x ̸=x

1

P(O)

∑
θx

P(θx)
P(X = x)

· N(Iθx |= O)

N(θx)
.

(3)

The intuition is that, interpretations that are consistent with
O increase the value of the derivative, while interpretations
that are not decrease it.

Note, however, that the sum of the updates over all the
parameters px of a probabilistic component X is only zero
when X is binary, which means that rule (3) can produce
estimates that are outside the feasible set of valid parameters
(i.e., they are not probability distributions). This issue can
be mitigated by either projecting the parameters back to the
feasible set or ensuring that parameter updates lie within the
feasible set, for instance by using a softmax layer. To avoid
this issue, we instead constrain parameters to remain within
the feasible set by employing Lagrange multipliers.
Proposition 3.2. The constrained derivative of the log-
likelihood function with respect to the probability P(X =
x) = px of a probabilistic component X is

∂

∂px
L(O) =(

1− 1

m

)
1

P(O)

∑
θx

P(θx)
P(X = x)

· N(Iθx |= O)

N(θx)

− 1

m

∑
x, x ̸=x

1

P(O)

∑
θx

P(θx)
P(X = x)

· N(Iθx |= O)

N(θx)
.

(4)

where m is the number of possible values X can take.

Interestingly, (4) yields a similar expression to (3), with
the only distinction being the factors 1− 1

m and 1
m . Thus,

when m = 2, the Lagrangian rule is equivalent to halving
the learning rate of NEURASP’s rule. For m > 2, rule (4)
assigns more weight to the probability of interpretations
consistent with the observation, and less weight to its com-
plement. Note that this is more sensible, since the latter
sums over more terms than the former.

The extension of (4) to the neural case is trivial; by applying
the chain rule on the derivative of the log-likelihood with
respect to the output px of the neural component X , we
easily find that the resulting gradient is (4) multiplied by
the derivative of the neural network with respect to network
weights w

∂

∂w
L(O) =

∂L(O)

∂px

∂px(x)

∂w
, (5)

where ∂px(x)
∂w is the standard backward pass in a neural

network.

4. Experiments
In this section, we present two preliminary experiments
showcasing the dPASP system. The first experiment com-
pares the performance of our system against two competi-
tors on the task of parameter learning in image classification.
The second showcases a possible use of the credal semantics
in cautious ensemble classification.

4.1. MNIST Addition

We compare the performance of dPASP to NEURASP,
DEEPPROBLOG and a purely data-driven convolutional
neural network (CNN) on the task of learning addition of
MNIST image digits, a common distant supervision bench-
mark for NPLP (Manhaeve et al., 2021). This is a prelim-
inary experiment, as dPASP is still in early development.
Given two unlabelled images (e.g. and ) of digits,
and the corresponding atom (e.g. sum(9)) as a distant label,
the program must learn to identify the sum of digits.

The dPASP program to perform this task is quite simple and
short if we do not account for the Python code needed for
processing the MNIST data. The program in its entirety can
be found in Appendix B.

#python
def net(): ... # neural network
def mnist_tr(i): ... # train images for i-th digit
def mnist_te(i): ... # test images for i-th digit
def labels(): ... # sum(x) labels
#end.

input(0) ∼ test(@mnist_te(0)), train(@mnist_tr(0)).
input(1) ∼ test(@mnist_te(1)), train(@mnist_tr(1)).

?::digit(X, {0..9}) as @net :- input(X).
sum(Z) :- digit(0, X), digit(1, Y), Z = X+Y.

#semantics maxent.
#learn @labels, lr = 0.001, niters = 5, batch = 1000.

We briefly highlight the fact that the prior know-how needed
to write a program in NEURASP or DEEPPROBLOG can be
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a significant barrier to the widespread use of NPLPs. Not
only is the user required to have a good grasp of Python,
but they must also have a significant understanding of the
deep learning system used by the NPLP. For instance, one
might compare the equivalent programs in NEURASP1 and
DEEPPROBLOG2 to ours in order to understand the steep
learning curve of current NPLPs.

Going back to our preliminary experiment, we follow a sim-
ilar methodology used in NEURASP (Yang et al., 2020) and
DEEPPROBLOG (Manhaeve et al., 2021) for the MNIST
digit addition task. Just like the aforementioned works, we
split the original MNIST dataset in half, taking the first
(resp. second) half as the images of the first (resp. second)
digit; the labels observed by the program are the atoms cor-
responding to the sum of the labels of the two halves. We
use the same learning parameters for dPASP, NEURASP,
DEEPPROBLOG and CNN: a learning rate of 0.001, batch
size of 1000, and the ADAM optimizer for the neural com-
ponents/networks (Kingma & Ba, 2017).

Figure 1 shows a comparison of both the performance in
terms of classification accuracy, as well as training time.
The plot on the left compares the accuracy of programs in
classifying the correct sum of digits, while the plot on the
right shows the digit classification accuracy of the embedded
neural networks in the programs while they learn to classify
the sum of digits. Curve CNN SUM corresponds to the
performance of evaluating a CNN whose input is a single
image consisting of concatenating the two digits and whose
output are the probabilities of the 19 possible two-digit
sum values; CNN DIGIT is the accuracy of a single digit
classification network under the same parameter conditions
as dPASP, NEURASP and DEEPPROBLOG.

Interestingly, both purely data-driven CNN approaches per-
formed poorly compared to NPLPs. In particular, CNN
SUM struggled to even break 50% accuracy, while CNN
DIGIT quickly converged to the 80% mark, below that of
NPLPs. We again stress the fact that these results were
obtained by subjecting all systems to the same learning
parameters.

Comparing dPASP against DEEPPROBLOG and NEURASP,
we find that NEURASP achieves better accuracy faster, al-
though dPASP eventually catches up. This difference be-
tween dPASP and NEURASP might be explained by the
correction factor discussed in Section 3.3.2; the factors in-
volved in the Lagrangian optimization slow down learning,
as the gradient is diminished due to the correction.

Of note is the significant difference in training time for

1https://github.com/azreasoners/NeurASP/blob/
master/examples/mnistAdd/mnistAdd.py

2https://github.com/ML-KULeuven/deepproblog/blob/
master/src/deepproblog/examples/MNIST/addition.py

the four methods, with a surprising gap between dPASP
and CNN. We conjecture that the main factor that explains
this discrepancy is implementation overhead: dPASP is
mostly written in C, with only the grammar parsing part
of the language implemented in Python; in contrast, even
though most of the computation in a pure Python script using
PyTorch or any other deep learning framework is also done
in C, a lot of the boilerplate code runs in Python. Thus, the
careful implementation of highly optimized C code might
make up for the use of logical inference routines in small
problems like MNIST addition.

Given that dPASP is quite faster compared to the other ap-
proaches, we argue that this speed-up is a key advantage
of dPASP (when the number of probabilistic and neural
components is low) and should be exploited. With this in
mind, we lower the batch size of dPASP in order to show
how, by taking advantage of the careful optimized imple-
mentation in dPASP, we might achieve better performance
by slightly increasing training time. The dPASP batch 500
curve in Figure 1 shows the impact of performance in terms
of accuracy when halving the batch size, which causes only
a slight increase (6 seconds) in training time.

4.2. Ensemble Classification

The following program considers pooling probabilistic pre-
dictions of different forecasters without information about
accuracy of each forecaster. The neural predicates f and
g are pre-trained MNIST digit classifiers. Our goal is to
perform a digit classification from a two-classifier ensemble
and compare a precise strategy that gives equal weight to
each of the two classifiers, against a credal strategy that
employs a more cautious approach.

data(x) ∼ test(@mnist_test), train(@mnist_train).
% we have two classifiers/forecasters
class(f). class(g).
!::f(X,{0,. . .,9}) as @net1 :- data(X).
!::g(X,{0,. . .,9}) as @net2 :- data(X).
pred(f,Y) :- f(x,Y). pred(g,Y) :- g(x,Y).
% at least one of them is correct
hit(f); hit(g).
% their correctness is consistent
hit(N2) :- pred(N1,Y), pred(N2,Y), N1 != N2, hit(N1).
miss(N2) :- pred(N1,Y), pred(N2,Y), N1 != N2, miss(N1).
miss(N1); miss(N2) :- pred(N1,Y), pred(N2,Z), Y != Z.
miss(N) :- not hit(N), class(N).
% classification agrees with correct prediction
digit(Y) :- pred(N,Y), hit(N).
% We must pick one of the below semantics.
#semantics credal. % for credal semantics.
#semantics maxent. % for max-ent semantics.
% Query for the digit probabilities.
#query digit(0). ... #query digit(9).

The program encodes the assumption that some of the pre-
dictions made by the forecaster must be correct (hit), and
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CNN SUM 29s
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Figure 1. Sum and digit classification accuracy and training time for dPASP, NEURASP, DEEPPROBLOG and CNN. On the left, accuracy
per iteration of classifying sums; on the right, accuracy of learned networks on classifying digits.

Max-Ent Credal # examples
0 98.36 97.95 980
1 98.14 98.23 1135
2 92.24 92.92 1032
3 93.56 92.57 1010
4 95.92 95.72 982
5 92.48 93.83 892
6 96.13 96.55 958
7 94.06 94.35 1028
8 89.42 89.93 974
9 46.77 47.77 1009

Total 89.73 89.99 10000

Table 1. Accuracy when classifying each MNIST digit under the
max-ent or credal semantics. Best accuracy in bold.

rules outs inconsistent assessments (e.g., two different pre-
dictions being considered both correct).

Using our framework and the previous logic program, we
can perform either precise or credal inference. The precise
inference amounts to simply computing the probability of
each class under the maximum entropy semantics and taking
the most likely one. For the credal semantics, we employ
a max-max decision strategy to classify digits; for each
digit’s lower and an upper probabilities, we select the upper
(max) as the probability of being that digit. Once all upper
probabilities have been selected, we then select the class
with the highest (max) probability.

The accuracy for detecting each digit using the two strate-
gies is shown in Table 1. We can see that a more cautious

ensemble strategy based on the credal semantics can achieve
slightly better performance in terms of accuracy compared
to a simple uniform weighting of components.

5. Conclusion
We have presented dPASP, a new and flexible framework
for neurosymbolic reasoning based on probabilistic logic
programming. The framework extends the answer set pro-
gramming declarative language with probabilistic and neural
facts that allows the specification of uncertain knowledge
and the tight integration of deep perception models (im-
age classifiers, named entity recognizers, etc) with logic
reasoning and constraint solving.

Unlike other similar systems such as NEURASP and DEEP-
PROBLOG, the framework implementation provides several
different semantics for the logic and probabilistic parts, and
a more friendly interface between machine learning compo-
nents (e.g., PyTorch models) and the logic specification.

The system is also relatively fast for learning certain class
of models, as illustrated by preliminary empirical results.
This is due to a careful software implementation, which
we release as free and open source at https://kamel.ime.
usp.br/dpasp.

There is still much to achieve to make the system more
broadly applicable. In particular, more efficient learning
and inference routines need to be devised to scale to larger
domains.
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A. Proofs
Proposition 3.1. Let P(X = x) be the probability of a
specific probabilistic component X we wish to learn from
the set of observations O. If the iterated application of the
rule

P(X = x) =
1

|O|
·
∑
O∈O

P(X = x,O)

P(O)
. (2)

converges, then it does so to a critical point of the log-
likelihood function.

Proof. The log-likelihood function of the program is given
by

L(O) =
∑
O∈O

log
∑
θ∈Θ

P(θ) · N(Iθ |= O)

N(θ)
. (6)

We wish to constrain the probabilities of a probabilistic
component X to

∑
x∈X P(X = x) = 1 and P(X = x) >

0, where X is the set of all possible values X can take.
To do this, instead of directly computing the derivative of
L with respect to P(X = x), we instead compute ∂

∂wx
L,

where wx ∈ R is unconstrained and define

P(X = x) =
ewx∑

x′∈X
ewx′

, (7)

i.e. we optimize with respect to a softmax function instead
of directly working with the probabilities. With this in mind,
the derivative of the log-likelihood function is given by

∂

∂wx
L(O) =∑
O∈O

1

P(O)

∑
θ∈Θ

ewx∑
x′∈X

ewx′
· P(θ−x) ·

N(Iθ |= O)

N(θ)
,

(8)

where P(θ−x) is the probability of the total choice θ exclud-
ing the probability of X , or more formally

P(θ−x) :=
∏

(Y=y)∈θ
Y ̸=X

P(Y = y) =
P(θ)

P(X = x)
. (9)

We may then split (6) into two terms: one where the total
choices Θx agree with the weight wx to be derived, and
another where total choices Θx choose other values X = x,

x ̸= x for X

∂

∂wx
L(O) =

∑
O∈O

1

P(O)
·

(11)︷ ︸︸ ︷ ∂

∂wx

∑
θx∈Θx

ewx∑
x′∈X

ewx′
· P(θ−x) ·

N(Iθx |= O)

N(θx)

+
∂

∂wx

∑
θx∈Θx

ewx∑
x′∈X

ewx′
· P(θ−x) ·

N(Iθx |= O)

N(θx)


︸ ︷︷ ︸

(12)

.

(10)

For the sake of clarity, let us call NO
θ = N(Iθ|=O)

N(θ) . We may
simplify the first term in (10) to

∑
θx∈Θx

ewx ·
∑

x′∈X
ewx′ − ewx · ewx∑

x′∈X
ewx′ ·

∑
x′∈X

ewx′
· P(θ−x) ·NO

θx =

∑
θx∈Θx

 ewx∑
x′∈X

ewx′
−

 ewx′∑
x′∈X

ewx′

2
 · P(θ−x) ·NO

θx =

∑
θx∈Θx

P(θx) ·NO
θx −

∑
θx∈Θx

ewx′∑
x′∈X

ewx′
· P(θx) ·NO

θx =

P(X = x,O)− P(X = x) · P(X = x,O)

(11)

and the second term to

−
∑

θx∈Θx

ewx∑
x′∈X

ewx′
· ewx∑
x′∈X

ewx′
· P(θ−x) ·NO

θx =

−
∑

θx∈Θx

P(X = x) · P(θx) ·NO
θx =

P(X = x) · P(X = x,O).

(12)

Putting (11) and (12) together, we get

∂

∂wx
L(O) =

∑
O∈O

1

P(O)

[
P(X = x,O)−

P(X = x) · P(X = x,O)− P(X = x) · P(X = x,O)
]
=∑

O∈O

1

P(O)

[
P(X = x,O)− P(X = x) · P(O)

]
.

(13)

By setting the derivative of the objective function to zero to
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find the critical point, we finally find that∑
O∈O

1

P(O)

[
P(X = x,O)− P(X = x) · P(O)

]
=

∑
O∈O

(
P(X = x,O)

P(O)
− P(X = x)

)
=

∑
O∈O

P(X = x,O)

P(O)
− |O| · P(X = x) = 0

=⇒ P(X = x) =
1

|O|
∑
O∈O

P(X = x,O)

P(O)
.

(14)

Proposition 3.2. The constrained derivative of the log-
likelihood function with respect to the probability P(X =
x) = px of a probabilistic component X is

∂

∂px
L(O) =(

1− 1

m

)
1

P(O)

∑
θx

P(θx)
P(X = x)

· N(Iθx |= O)

N(θx)

− 1

m

∑
x, x ̸=x

1

P(O)

∑
θx

P(θx)
P(X = x)

· N(Iθx |= O)

N(θx)
.

(4)

where m is the number of possible values X can take.

Proof. Recall that the log-likelihood function is given by

L(O) =
∑
O∈O

log
∑
θ∈Θ

P(θ) · N(Iθ |= O)

N(θ)
, (15)

and that the derivative of the log-likelihood function with
respect to a probabilistic component px = P(X = x) is
given by the expression

∂

∂px
L(O) =

∑
O∈O

1

P(O)

∂

∂px

∑
θ∈Θ

P(θ) · N(Iθ |= O)

N(θ)
.

(16)
We define the objective function as the log-likelihood sub-
ject to the restriction that all probabilities over X sum to
one, that is, let X be the set of all possible values taken
by X , then the new objective function is the log-likelihood
with the added Lagrange multiplier λ

L̂({px}x∈X , λ,O) = L(O)− λ

(∑
x∈X

px − 1

)
. (17)

Optimization must now take place within the new con-
strained log-likelihood L̂. To find the complete expression
of (17), we must find the value of the Lagrange multiplier λ,

which is achievable by noting that the sum of all derivatives
with respect to X must sum to zero

∑
x∈X

∂

∂px
L̂({px}x∈X , λ,O) =

∑
x∈X

(
∂

∂px
L(O)− λ

)
=

∑
x∈X

∂

∂px
L(O)− |X | · λ =⇒ λ =

1

|X |
∑
x∈X

∂

∂px
L(O).

(18)

Let us first revisit (16), as it appears as a term of the gradient
of our new objective function. We may split (16) into two
terms, one where total choices Θx agree with the assignment
X = x, and the other where total choices Θx choose other
values X = x, x ̸= x

(16) =∑
O∈O

1

P(O)

(
∂

∂px

∑
θx∈Θx

P(θx)
N(Iθx |= O)

N(θx)
+

∂

∂px

∑
θx∈Θx

P(θx)
N(Iθx |= O)

N(θx)

)
.

(19)

We now derive each coordinate of the gradient of (17)

∂

∂px
L̂({px}x∈X , λ,O) =

∂

∂px
L(O)− λ =

(19)− 1

|X |
∑
x′∈X

∂

∂px′
L(O).

(20)

To further simplify the above expression, we must further
develop the formula in (19). Within the constraints set by
the Lagrange multiplier, we may then simplify (19) as

(19) =
∑
O∈O

1

P(O)

∑
θx∈Θx

P(θx)
P(X = x)

· N(Iθx |= O)

N(θx)
, (21)

since the second term in (19) cancels out to zero. Note
that we do not need to write px as a function of px (which
would mean that the term would not be equal to zero), as
the Lagrange multiplier is already taking into account this
relationship. Finally,

(18) =
∑
O∈O

1

P(O)

∑
θx∈Θx

P(θx)
P(X = x)

· N(Iθx |= O)

N(θx)
−

1

|X |
∑
x′∈X

∑
O∈O

1

P(O)

∑
θx′∈Θx

P(θx′)

P(X = x′)
·
N(Iθx′ |= O)

N(θx′)

(22)

can be rearranged so that when x′ = x, the first and second
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terms are subtracted, yielding the final form

∂

∂px
L̂(O) =(

1− 1

|X |

)
1

P(O)

∑
θx∈Θx

P(θx)
P(X = x)

· N(Iθx |= O)

N(θx)

− 1

|X |
∑

x, x ̸=x

1

P(O)

∑
θx∈Θx

P(θx)
P(X = x)

· N(Iθx |= O)

N(θx)
;

(23)

call m = |X | and we get the expression in our claim.

B. dPASP MNIST Addition Program
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% Addition of MNIST digits.

#python
import torch
import torchvision

class Net(torch.nn.Module):
def __init__(self):

super().__init__()
self.encoder = torch.nn.Sequential(

torch.nn.Conv2d(1, 6, 5),
torch.nn.MaxPool2d(2, 2),
torch.nn.ReLU(True),
torch.nn.Conv2d(6, 16, 5),
torch.nn.MaxPool2d(2, 2),
torch.nn.ReLU(True)

)
self.classifier = torch.nn.Sequential(

torch.nn.Linear(16 * 4 * 4, 120),
torch.nn.ReLU(),
torch.nn.Linear(120, 84),
torch.nn.ReLU(),
torch.nn.Linear(84, 10),
torch.nn.Softmax(1)

)

def forward(self, x):
x = self.encoder(x)
x = x.view(-1, 16 * 4 * 4)
x = self.classifier(x)
return x

def digit_net(): return Net()

def mnist_data():
train = torchvision.datasets.MNIST(root = "/tmp", train = True, download = True)
test = torchvision.datasets.MNIST(root = "/tmp", train = False, download = True)
return train.data.float().reshape(len(train), 1, 28, 28)/255., train.targets, \

test.data.float().reshape(len(test), 1, 28, 28)/255., test.targets

def normalize(X_R, Y_R, X_T, Y_T, mu, sigma):
return (X_R-mu)/sigma, Y_R, (X_T-mu)/sigma, Y_T

train_X, train_Y, test_X, test_Y = normalize(*mnist_data(), 0.1307, 0.3081)
def pick_slice(data, which):
h = len(data)//2
return slice(h, len(data)) if which else slice(0, h)

def mnist_images_train(which): return train_X[pick_slice(train_X, which)]
def mnist_images_test(which): return test_X[pick_slice(test_X, which)]
def mnist_labels_train():
labels = torch.concatenate((train_Y[:(h := len(train_Y)//2)].reshape(-1, 1),

train_Y[h:].reshape(-1, 1)), axis=1)
return [[f"sum({x.item() + y.item()})"] for x, y in labels]

#end.

input(0) ∼ test(@mnist_images_test(0)), train(@mnist_images_train(0)).
input(1) ∼ test(@mnist_images_test(1)), train(@mnist_images_train(1)).

?::digit(X, {0..9}) as @digit_net with optim = "Adam", lr = 0.001 :- input(X).
sum(Z) :- digit(0, X), digit(1, Y), Z = X + Y.

#semantics maxent.
#learn @mnist_labels_train, lr = 1., niters = 5, alg = "lagrange", batch = 1000.
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