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Abstract. This work presents our initial investigation toward the semantic clas-
sification of objects based on sensory data acquired from 3D laser range and
cameras mounted on a mobile robot. The Markov Random Field framework is a
popular model for such a task, as it uses contextual information to improve over
locally independent classifiers. We have employed a variant of this framework
for which efficient inference can be performed via graph-cut algorithms and dy-
namic programming techniques, the Associative Markov Networks (AMNs). We
report in this paper the basic concepts of the AMN, its learning and inference
algorithms, as well as the feature classifiers that serve to extract meaningful
properties from sensory data. The experiments performed with a publicly avail-
able dataset indicate the value of the framework and give insights about the
next steps toward the goal of empowering a mobile robot to contextually reason
about its environment.

1. Introduction
Perception is very important for autonomous robots operating in unstructured environ-
ments. These robots have to rely on their perception capabilities not only for self lo-
calization and mapping of potentially unknown and changing environments, but also for
reasoning about the state of the tasks. Autonomous robots are also often used in oper-
ations requiring real-time processing capabilities, what further constrain the solutions to
the perception problem, due to the trade-off between processing time and quality of the
reasoning.

In this work, we classify data collected by laser and camera sensors into object
labels that can be used in semantic reasoning systems. A common classification approach
for this classification problem is to learn a feature classifier that assigns a label to each
point, independently of the assignment of its neighbors. However, noisy readings cause
the labels to lose local consistency. Also, as adjacent points in the scans tend to have
similar labels (if the data is used jointly), higher classification accuracy can be achieved
[Munoz et al. 2009b] [Triebel et al. 2006] [Anguelov et al. 2005].

These facts suggest that the classifier to be used must be able to perform joint
classification, and besides to be able to efficiently perform inference. Markov Random
Fields offer such a framework. In this paper, we employ Associative Markov Networks
[Taskar et al. 2004].

This paper is organized as follows: Sec. 2 describes related work. Sec. 3 intro-
duces Associative Markov Networks, while Sec 4 describes the specifics of the developed



laser and image classifier, followed by the experimental results in Sec. 5. Finally, Sec.
6 presents conclusions gathered on this first stage of development and future directions.
The data used on the experiments section is from the Málaga Dataset [Blanco et al. 2009].

2. Related Work

Object recognition from 3D data on robotic applications is an open problem that has
attracted attention of the scientific community, with many different, and often comple-
mentary, approaches. For example, [Newman et al. 2006] used 3D laser scanner and loop
closure detection based on photometric information to perform self-localization and au-
tomatic mapping (SLAM). Several efforts have focused on feature extraction, such as
[Johnson and Hebert 1999], that introduced spin images as rotation invariant features,
and [Vandapel et al. 2004], that applied the expectation-maximization algorithm (EM) to
learn a Gaussian Mixture classifier based on the analysis of saliency features.

[Rottmann et al. 2005] used a boosting algorithm on the vision and laser range
classifier, with a Hidden Markov Model to increase the robustness of the final classifica-
tion, while [Douillard et al. 2008] built maps of objects in which accurate classification
is achieved by exploiting the ability of Conditional Random Fields (CRFs) to represent
spatial correlations and to model the structural information contained in clusters of laser
scans. In [Douillard et al. 2011], the same CRF approach used in their previous work is
applied on a combination of vision and laser data sensors, with interesting results.

[Anguelov et al. 2005] used Markov Random Fields (MRFs) to incorporate
knowledge of neighboring data points. The authors also applied the maximum margin
approach [Taskar et al. 2004] as an alternative to the traditional maximum a posteriori
(MAP) estimation used to learn the Markov network model. The maximum margin al-
gorithm consists of maximizing the margin of confidence in the true label assignment
of predicted classes. It provides improvements in accuracy and allows high-dimensional
feature spaces to be utilized by using the kernel trick, as in support vector machines.

Markov Random Fields are indeed a popular choice for approaching the joint clas-
sification problem. [Triebel et al. 2006] used the same technique as Anguelov et al.’s
work, extending it to adaptively sample points from the training data, thus reducing the
training times and dataset sizes. In [Munoz et al. 2009b], the authors develop algorithms
to deal with Markov Random Fields consisting of high-order cliques in an efficient man-
ner. [Micusik et al. 2012] also employ MRFs for learning and inference but, unlike the
other cited works, their mechanism start by detecting parts of the objects for which they
already have semantically annotations and then compute the likelihood of these parts
forming a given object.

3. Associative Markov Networks

Associative Markov Networks (AMNs) [Taskar et al. 2004] form a sub-class of Markov
Random Fields (MRFs) that can model relational dependencies between classes and for
which efficient inference is possible.

A regular MRF over discrete variables is an undirected graph (V , E) defining the
joint distribution of the variables over its possible values {1, ..., K}, where the nodes V
represent the variables and the edges E their inter-dependencies. For the purposes of the



classification task of this work, let the set of aforementioned variables be separated in two
categories: Y , the vector of data labels we want to estimate, and X , the vector of features
retrieved from the data. Then, a conditional MRF can have its distribution expressed as
follows:

P (y|x) =
∏

c∈C φc(xc, yc)∑
y′
∏

c∈C φc(xc, y′c)
, (1)

where C is the set of cliques of the graph, φc are the clique potentials, xc are the features
and yc the labels of the clique c. The clique potentials are mappings from features and
labels of the clique to a non negative value expressing how well these variables fit together.

Consider now a pairwise version of the Markov Random Field, that is, a network
where all cliques involve only single nodes or a pair of nodes, with edges E = {(ij)|(i <
j)}. In this pairwise MRF, only nodes and edges are associated with potentials ϕ and ψ,
respectively. Eq. (1) then can be arranged as in Eq. (2), where Z is the partition function,
the sum over all possible labellings y, and a computational problem on the learning task
which will need to be dealt with.

P (y|x) = 1

Z

N∏
i=1

ϕ(xi, yi)
∏

(ij)∈E

ψ(xij, yi, yj), (2)

where Z =
∑

y′
∏N

i=1 ϕ(xi, y
′
i)
∏N

(ij)∈E ψ(xij, y
′
i, y

′
j).

The maximum a posteriori (MAP) inference problem in a Markov Random Field
is to find argmaxy P (y|x).

From the pairwise MRF shown in Eq. (2), it is possible to define an Associative
Markov Network with the addition of restrictions encoding the situations where variables
may have the same value. In this work, restrictions are applied only on the edge potential
ψ, as they are meant to act on relations between nodes, penalizing assignments where ad-
jacent nodes have different labels (as in [Triebel et al. 2006] and [Anguelov et al. 2005]).
To achieve that, the constraints wk,l

e = 0 for k 6= l and wk,k
e ≥ 0 are added, resulting in

ψ(xij, k, l) = 1 for k 6= l and ψ(xij, k, k) = λkij , with λkij ≥ 1.

The simplest model to define the ϕ and ψ potentials is the log-linear model, where
weight vectors wk and wk,l are added to the potentials, which, using the same notation of
[Triebel et al. 2006], becomes

logϕ(xi, yi) =
K∑
k=1

(wk
n · xi)yki , (3)

logψ(xij, yi, yj) =
K∑
k=1

(wk,l
e · xij)yki ylj, (4)

where the indicator variable yki is 1 when point pi has label k and 0 otherwise. Then, using
the log-linear model and substituting (3) and (4) in (2) results in

logPw(y|x) =
N∑
i=1

K∑
k=1

(wk
n · xi)yki +

K∑
(ij)∈E

K∑
k=1

(wk,l
e · xij)yki ylj − logZw(x). (5)



To learn the weights w, one can maximize logPw(ŷ|x). However, as the parti-
tion function Z depends on the weights w, the operation would involve performing the
intractable calculation of Z for each w. However, if the maximization is performed
on the margin between the optimal labeling ŷ and any other labeling y, defined by
logPw(ŷ|x) − logPw(y|x), the term Zw(x) on (5) can be canceled, because it does not
depend on the labels y, and the computation will be efficient. This method is referred to
as maximum margin optimization.

The maximum margin problem can be reduced to a quadratic program (QP), as
algebraically described on [Taskar et al. 2004]. Here, for simplicity, we only mention
that this quadratic program has the form:

min
1

2
‖w‖2 + ξ (6)

s.t.

wXŷ −N + ξ ≥
N∑
i=1

αi;

we ≥ 0;

αi −
∑

ij,ji∈E

αk
ij ≥ wk

n · xi − ŷki , ∀i, k;

αk
ij + αk

ji ≥ wk
e · xij, αk

ij, α
k
ji ≥ 0 ∀ij ∈ E, k;

where ξ is a slack variable representing the total energy difference between the optimal
and achieved solutions. The α are regularization terms. For K = 2, the binary clas-
sifier, there is an exact solution capable of producing the optimal solution, whereas for
K > 2, an approximate solution is available, as detailed in [Taskar et al. 2004]. We also
recommend the reading of [Anguelov et al. 2005] for this purpose.

The next section will present the implemented solution, with feature classifiers
connected to the described AMN model.

4. Feature Extraction and Object Detection

Before the Associative Markov Network can detect objects from sensors, it is desirable to
perform dimensionality reduction on the several thousands of data points, and a common
approach to this goal is to add preprocessing and feature extraction stages to the process.
The data preprocessing normally consists of merging the different sensors’ data (an op-
eration called registration), aligning them according to a common reference frame and
properly accounting for the movement of the robot between readings. Once the data is
properly preprocessed, features are extracted by a set of classifiers constructed to detect
discriminative aspects of the data. It should be noted that the classifiers used in this work
for feature extraction were, to a good extent, taken from [Douillard et al. 2011].

Preprocessing of multi-sensor data is not a trivial task, as sensors operate asyn-
chronously and are mounted at different positions. Also, different sensors often have



Figure 1. Sample 3D point cloud resulting from the registration of the two vertical
SICK laser scanners mounted on the vehicle used in [Blanco et al. 2009]. The
solid green line shows the traveled path.

different data rates, as is the case between laser scanners and cameras. When merging
the information, both spatial and temporal alignment need to be performed. In this work,
the use of the Málaga Dataset [Blanco et al. 2009] (sample shown in Fig. 1) alleviated
the computation of registration tasks, as the authors of the dataset provide ground truth,
sensor calibration information and already registered versions of laser scanner data. What
remained to be done was to project the camera images onto the 3D laser scan data, an op-
eration also described in [Blanco et al. 2009], but that, in this work, was performed only
in regions of interest and in a later stage to avoid processing of useless data.

Once data is preprocessed, the feature extraction phase starts. Similarly to
[Douillard et al. 2011], the initial operation consists of generating the elevation map, us-
ing the frame coordinates present in the laser scan data, and classifying what parts repre-
sent the ground of the terrain, an information that can be used to reference the z axis of
the potential objects.

The ground classifier employed is rather straightforward: a grid map with cells
of a fixed size of 2 x 2 m is set (the size was chosen empirically), and the height values
of all cells are computed as the difference between the maximum and minimum height
values of the laser scan points that belong to the same cell. If the cell has an object on
it, it must present this difference larger than a certain value, indicating the height of the
object. In this work, the empirical fixed value of 30 cm was used as the threshold. A
difference larger than the threshold causes the cell to be marked as having a potential
object, otherwise it is marked as empty.

After the ground classifier execution, a clustering algorithm merges the neighbor
cells marked as being potential objects, resulting in an object candidate list. This algo-
rithm also averages the height on all the ground cells surrounding the object clusters listed
and marks the computed value as the z axis reference of that object candidate. As of now,



this algorithm performs a full scan on the grid, and has not been optimized in any form.
A more efficient implementation is certainly needed.

At this stage, the result is data grouped in two broad classes, ground and object
candidates. The remaining classifiers operate on the object candidate class. As this work
is a preliminary investigation, the attempt was to use only some classifiers, cited in the
literature as being significantly discriminative, to better understand them. The normal
practice in the robotics community is to employ several classifiers, some of them very
specific to the problem in question. The use of large number of classifiers is justified by
the need to reach very high classification results, sometimes above 90%.

4.1. Feature Extractors
For the joint classification of laser scanner and image features, a set of classifiers, called
of feature extractors, evaluate geometric as well as visual information present on the data.
These classifiers are listed and briefly described ahead, followed by the description of the
AMN learning and inference methods that use the extracted features.

• Histograms of Oriented Gradients
The HOG descriptor [Dalal and Triggs 2005] is reported to be useful in detecting
pedestrians. It is a shape-based detector that represents the orientation histogram
of the image contained in the data point. It relies on the idea that object appearance
and shape can often be characterized by the distribution of local intensity gradients
or edge directions. Its implementation is based on the creation of cell regions and
creating the histograms of gradient directions or edge orientations within the cell.
In the implemented version of the algorithm, the histogram values are output to
eight angular bins, representing the normalized orientation distribution.
• HSV Color Histogram

This descriptor extracts HSV color information from the data point image projec-
tion, filling eight bins. Therefore, these bins describe the intensity levels of 8 color
tones on the data point.
• Ki Descriptor

The Ki Descriptor, developed by [Douillard 2009], captures the distinctive vertical
profile of the objects. Using the ground level information added during the ground
removal preprocessing as reference, the z axis is discretized into parts of 5 cm
height. Then, horizontal rectangles are fitted to the points which fall into each
level and the length of rectangles’ edges are measured and their values stored.
• Directional Features

Based on the implementation by [Munoz et al. 2009b], this extractor obtains ge-
ometry features present on the laser range data. It estimates the local tangent vt
and normal vn vectors for each point through the principal and smallest eigenvec-
tors of M, respectively, and then computes the sine and cosine of the directions of
vt and vn in relation to the x and z planes, resulting in four values. At last, the con-
fidence level of the features is estimated with the normalization of the values based
on the strength of the extracted directions: {vt, vn} by {σl, σs}/max(σl, σp, σs).

4.2. Pairwise AMN Applied to Object Detection
The core of the implemented object detection algorithm is the pairwise AMN model. As
described in Sec. 3, the model contains two potential functions, the ϕ potential in Eq.



(3) for the nodes and the ψ potential in Eq. (4) for the edges of the graph. These poten-
tial functions are formed by the feature vectors xi and xij , which represent the features
describing node i and edge (i, j), respectively, multiplied by the node and edge weight
vectors wn and we, formed by the concatenation of the different weights associated with
features extracted from data.

For the particular task of object detection on laser range and image data, nodes
of the AMN represent data points and edges represent the similarity relations between
nodes, in this work given by their spatial proximity. A data point is defined as a set of 3D
laser scan points and their associated image projection contained in a cube of 0.4 m3 (We
note here that the simple cubic segmentation employed on this early stage investigation is
inefficient and must be replaced).

The purpose of the AMN in the system is to label data points into the classes car,
tree, pedestrian or background, where background represents everything not in the other
classes. The task is formulated as a supervised learning task: given manually annotated
training sets, the system learns the weight vectors, which are later used to classify new
and unlabeled data points. The learning phase consists of solving the QP program in
(6), a computationally intensive process that took hours on a computer with the Intel i7
processor executing the IBM ILOG CPLEX Studio QP solver.

After the weights are learned, inference on unlabeled data can be performed. This
phase highlights an advantage of the max-margin solution for AMNs. As max-margin
learning does not require computation of marginals, inference can be performed in real-
time, either with a linear program or with a graph-cut algorithm. The implemented system
uses a graph-cut solution proposed by [Boykov and Kolmogorov 2004], the min-cut aug-
mented with iterative alpha-expansion. (from the implementation on the M3N library by
[Munoz et al. 2009a]). This version of the min-cut is guaranteed to find the optimal so-
lution for binary classifiers (K = 2) and also guarantees a factor 2 approximation for
K ≥ 2.

5. Experiments

The dataset used for the experiments of this paper is the Málaga dataset
[Blanco et al. 2009], collected at the Teatinos Campus of the University of Málaga
(Spain), however it is worth to mention the MRPT project 1 and the Robotic 3D Scan
Repository of Osnabruck and Jacobs universities 2, which contain other useful datasets.
The car used was equipped with 3 SICK and 2 Hokuyo laser scanners, 2 Firewire color
cameras mounted as a stereo camera, and precise navigation systems such as three RTK
GPS receivers, used to generate the ground truth. Fig. 2 has a sample image from the
dataset.

In this dataset, there are two data captures, collected while driving an electric golf
car for distances of over 1.5 km on the streets of the university campus, at different dates.
For the experiments, the trajectories of the two data captures were divided in 16 pieces
of equal duration, then 4 pieces were selected as training data and labels were manually
annotated. The annotation procedure consisted of drawing cubic bounding boxes marking

1http://www.mrpt.org/
2http://kos.informatik.uni-osnabrueck.de/3Dscans/



Figure 2. Sample image of the camera mounted on the car - from the Malaga
dataset.

the start and end frames where the labeling should occur, using the log player visualization
screen. Between the start and end frames, a linear interpolation of the bounding box
position accounted for the object’s movement. As this sort of interpolation inevitably
introduces noise, the solution was to perform new markings every few dozens of frames.
Nevertheless, this procedure was of significant help on the task of annotating the large
amount of data.

Having the training set, the learning phase was performed, as described in Sec.
4.2. Using IBM CPLEX solver on a computer with an Intel i7 quad processor and 8GB
RAM memory, the process took something between 2.5 and 3 hours.

With the weight vectors adjusted on the learning phase, we proceeded to the core
of the experiment, the inference of the unlabeled data in the remaining 12 pieces of the
datasets. Each of the dataset pieces was played, and data points of 0.4 m3 cubic size
were retrieved from it, using a simple 3D grid algorithm. As mentioned earlier, should be
noted that the grid algorithm is inefficient, taking almost 1 second for each laser scan to be
processed. As existing literature has several examples of algorithms suited for real-time,
for now we disregarded the performance bottleneck caused by this algorithm. We plan to
replace it, though, in future work.

With the data points extracted, the min-cut with alpha expansion algorithm was
performed, using 3-fold cross validation. Fig. 3 shows precision and recall values result-
ing from the experiment. The lower detection rate for the class pedestrian is believed to
be caused by the small number of training examples found, as the datasets do not contain
many instances of pedestrians captured.

Overall, the results are positive for an initial investigation, although state-of-the art
research indicates detection rates bordering 90%. Some reasons for the lower performance
are the set of feature extractor classifiers used, selected from intuition, and the small
number of feature extractors when compared to other existing works.



Figure 3. Precision and Recall results of the classification. 3-fold cross-
validation, averaged results.

6. Conclusions and Future Works
This initial investigation indicated that applications of Markov Random Fields to detection
and segmentation of complex objects present a number of attractive theoretical and prac-
tical properties, encouraging the continuation of the research toward the goal of reasoning
on meaningful information taken from sensors of a mobile robot. The investigation also
suggests that diverse, uncorrelated, classifiers tend to complement each other, achieving
good results when applied together.

The results obtained with the simple set of feature extractors utilized show good
results, what serves as motivation to investigate the accuracy of the classifiers found in
the literature. Better understanding of the capabilities and complementarity between clas-
sifiers should allow us to reach higher performance levels, closer to the state-of-the-art.

During this work, it became clear that the object detection problem on mo-
bile robotic platforms is still open and has many ramifications to be explored as future
work. For instance, on the algorithmic efficiency/tractability issue, [Munoz et al. 2009a]
present important improvements on the learning and inference algorithms, including ef-
ficient solution for networks with high-order cliques. On another avenue of research,
[Teichman et al. 2011] innovate by tracking objects and exploring the additional tempo-
ral information rather than working on snapshots of data.

Finally, very interesting publicly available datasets were recently released. Among
them, the MIT DARPA Urban Challenge dataset [Huang et al. 2010] and the Stanford
Track Collection [Teichman et al. 2011]. In future work we intend to explore the high
quality data these datasets provide.
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