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Abstract. Graphical models that represent uncertainty through sets of proba-
bility measures are often referred to as credal networks. Polynomial-time exact
inference methods are available only for polytree-structured binary credal net-
works. In this work, we approximate potentially intractable inferences in multi-
connected binary networks by tractable inferences in polytree-structures. We
propose a novel set-based structural variational inference method - the SV2U
algorithm. The SV2U algorithm is the first method that produces approximate
inferences in large binary credal networks with theoretical solid convergence
analysis and offers a promising way to handle continuous variables in credal
networks.

1. Introduction

Graphical models associated with probabilities find widespread use in artificial intelli-
gence, to represent and think about uncertainty. In this context, Bayesian networks are
the most popular tool [Pearl, 1988]. In situations where beliefs cannot be cast as sharp
numeric values (that is, we have imprecise and incomplete beliefs), sets of probabil-
ity are a suitable representation. Graphical models that represent uncertainty through
sets of probability measures are often referred to ascredal networks[Cozman, 2000a,
Fagiuoli and Zaffalon, 1998]. A credal network could be informally defined as arepre-
sentation for a set of Bayesian networks over a fixed set of variables.

In a credal network, a collection of sets of probability measures is associated
with a directed acyclic graph.Inferencein a credal network usually means the com-
putation of lower and upper bounds for the conditional probability of an event. The
complexity of inference in credal networks is generally high (even for tree-like networks
[da Rocha and Cozman, 2002]), and approximate inference seems to be a natural solu-
tion for large networks [Cano and Moral, 2002]. Polynomial-time exact inference meth-
ods are available only for polytree-structured binary credal networks (the 2U algorithm
[Fagiuoli and Zaffalon, 1998]).

The main contribution of this work is theStructured Variational-2Ual-
gorithm (SV2U). The SV2U algorithm mixes theset-based variationalapprox-
imations [Ide and Cozman, 2005] with polynomial-time exact inference methods
[Fagiuoli and Zaffalon, 1998], approximating potentially intractable inferences in multi-
connected networks by tractable inferences in polytree-structures. We have recently in-



troduced set-based variational methods [Ide and Cozman, 2005] and in this paper we pro-
pose the novel SV2U algorithm that implements such methods. The SV2U algorithm
is the first method that produces approximate inferences in large binary credal networks
with theoretical solid convergence analysis and offers a promising way to handle contin-
uous variables in credal networks. Binary credal networks are a promising model to be
applied in propositional and relational Bayesian networks associated with imprecise and
qualitative probabilistic assessments [Cozman et al., 2004].

In Section 2. and Section 3. we give a brief review of credal networks, variational
methods and set-based approaches. The SV2U algorithm and example results are pre-
sented in Section 4.

2. Credal Networks

In this section we present a few facts on credal networks (and their basic elements,credal
sets[Levi, 1980]); a more detailed discussion can be found elsewhere [Cozman, 2000a,
Cozman, 2004, Fagiuoli and Zaffalon, 1998].

A credal set for variableX is denoted byK(X); we assume that every vari-
able is categorical and that every credal set is convex, closed, and has a finite num-
ber of vertices. Given a credal setK(X) and a functionf(X), the lower and upper
expectations off(X) are defined respectively asE[f(X)] = minp(X)∈K(X) E[p] f(X)
and E[f(X)] = maxp(X)∈K(X) E[p] f(X) (hereE[p] f(X) indicates standard expec-
tation). The lower probability and theupper probabilityof eventE are defined re-
spectively asP (E) = minp(X)∈K(X) P (E) and P (E) = maxp(X)∈K(X) P (E). A con-
ditional credal setis a set of conditional distributions, obtained by applying Bayes
rule to each distribution in a credal set of joint distributions [Walley, 1991]. Lower
and upper conditional probabilities for a variableX given an eventE are defined
accordingly: P (X = x|E) = minp(X)∈K(X)(p(X = x,E) /P (E)), P (X = x|E) =
maxp(X)∈K(X)(p(X = x,E) /P (E)).

Credal networksare directed acyclic graphs associated with credal sets. Aninfer-
enceis the computation of lower and upper probabilities for an event{Xq = xq} given
evidenceD — hereD indicates a set of observed variables. Those variables that do not
belong toD are calledhiddenvariables and are denoted byH. A credal network is de-
fined by localseparately specifiedcredal sets{K(X|Y = y)} when these credal sets are
not related for different values of the conditioning variablesY . Thestrong extensionof
the network is the convex hull of the set containing all joint distributions that factorize
as

∏
i P (Xi|pa(Xi)), where each conditional distributionP (Xi|pa(Xi) = πk) is selected

from the local credal setK(Xi|pa(Xi) = πk) [Cozman, 2000b]. A strong extension de-
fines a joint credal set where each vertex is a possible combination of conditional distribu-
tions (each vertex of this set can be represented by a Bayesian network). There is a vertex
that minimizes and a vertex that maximizesP (X = x|E) [Fagiuoli and Zaffalon, 1998];
thus an inference in a strong extension can be viewed as an optimization problem over the
set of potential vertices.

Exact inference in general credal networks displays high complexity. Appar-
ently the only tractable situation is represented by polytree-shaped networks with bi-
nary variables [Fagiuoli and Zaffalon, 1998]. Other than this, even inference in polytree-



shaped credal networks is a NP-complete problem [da Rocha and Cozman, 2002]. The
most promising methods for exact inference are based on multilinear programming
[de Campos and Cozman, 2004], but even these methods face difficulties for networks of
medium size (say twenty to twenty five reasonably connected nodes). Due to the complex-
ity of exact inference, several algorithms for approximate inference have been developed
[Cano and Moral, 2002, da Rocha et al., 2003, Ide and Cozman, 2004, Tessem, 1992].

3. Set-based Variational Methods

In Section 3.1., we give a brief review of variational methods, focusing on those methods
that are applied to Bayesian networks. We follow the terminology used in previous intro-
ductory material [Jaakkola, 2000, Winn, 2003]. In Section 3.2., the set-based variational
method is presented.

3.1. Basic of variational methods

Modern variational methods are popular in various fields such as control theory, optimiza-
tion, statistics, economics and machine learning; recently several variational approaches
have been successfully used in inference and estimation of densely connected graphical
probability models [Saul et al., 1996, Saul and Jordan, 1996].

Suppose that we have a directed graph associated with a joint distributionP (X),
whereX represents the set of variables. We want to approximateP (H|D) by a dis-
tribution Q(H), whereH is the set of hidden variables andD is the evidence — thus
X = {H, D}. We choose theKullback-Leibler(KL) divergence as a dissimilarity mea-
sure betweenQ(H) andP (H|D):

KL(Q||P ) =
∑

H

Q(H) ln
Q(H)

P (H|D)

=
∑

H

Q(H) ln Q(H) + ln P (D)−∑

H

Q(H) ln P (H, D) (1)

The first term of the last expression is thenegative entropy[Jaakkola, 2000]. The
second termln P (D) is constant with respect toQ(H). The last term is the expectation
of ln P (H, D) with respect toQ(H). From Equation (1), the divergence is null (KL = 0)
whenQ(H) = P (H, D). The goal here is to find a good approximationQ(H) toP (H|D)
by minimizingKL(Q||P ).

An approximate model that has been successfully used in variational methods in
many areas is the fully factorized distribution; this is often called themean fieldapprox-
imation [Parisi, 1988]. The idea is that the global behavior of distributions should be
approximated by a set of independent variables [Saul et al., 1996]. Using the fully factor-
ized distribution, we can minimize the divergenceKL in a iterative and computationally
efficient manner. Consider then a fully factorized distributionQ(H) =

∏
i Qi(Hi). Sub-

stituting in Equation (1) we obtain:

KL(Q||P ) =
∑

H

∏

i

Qi(Hi) ln(
∏

i

Qi(Hi))−
∑

H

∏

i

Qi(Hi) ln P (H, D) + ln P (D)

= −∑

i

H(Qi) + ln P (D)−∑

H

∏

i

Qi(Hi) ln P (H,D),



whereH represents the entropy. The idea is to minimizeKL with respect toQj(Hj) by
assuming fixed termsQi(Hi), i 6= j. Then we obtain the expression ofQ∗

j(Hj = hj) that
partially minimizesKL(Q||P ):

Q∗
j(Hj = hj) = kλ exp


 ∑

Hi6=j

∏

i

Qi(Hi) ln P (H, D)


 . (2)

The normalization constant is calculated computing Equation (2) for all values of
the variableHj: kλ =

∑
hj∈Hj

Q∗
j(hj). This is the global minimum ofKL(Q||P ) with

respect toQj(Hj). Once we update variableHj, we must choose another variableHi to be
updated, and so on for all hidden variablesH. This process minimizes theKL divergence
iteratively.

Consider the computational cost of the updating Equation (2). The key point here
is that this updating expression can be simplified so that only “local” computations are
needed for each hidden variableHj (“local” in the sense that they only refer to terms that
are “close” in the graph underlying the network) [Winn, 2003]. Taking into account that
P (H, D) can be written in terms of conditional distributionsP (Xk|pak), Equation (2) can
be reformulated as:

Q∗
j(Hj = hj) = kλ exp(

∑

Hi∈{paj}

∏

i

Qi(Hi) ln P (Hj|paj)

+
∑

k∈chj

∑

Hi∈{Xk,pak}

∏

i

Qi(Hi) ln P (Xk|pak)), (3)

where{paj} is the set of parent nodes ofHj and{chj} is the set of children nodes of
Hj. This means that we only have to make “local” computations involving conditional
distributions for variables in the Markov blanket ofHj (the Markov blanket of variable
Hj is the set of nodes containing the parents ofHj, the children ofHj, and the parents of
children ofHj).

3.2. Set-based variational methods

In this section we review the concept of ”set-based” variational methods, that has been
presented in [Ide and Cozman, 2005]. The goal of theset-basedvariational approach is
to approximate the original joint credal set by a set of probability intervalsIQ(Hj =
hj) = [Q(Hj = hj), Q(Hj = hj)] for each value of each variableHj. These intervals are
directly related to the lower and upper probabilitiesP (Hj = hj|E) andP (Hj = hj|E).
The set-based approach mimics the local computations in the “standard” mean field meth-
ods, but the local computations are replaced by interval computations — the result is a
process that iteratively computes probability intervals for all variablesHj. Consider the
updating Equation (3), we get lower boundsQ(Hj = hj) (upper boundsQ(Hj = hj) are
analogous):

Q∗
j
(Hj = hj) ∝ min

∑

Hi∈{paj}

∏

i

Qi(Hi) ln P (Hj|paj)

+
∑

k∈chj

∑

Hi∈{Xk,pak}

∏

i

Qi(Hi) ln P (Xk|pak), (4)



where:

Qi(Hi) ∈ IQ(Hi = hi),

P (Hj|paj = πj) ∈ KP (Hj|paj = πj),

P (Xk|pak = πk) ∈ KP (Xk/pak = πk).

Unfortunately, the exact computation of the intervalsIQ(Hj = hj) leads us to
a global combinatorial search, because these intervals are all interrelated. A vertex that
attains the minimum or maximum ofQ(Hj = hj) is not necessarily the same vertex that
attains the minimum or maximum ofQ(Hi = hi) for i 6= j; enforcing such relationships
leads us to combinatorial explosion.

We now consider an approximate solution that circumvents the complexity prob-
lem just discussed. In fact, we introduce a second approximation on top of the variational
one. The idea is to make intervalsIQ(Hj = hj) unrelated to each other, thus reducing the
computation of an approximate interval to a truly “local” combinatorial problem. To do
this, we updateIQ(Hj = hj) by Equations (4) , using the outer bounds ofIQ(Hi = hi)
for i 6= j. That is, we use approximate valuesIQ(Hi = hi), computed for those vertices
that Q(Hj = hj) is maximum and minimum, instead of vertices whereQ(Hi = hi) is
maximum or minimum. We call this approximation anOuter Bound Step.

The outer bound step is depicted in Figure 1. Suppose that we are approximating
IP (H0, H1) by IQ(H0, H1), whereH0 andH1 are hidden variables, using a variational
method. To update the intervalIQ(H1 = h1), we need the values ofI∗Q(H0 = h0) for those
vertices whereIQ(H1 = h1) are attained (notice thatIQ(H1 = h1) is an approximation
of IP (H1 = h1|E), and so on.). For variableH0 we just consider those vertices that
lead to the extreme values ofIQ(H0 = h0) — we take these values as an outer bound
approximation for intervalI∗Q(H0 = h0). Note that such a round of approximations
happens in each iteration of the mean field scheme. The method can be summarized as
follows:

• Mean field approximation. We approximate the original strong extension
KP (X) by an approximate credal setKQ(X) that is the strong extension of local
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Figure 1: The outer bound step. Interval I∗Q(H0 = h0) is approximated by an outer
bound interval IQ(H0 = h0).



probability intervalsIQ(Hj = hj) = [Q(Hj = hj), Q(Hj = hj)] for each value
of Q(Hj). HereQ(Hj = hj) approximates the minimum value ofP (Hj = hj|E)

andQ(Hj = hj) approximates the maximum value. This approximation moves
us to a local computation.

• Outer bound step. We update the intervalIQ(Hj = hj) by Equations (4), using
the outer boundsIQ(Hi = hi), for i 6= j. This approximation step is crucial to
keep the local computation property sought by the variational approximation.

We transform the global combinatorial problem into a local one, because: (1)
The mean field approximation is based on a “local” updating mechanism (Equation 3),
restricted to the Markov Blanket; (2) The outer bound step makes each updating step
combinatorially unrelated to all others, thus guaranteeing locality of computation.

4. Structured Variational-2U Algorithm (SV2U)

The naive variational mean field approach described previously is computationally at-
tractive, but it is often unable to yield sufficiently accurate results [Jaakkola, 2000, page
16]. A natural idea to improve over the naive mean field method is to combine it with
exact calculations — for example, to approximate the original intractable network with
tractable substructures such as trees and chains [Saul and Jordan, 1996]. We introduce a
Structured Variational-2U Algorithm(SV2U) that uses the set-based variational approach
to approximate a multi-connected binary credal network by a polytree-structure network
and run the exact interval propagation 2U algorithm. Note that for binary variables the
intervalsIQ = [plow, phigh] (of Equation (4) ) corresponds to the local credal setsKQ.

Consider the idea ofstructuredvariational method [Jaakkola, 2000, page 18], to
apply the mean field approach, taking each factorQi over a cluster of variablesci =
{Xi, pai}, so as to have the approximate joint distribution:Q(X) =

∏
i Qi(ci). We have

a new updating equation for the clustercj = {Xj, paj} [Winn, 2003, page 104]:

Q∗
j(Xj|paj) ∝ ∑

k∈GXj

∑

l∈{X/cj}

∏

l

Ql(Xl) ln P (Xk|pak)

− ∑

i∈CXj

∑

l∈{X/cj}

∏

l

Ql(Xl) ln Qi(Xi|pai), (5)

whereGXj
represents the set of clustersgk = {Xk, pak} that depend onXj in the original

network andCXj
is the set of clustersci that depend onXj in the approximate network, ex-

cludingcj itself (in Bayesian networks, these sets of clusters are Markov blankets). Note
that the expectation in Equation (5),E[

∑
k∈GXj

ln P (Xk|pak)−∑
i∈CXj

ln Qi(Xi|pai)], is

computed with respect to the approximated structureQ(X) =
∏

i Qi(ci), i 6= j. Also
note that we need to update just those clusterscj that don’t belong to the original net-
work cluster setG; that is, we have to update just those conditional distributions that are
modified.

We use this structured variational approach described before and develop it for
credal networks. Apply the set-based approach to the Equation (5), and obtain the updat-
ing expressions analogous to Equation (4):



Q∗
j
(Xj|paj) ∝ min

∑

k∈GXj

∑

l∈{X/cj}

∏

l

Ql(Xl|pal) ln P (Xk|pak)

− ∑

i∈CXj

∑

l∈{X/cj}

∏

l

Ql(Xl|pal) ln Qi(Xi|pai), (6)

Q
∗
j(Xj|paj) ∝ max

∑

k∈GXj

∑

l∈{X/cj}

∏

l

Ql(Xl|pal) ln P (Xk|pak)

− ∑

i∈CXj

∑

l∈{X/cj}

∏

l

Ql(Xl|pal) ln Qi(Xi|pai), (7)

where:

Ql(Xl|pal = πl) ∈ KQ(Xl = xl|pal = πl),

Qi(Xi|pai = πi) ∈ KQ(Xi = xi|pai = πi),

P (Xk|pak = πk) ∈ KP (Xk/pak = πk).

Structured Variational 2U: SV2U
Input: Multi-connected binary credal networkN .
Output: Approximations for lower/upper probabilities of some variableXj.

01. Find acutset of the original networkN ,with joint distributionP (X) =
∏

k Pk(gk),
to obtain an approximated polytree structureNp.
02. Find the set of clustersG = {gk} of networkN andC = {ci} of the networkNp.
03. Initialize for those clustersci that don’t belong toG, cj, KQ(Xj = xj|paj = πj) =
[0.5, 0.5].
03. For those clusterscj repeat until convergence:
04. For all possible parent configurations of clustercj, {paj = πj}:
05. ComputeQ∗(Xj = xj|paj = πj) andQ

∗
(Xj = xj|paj = πj) for each

value ofXj and normalize these values, from Equations (6) and (7).
06. Keep the minimum and maximum values ofQ∗(Xj = xj|paj = πj) and

updateKQ(Xj = xj|paj = πj) .
07. Run the 2U algorithm in the polytree-structure associated to the joint distribution
Q(X) =

∏
k Pk(gk)×∏

j Qj(cj), wherek is the index of those clusters that belong to
both cluster setsG andQj(cj) ∈ KQ(Xj = xj|paj = πj); and keep the minimum and
maximum values of probabilities of some variableXj.

Figure 2: SV2U algorithm description.

The proposed set-based structured variational algorithm (SV2U) is described in
Figure 2. Suppose that we have a multi-connected networkN with joint distribution
P (X) =

∏
k Pk(gk). The idea is to approximate this with a polytree-structure network

Np, finding aloopy cutset[Pearl, 1988], with distributionQ(X) =
∏

i Qi(ci) (Line 01).
Define the set of clustersG = {gk} of networkN andC = {ci} of the networkNp. Find
the approximate conditional distributions of those clustersci that doesn’t belong to the
setG. Define this set ascj. This means that we have just to compute the distributions



Q(cj), what is done iteratively, like as described in Section 3.1., until get convergence
of these distributions (Lines 03-06). During this iteration, we compute theKQ(Xj =
xj|paj = πj) ∈ [Q∗(Xj = xj|paj = πj), Q

∗
(Xj = xj|paj = πj)]. It means that

at the end we have a polytree-structure distributionQ(X) =
∏

k Pk(gk) × ∏
j Qj(cj),

wherek is the index of those clusters that belong to both cluster setsG and C; and
Qj(cj) ∈ KQ(Xj = xj|paj = πj). With this polytree-structure distribution we compute
the desired approximations for lower/upper probabilities, using the exact inference engine
2U (Line 07).

To illustrate and show results of SV2U algorithm, consider an example. ThePyra-
mid network (Figure 3) is a multilayered graph associated with 28 binary variables (as-
sume values ”0” or ”1”) and local connections among layers. [Murphy et al., 1999]. We
associate each variable with a binary credal set, a convex hull of the set containing all joint
distributions that factorize as

∏
i P (Xi|pa(Xi)), i = {1, ..., 28}, where each conditional

distributionP (Xi|pa(Xi) = πk) is selected from the local credal setKP (Xi|pa(Xi) =
πk) = [plow, phigh]. One possible cutset is formed by the arcs (1,6), (2,6), (2,8), (3,8),
(3,10), (4,10) and (4,12). Removing these arcs we get a polytree associated to a credal set
that differs from the original network for local credal sets of variablesX6, X8, X10 and
X12. It means that local credal setsKP (X6|X1, X2), KP (X8|X2, X3),KP (X10|X3, X4)
andKP (X12|X4) are approximated byKQ(Xj), j = {6, 8, 10, 12}. Assuming that there
are no evidence nodes, the expressions for updating Equations (6) and (7) are:

Q∗(X6) = kλ exp[
∑

X1,X2

P (X1)P (X2) ln P (X6|X1, X2)],

Q∗(X8) = kλ exp[
∑

X2,X3

P (X2)P (X3) ln P (X8|X2, X3)],

Q∗(X10) = kλ exp[
∑

X3,X4

P (X3)P (X4) ln P (X10|X3, X4)],

Q∗(X12) = kλ exp[
∑

X4

P (X4) ln P (X12|X4)].

From these equations we get approximated credal setsKQ(X6 = 0) =
[0.099, 0.346], KQ(X8 = 0) = [0.203, 0.664], KQ(X10 = 0) = [0.278, 0.753] and
KQ(X12 = 0) = [0.532, 0.810]. Running 2U algorithm in this polytree and comput-
ing the lower/upper probabilities for all variables, we get a mean square error (MSE),
between exact probabilities and those obtained by SV2U, of2%. Results can be seen in
Figure 4.

Figure 3: Pyramid network, multilayered graph associated with binary variables,
used to test the SV2U algorithm.
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Figure 4: Results of the SV2U algorithm in the Pyramid network. Lower/upper
probabilities are computed exactly and approximately, and MSE=2 % is
obtained.

5. Summary and Conclusions
In this paper we have introduced a structured variational approach to inference in binary
credal networks. We proposed the SV2U algorithm, that make uses of a set-based struc-
tured variational method and the 2U exact interval propagation algorithm. The paper is
an initial step in the construction of general variational approximation methods for credal
networks. The next step is the implementation of the SV2U algorithm for general struc-
tures so as to study their empirical behavior, what requires the development of efficient
methods for computing the expectation in Equations (6) and (7). From experiments in
Pyramid network , the SV2U algorithm produces the result of MSE=2%, relatively worst
than MSE=1.2% of the L2U algorithm [Ide and Cozman, 2004], but with solid conver-
gence guarantees. This simple experiment shows us how the SV2U algorithm can provide
good results.

Given the generality and flexibility of variational methods, the set-based methods
proposed in this paper seem to be a promising approach to credal networks. Models that
contain continuous variables and local credal sets defined by infinitely many constraints
are not handled by most existing algorithms; they can in principle be dealt with using
variational principles. Hopefully this paper will serve as a initial step in a fruitful avenue
of research.
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