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Abstract

Graph-theoretical representations for sets of probabil-
ity measures (credal networks) generally display high
complexity, and approximate inference seems to be a
natural solution for large networks. This paper intro-
duces a variational approach to approximate inference
in credal networks: we show how to formulate mean
field approximations using naive (fully factorized) and
structured (tree-like) schemes. We discuss the compu-
tational advantages of the variational approach, and
present examples that illustrate the mechanics of the
proposal.
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1 Introduction

Graphical models that represent uncertainty through
sets of probability measures are often referred to as
credal networks [2, 8]. In a credal network, a col-
lection of sets of probability measures is associated
with a directed acyclic graph. Inference in a credal
network usually means the computation of lower and
upper bounds for the conditional probability of an
event. The complexity of inference in credal networks
is generally high (even for tree-like networks [5]), and
approximate inference seems to be a natural solution
for large networks [1].

In this work we present a new approach for approx-
imate inference in credal networks — we propose
a variational approach. Modern variational meth-
ods are popular in various fields such as control the-
ory, optimization, statistics, economics and machine
learning; recently several variational approaches have
been successfully used for inference and estimation
of densely connected graphical probability models
[15, 16]. To the best of our knowledge, we are the
first to explore an explicit variational formulation for
inference in credal networks. There has been previ-

ous work on approximations that minimize Kullback-
Leibler distance, such as the work by Cano and Moral
[1]; these efforts can be viewed as special cases (where
a particular structure is used in the approximation)
of a broader variational formulation.

Variational methods are rather general, as they can
be used to handle categorical and continuous distrib-
utions. In this paper we pursue a somewhat restricted
formulation, as a first step in understanding the flex-
ibility of the approach.

In Sections 2 and 3 we give a brief review of credal
networks and variational methods. Our main contri-
bution, a variational approach for inference in credal
networks, is presented in Section 4. Implementation
details and some empirical results are described in
Sections 5 and 6.

2 Credal Networks

In this section we present a few facts on credal net-
works (and their basic elements, credal sets [11]);
a more detailed discussion can be found elsewhere
[2, 4, 8].

A credal set for variable X is denoted by K(X); we
assume that every variable is categorical and that
every credal set is convex, closed, and has a fi-
nite number of vertices. Given a credal set K(X)
and a function f(X), the lower and upper expecta-
tions of f(X) are defined respectively as E[f(X)] =
minp(X)∈K(X) Ep[f(X)] and E[f(X)] = maxp(X)∈K(X)

Ep[f(X)] (here Ep[f(X)] indicates standard expec-
tation). The lower probability and the upper proba-
bility of event E are defined respectively as P (E) =
minp(X)∈K(X) P (E) and P (E) = maxp(X)∈K(X) P (E).
A conditional credal set is a set of conditional dis-
tributions, obtained by applying Bayes rule to each
distribution in a credal set of joint distributions [18].
Lower and upper conditional probabilities for a vari-
able X given an event E are defined accordingly:



P (X = x|E) = minp(X)∈K(X)(P (X = x,E) /P (E)),
P (X = x|E) = maxp(X)∈K(X)(P (X = x, E) /P (E)).

Credal networks are directed acyclic graphs associated
with credal sets. An inference is the computation of
lower and upper probabilities for an event {Xq = xq}
given evidence D — here D indicates a set of ob-
served variables. Those variables that do not belong
to D are called hidden variables and are denoted by H.
A credal network is defined by local separately speci-
fied credal sets {K(X|Y = y)} when these credal sets
are not related for different values of the conditioning
variables Y . The strong extension of the network is
the convex hull of the set containing all joint distrib-
utions that factorize as

∏
i p(Xi|pa(Xi)), where each

conditional distribution p(Xi|pa(Xi) = πk) is selected
from the local credal set K(Xi|pa(Xi) = πk) [3]. A
strong extension defines a joint credal set where each
vertex is a possible combination of conditional distri-
butions (each vertex of this set can be represented by
a Bayesian network). There is a vertex that mini-
mizes and a vertex that maximizes P (X = x|E) [8];
thus an inference in a strong extension can be viewed
as an optimization problem over the set of potential
vertices.

Exact inference in general credal networks displays
high complexity. Apparently the only tractable situa-
tion is represented by polytree-shaped networks with
binary variables [8]. Other than this, even inference
in polytree-shaped credal networks is a NP-complete
problem [5]. The most promising methods for exact
inference are based on multilinear programming [7],
but even these methods face difficulties for networks
of medium size (say twenty to twenty five reasonably
connected nodes). Due to the complexity of exact in-
ference, several algorithms for approximate inference
have been developed [1, 6, 9, 17].

3 Variational Methods and Mean
Field Approximations

In this section we give a brief review of variational
methods, focusing on those methods that are applied
to Bayesian networks. We follow the terminology used
in previous introductory material [10, 19].

3.1 Basic notions

Suppose that we have a directed graph associated with
a joint distribution P (X), where X represents the set
of variables. We want to approximate P (H|D) by
a distribution Q(H), where H is the set of hidden
variables and D is the evidence — thus X = {H, D}.
We choose the Kullback-Leibler (KL) divergence as a

dissimilarity measure between P (H|D) and Q(H):

KL(Q||P ) =
∑

H

Q(H) ln
Q(H)

P (H|D)

=
∑

H

Q(H) ln
Q(H)

P (H,D)
+ ln P (D)

=
∑

H

Q(H) ln Q(H) + ln P (D)

−
∑

H

Q(H) ln P (H,D) (1)

The first term of the last expression is the negative en-
tropy [10]. The second term ln P (D) is constant with
respect to Q(H). The last term is the expectation
of P (H,D) with respect to Q(H). From Equation
(1), the divergence is null (KL = 0) when Q(H) =
P (H|D). The goal here is to find a good approxima-
tion Q(H) to P (H|D) by minimizing KL(Q||P ).

3.2 The naive mean field approximation

An approximate model that has been successfully
used in variational methods in many areas is the fully
factorized distribution; this is often called the mean
field approximation [13]. The idea is that the global
behavior of distributions should be approximated by a
set of independent variables [15]. Using the fully fac-
torized distribution, we can minimize the divergence
KL in an iterative and computationally efficient man-
ner.

Consider then a fully factorized distribution Q(H) =∏
i Qi(Hi). Substituting in Equation (1) we obtain:

KL(Q||P ) =
∑

H

∏

i

Qi(Hi) ln(
∏

i

Qi(Hi))

−
∑

H

∏

i

Qi(Hi) ln P (H,D) + ln P (D)

=
∑

i

∑

Hi

Qi(Hi) ln Q(Hi)

−
∑

H

∏

i

Qi(Hi) ln P (H,D) + ln P (D)

= −
∑

i

H(Qi) + ln P (D)

−
∑

H

∏

i

Qi(Hi) ln P (H,D), (2)

where H represents the entropy. The idea is to min-
imize KL with respect to Qj(Hj) by assuming fixed
terms Qi(Hi), i 6= j. This is done by first separating
out the Equation (2) in terms of Qj(Hj):

KL(Q||P ) = −H(Qj)−
∑

i6=j

H(Qi)



−
∑

Hj

Qj(Hj)
∑

Hi 6=j

∏

i

Qi(Hi) ln P (H,D) + lnP (D),

and differentiating this expression with respect to
Qj(Hj). Note that we must take into account the
normalization constraint

∑
hj∈Hj

Q(hj) = 1, where
hj is a value of Hj . This is done by introducing the
Lagrange parameter λ and then solving the equation:

∂

∂Qj(hj)
[KL(Q||P )− λ(

∑

hj∈Hj

Q(hj)− 1)] = 0. (3)

Then we obtain the expression of Q∗
j (hj) that par-

tially minimizes KL(Q||P ):

ln Q∗j (hj) =
∑

Hi 6=j

∏

i

Qi(Hi) ln P (H, D) + λ− 1. (4)

The normalization constant kλ = exp(1− λ)−1 is cal-
culated computing Equation (4) for all values of the
variable Hj :

kλ =
∑

hj∈Hj

Q∗j (hj).

Equation (4) is the unique solution of Expression (3).
Hence this is the global minimum of KL(Q||P ) with
respect to Qj(Hj). Once we update variable Hj , we
must choose another variable Hi to be updated, and
so on for all hidden variables H. This process mini-
mizes the KL divergence iteratively.

3.3 The importance of local computation

Consider the computational cost of the updating
Equation (4). The key point here is that this updat-
ing expression can be simplified so that only “local”
computations are needed for each hidden variable Hj

(“local” in the sense that they only refer to terms that
are “close” in the graph underlying the network).

Consider first that the joint distribution P (H, D) can
be written in terms of conditional distributions. Take
Equation (4) and substitute P (H,D) by local condi-
tional distributions P (Xk|pak), where pak is the set
of parents of Xk:

Q∗j (Hj) = kλ exp


 ∑

Hi 6=j

∏

i

Qi(Hi) ln P (H, D)




= kλ exp


 ∑

Hi6=j

∏

i

Qi(Hi)
∑

k

ln P (Xk|pak)


 .

Now, every conditional distribution P (Xk|pak) that
does not depend on variable Hj will result in a term
that is constant over Hj (and is summed out). We
obtain:

Q∗j (Hj) = kλ exp(
∑

Hi 6=j

∏

i

Qi(Hi)[ln P (Hj |paj)

+
∑

k∈chj

ln P (Xk|pak)]).

As every term Qi(Hi) that does not belong to {paj}
and {Xk, pak} will be summed out, we obtain:

Q∗
j (Hj) = kλ exp(

∑

Hi∈{paj}

∏

i

Qi(Hi) ln P (Hj |paj)

+
∑

k∈chj

∑

Hi 6=j∈{Xk,pak}

∏

i

Qi(Hi) ln P (Xk|pak)), (5)

where chj is the set of children of Hj . This means that
we only have to make “local” computations involving
conditional distributions for variables in the Markov
blanket of Hj (the Markov blanket of variable Hj is
the set of nodes containing the parents of Hj , the
children of Hj , and the parents of children of Hj).

4 A Variational Method for Inference
in Credal Networks

We want to derive a variational method for inference
in credal networks. A direct approach is a vertex-
based approximation: Apply a mean field method in
each vertex of the joint distribution; that is, approxi-
mate individually all vertices of the strong extension
of local credal sets KP (Hj |paj). Such a vertex-based
approach does not really solve the main problem with
strong extensions — the enormous growth in the num-
ber of potential vertices.

A second approach is to focus on a set-based ap-
proximation. The goal here is to approximate the
original joint credal set by a set of probability in-
tervals IQ(Hj = hj) = [Q(Hj = hj), Q(Hj = hj)]
for each value of each variable Hj . These intervals
are directly related to the lower and upper probabili-
ties P (Hj = hj |E) and P (Hj = hj |E). The set-based
approach mimics the local computations in the “stan-
dard” mean field methods, but the local computations
are replaced by interval computations — the result is
a process that iteratively computes probability inter-
vals for all variables Hj .

Consider first the updating Equation (5) and up-
per/lower bounds Q(Hj = hj) and Q(Hj = hj):

Q∗
j
(Hj = hj) ∝
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Figure 1: The outer bound step. Interval I∗Q(H0 =
h0) is approximated by an outer bound interval
IQ(H0 = h0).

min
∑

Hi∈{paj}

∏

i

Qi(Hi) ln P (Hj |paj)

+
∑

k∈chj

∑

Hi 6=j∈{Xk,pak}

∏

i

Qi(Hi) ln P (Xk|pak),(6)

Q
∗
j (Hj = hj) ∝
max

∑

Hi∈{paj}

∏

i

Qi(Hi) ln P (Hj |paj)

+
∑

k∈chj

∑

Hi 6=j∈{Xk,pak}

∏

i

Qi(Hi) ln P (Xk|pak),(7)

where:

Qi(Hi) ∈ IQ(Hi = hi),
P (Hj |paj = πj) ∈ KP (Hj |paj = πj),
P (Xk|pak = πk) ∈ KP (Xk|pak = πk).

Unfortunately, the exact computation of the intervals
IQ(Hj = hj) leads us to a global combinatorial search,
because these intervals are all interrelated. A vertex
that attains the minimum or maximum of Q(Hj =
hj) is not necessarily the same vertex that attains
the minimum or maximum of Q(Hi = hi) for i 6= j;
enforcing such relationships leads us to combinatorial
explosion.

We now consider an approximate solution that cir-
cumvents the complexity problem just discussed. In
fact, we introduce a second approximation on top of
the variational one. The idea is to make intervals
IQ(Hj = hj) unrelated to each other, thus reducing
the computation of an approximate interval to a truly

“local” combinatorial problem. To do this, we update
IQ(Hj = hj) by Equations (6) and (7), using the outer
bounds of IQ(Hi = hi) for i 6= j. That is, we use ap-
proximate values IQ(Hi = hi), computed for those
vertices that Q(Hj = hj) is maximum and minimum,
instead of vertices where Q(Hi = hi) is maximum
or minimum. We call this approximation an Outer
Bound Step.

The outer bound step is depicted in Figure 1. Suppose
that we are approximating IP (H0,H1) by IQ(H0,H1),
where H0 and H1 are hidden variables, using a varia-
tional method. To update the interval IQ(H1 = h1) 1,
we need the values of I∗Q(H0 = h0) for those vertices
where IQ(H1 = h1) are attained. For variable H0 we
just consider those vertices that lead to the extreme
values of IQ(H0 = h0) — we take these values as an
outer bound approximation for interval I∗Q(H0 = h0).
Note that such a round of approximations happens in
each iteration of the mean field scheme. The method
can be summarized as follows:

• Mean field approximation. We approximate
the original strong extension KP (X) by an ap-
proximate credal set KQ(X) that is the strong
extension of local probability intervals IQ(Hj =
hj) = [Q(Hj = hj), Q(Hj = hj)] for each value of
Q(Hj). Here Q(Hj = hj) approximates the min-
imum value of P (Hj = hj |E) and Q(Hj = hj)
approximates the maximum value. This approx-
imation moves us to a local computation.

• Outer bound step. We update the interval
IQ(Hj = hj) by Equations (6) and (7), using
the outer bounds IQ(Hi = hi), for i 6= j. This
approximation step is crucial to keep the local
computation property sought by the variational
approximation.

We transform the global combinatorial problem into a
local one, because: (1) The mean field approximation
is based on a “local” updating mechanism (Equation
(5)), restricted to the Markov Blanket; (2) The outer
bound step makes each updating step combinatorially
unrelated to all others, thus guaranteeing locality of
computation.

Figure 2 presents an algorithm that implements a
variational mean field approach for inference in a
credal network.

1Notice that IQ(H1 = h1) is a approximation of IP (H1 =
h1|E), and so on.



Set-based Mean Field
Input: Credal network N .
Output: Approximations for lower/upper probabilities of some variable Hj .

01. Initialize the intervals IQ(H = h) = [Q∗(H), Q
∗
(H)], for all values of hidden variable H.

02. For each hidden variable Hi, repeat until convergence:
03. For each possible vertex in the Markov Blanket of Hi (Equations 6 and 7):
04. Compute Q∗(Hi) for each value of Hi and normalize Q∗(Hi = hi).
05. Keep the minimum and maximum value of Q∗(Hi = hi) and update IQ(Hi = hi) .
06. Return Q(Hi = hi) and Q(Hi = hi) as approximations for P (Hi = hi|E) and P (Hi = hi|E).

Figure 2: Mean field in credal networks.

4.1 Structured variational approximation:
the binary case

The naive variational mean field approach described
previously is computationally attractive, but it is of-
ten unable to yield sufficiently accurate results [10].
A natural idea to improve over the naive mean field
method is to combine it with exact calculations — for
example, to approximate the original intractable net-
work with tractable substructures such as trees and
chains [16]. We introduce a Structured Variational-
2U Algorithm (SV2U) that uses the set-based vari-
ational approach to approximate a multi-connected
binary credal network by a polytree-structure net-
work and run the exact interval propagation 2U algo-
rithm [8]. Note that for binary variables the intervals
IQ = [plow, phigh] (of Equation (6) ) corresponds to
the local credal sets KQ.

Consider the idea of structured variational method
[10, page 18]. We take a factor Qi over a cluster of
variables ci = {Xi, pai}, so as to build the approxi-
mate joint distribution: Q(X) =

∏
i Qi(ci). We have

a more complex updating equation than in the naive
mean field method, because during the minimization
of KL(Q||P ), some entropy terms are no longer con-
stants. We obtain the updating equation for the clus-
ter cj = {Xj , paj} [19, page 104]:

Q∗j (Xj |paj) ∝
∑

k∈GXj

∑

l∈{X/cj}

∏

l

Ql(Xl) ln P (Xk|pak)

−
∑

i∈CXj

∑

l∈{X\cj}

∏

l

Ql(Xl) ln Qi(Xi|pai), (8)

where GXj represents the set of clusters gk =
{Xk, pak} that depend on Xj in the original network
and CXj is the set of clusters ci that depend on Xj

in the approximate network, excluding cj itself (in
Bayesian networks, these sets of clusters are Markov
blankets). Note that the expectation in Equation (8),
E

[∑
k∈GXj

ln P (Xk|pak)−∑
i∈CXj

ln Qi(Xi|pai)
]
, is

computed with respect to the approximated structure

Q(X) =
∏

i Qi(ci), i 6= j. Also note that we need to
update just those clusters cj that do not belong to
the original network cluster set G; that is, we have to
update just those conditional distributions that are
modified.

We use this structured variational approach described
before and develop it for credal networks. Apply the
set-based approach to the Equation (8), and obtain
the updating expressions analogous to Equation (6):

Q∗
j
(Xj |paj) ∝

min
∑

k∈GXj

∑

l∈{X\cj}

∏

l

Ql(Xl|pal) ln P (Xk|pak)

−
∑

i∈CXj

∑

l∈{X\cj}

∏

l

Ql(Xl|pal) ln Qi(Xi|pai),(9)

Q
∗
j (Xj |paj) ∝
max

∑

k∈GXj

∑

l∈{X\cj}

∏

l

Ql(Xl|pal) ln P (Xk|pak)

−
∑

i∈CXj

∑

l∈{X\cj}

∏

l

Ql(Xl|pal) ln Qi(Xi|pai),(10)

where:

Ql(Xl|pal = πl) ∈ KQ(Xl|pal = πl),
Qi(Xi|pai = πi) ∈ KQ(Xi|pai = πi),
P (Xk|pak = πk) ∈ KP (Xk|pak = πk).

The proposed set-based structured variational algo-
rithm (SV2U) is described in Figure 3 for credal
networks containing binary variables. Suppose that
we have a multi-connected binary network N with
joint distribution P (X) =

∏
k Pk(gk). The idea is

to approximate this with a polytree-structure net-
work Np, finding a loopy cutset [14], with distribu-
tion Q(X) =

∏
i Qi(ci) (Line 01). Define the set

of clusters G = {gk} of network N and C = {ci}



Structured Variational 2U: SV2U
Input: Multi-connected binary credal network N .
Output: Approximations for lower/upper probabilities of some variable Xj .

01. Find a cutset of the original network N ,with joint distribution P (X) =
∏

k Pk(gk), to obtain
an approximate polytree structure Np.
02. Find the set of clusters G = {gk} of network N and C = {ci} of the network Np.
03. Initialize for those clusters ci that don’t belong to G, cj , KQ(Xj = xj |paj = πj) = [0.5, 0.5].
03. For those clusters cj repeat until convergence:
04. For all possible parent configurations of cluster cj , {paj = πj}:
05. Compute Q∗(Xj = xj |paj = πj) and Q

∗
(Xj = xj |paj = πj) for each

value of Xj and normalize these values, from Equations (9) and (10).
06. Keep the minimum and maximum values of Q∗(Xj = xj |paj = πj) and

update KQ(Xj = xj |paj = πj) .
07. Run the 2U algorithm in the polytree-structure associated to the joint distribution Q(X) =∏

k Pk(gk) ×∏
j Qj(cj), where k is the index of those clusters that belong to both cluster sets G

and Qj(cj) ∈ KQ(Xj = xj |paj = πj). Keep the minimum and maximum values of probabilities of
some variable Xj .

Figure 3: The SV2U algorithm.

of the network Np. Find the approximate condi-
tional distributions of those clusters ci that does not
belong to the set G. Define this set as cj . This
means that we have to compute the distributions
Q(cj). This is done iteratively, as described in Sec-
tion 3.2, until we obtain convergence of these distribu-
tions (Lines 03-06). During this iteration, we compute
the KQ(Xj = xj |paj = πj) ∈ [Q∗(Xj = xj |paj =
πj), Q

∗
(Xj = xj |paj = πj)]. This means that at the

end of the process we have a polytree-structure distri-
bution Q(X) =

∏
k Pk(gk)×∏

j Qj(cj), where k is the
index of those clusters that belong to both cluster sets
G and C; and Qj(cj) ∈ KQ(Xj = xj |paj = πj). With
this polytree-structure distribution we compute the
desired approximations for lower/upper probabilities,
using the exact algorithm 2U (Line 07) [8].

5 Examples

In this section we present examples that illustrate the
mechanics of our mean field approach to approximate
inference. The two examples are arguably the sim-
plest possible examples of naive and structure mean
field methods respectively; the purpose of these ex-
amples is only to show the kinds of expressions that
appear in the method. We later discuss larger exam-
ples; certainly we cannot claim that these experiments
show all empirical properties of set-based mean field
methods, but they illustrate several interesting char-
acteristics of the methods.

Figure 4: Credal network with 2 binary variables (net-
work in the JavaBayes system, a package that can
represent local credal sets and strong extensions).

5.1 Naive mean field

Suppose we have a credal network with 2 binary hid-
den variables A and B (Figure 4). Consider that it is
associated with a credal set defined by intervals (for
binary variables, the interval representation is equiva-
lent to the vertex representation): P (b0) ∈ [0.4, 0.75],
P (a0|b0) ∈ [0.1, 0.2] and P (a0|b1) ∈ [0.3, 0.4]. We
want to approximate the interval of values for P (a0).



Joint distribution: K Q(ABC) = Q(A).Q(B/A).Q(C/B)

Q(A) = P(A)

Q(B/A) = P(B/A)

Q(c0/b0) ∈∈∈∈ [0.41 , 0.49]

Q(c0/b1) ∈∈∈∈ [0.51 , 0.59]

Joint distribution: K P(ABC) = P(A).P(B/A).P(C/A.B)

P(b0/c1) ∈∈∈∈ [0.1 ,  0.2]

P(b0/a1) ∈∈∈∈ [0.7 ,  0.8]

P(c0/a0,b0) ∈∈∈∈ [0.25 , 0.35]

P(c0/a0,b1) ∈∈∈∈ [0.35 , 0.45]

P(c0/a1,b0) ∈∈∈∈ [0.45 , 0.55]

P(c0/a1,b1) ∈∈∈∈ [0.55 , 0.65]

Figure 5: Left: multi-connected credal network with 3 binary variables. Right: a structured (polytree-shaped)
approximation to the original network, differing in the credal set associated with variable C.

From Equations (6) and (7), we have the updating
expressions for variable A:

Q∗(a0) = min kλ. exp(Q∗(b0). ln[P (a0|b0)] +
Q∗(b1). ln[P (a0|b1)]),

Q
∗
(a0) = max kλ. exp(Q∗(b0). ln[P (a0|b0)] +

Q∗(b1). ln[P (a0|b1)]),

where Q∗(b0) ∈ I(b0) = [Q∗(b0), Q
∗
(b0)]. The nor-

malization constant kλ is obtained by computing
Q∗(a1) for the same vertex. For variable B:

Q∗(b0) = min kλ. exp(Q∗(a0). ln[P (a0|b0).P (b0)] +
Q∗(a1). ln[P (a1|b0).P (b0)]),

Q
∗
(b0) = max kλ. exp(Q∗(a0). ln[P (a0|b0).P (b0)] +

Q∗(a1). ln[P (a1|b0).P (b0)]),

where: Q∗(a0) ∈ I(a0) = [Q∗(a0), Q
∗
(a0)]. The

normalization constant kλ is obtained by computing
Q∗(b1) for the same vertex. These expressions are
iteratively updated until convergence. Note that at
the beginning the interval I(b0) is initialized with ar-
bitrary values between 0 and 1. At convergence, we
obtain the interval Q(a0) ∈ [0.13, 0.31]. For compari-
son, the exact interval is P (a0) ∈ [0.15, 0.32].

5.2 Structured mean field

Consider now the structured mean field variational
approximation (Section 4.1) to a credal network with
3 binary variables A, B and C. The network
is depicted in Figure 5. For each vertex of the
credal network, we have a distribution P (A, B,C) =
P (A).P (B|C).P (C|A,B) that is approximated by
Q(A,B, C) = P (A).P (B|C).Q(C|B) — the original
network is approximated by a tree, for which exact
inference is available through the 2U algorithm [8],
and also approximate inference is possible [5, 9].

In this example, only variable C must be updated.
Developing Equation (8), where GXj

= gC =
{C, A,B} and CXj

= cB = {B, A}, we obtain:

Q∗(C|B) ∝ min
∑

A

P (A)[
∑

k∈dC

ln P (Xk|pak)

−
∑

i∈cB

ln Qi(Xi|pai)]

= min
∑

A

P (A)[ln P (A) + lnP (B|A)

+ ln P (C|A,B)− ln P (B|A)]

= min
∑

A

P (A) ln P (A)

+
∑

A

P (A) ln P (C|A,B)

= min
∑

A

P (A) ln P (C|A,B),

and analogously:

Q
∗
(C|B) ∝ max

∑

A

P (A)[
∑

k∈dC

ln P (Xk|pak)

−
∑

i∈cB

ln Qi(Xi/pai)]

= max
∑

A

P (A) ln P (C|A,B).

From these expressions, we get a set of approximate
conditional distributions Q(c0|b0) ∈ [0.41, 0.49] and
Q(c0|b1) ∈ [0.51, 0.59]. Using this approximate credal
set, we can infer Q(c0) ∈ [0.4262, 0.5513], while the
exact result of the inference is P (c0) ∈ [0.428, 0.552].

6 Tests and Results

We have implemented the set-based mean field algo-
rithm (Figure 2) and conducted several tests. Accu-



Figure 6: Multidog network. A credal network with
5 binary variables.

racy of the naive method is reasonable but far from
spectacular. For example, in the Multidog network
(Figure 6), comparing the approximated results ob-
tained by set-based mean field and exact results, we
get a mean square error of 7%. Tests with the SV2U
indicate a much better performance of the structured
mean field approach.

To illustrate the performance of SV2U algorithm, con-
sider a medium sized example. The Pyramid network
(Figure 7) is a multilayered graph associated with 28
binary variables (assume values ”0” or ”1”) and local
connections among layers. [12]. We associate each
variable with a binary credal set, a convex hull of
the set containing all joint distributions that factorize
as

∏
i P (Xi|pa(Xi)), i = {1, ..., 28}, where each con-

ditional distribution P (Xi|pa(Xi) = πk) is selected
from the local credal set KP (Xi|pa(Xi) = πk) =
[plow, phigh]. One possible cutset is formed by the arcs
(1,6), (2,6), (2,8), (3,8), (3,10), (4,10) and (4,12). Re-
moving these arcs we get a polytree associated to a
credal set that differs from the original network on
local credal sets of variables X6, X8, X10 and X12.
This means that local credal sets KP (X6|X1, X2),
KP (X8|X2, X3),KP (X10|X3, X4) and KP (X12|X4)
are approximated by KQ(Xj), j = {6, 8, 10, 12}. As-
suming that there are no evidence nodes, the expres-
sions for updating Equations (9) and (10) are:

ln Q∗(X6) ∝
∑

X1,X2

P (X1)P (X2) ln P (X6|X1, X2),

ln Q∗(X8) ∝
∑

X2,X3

P (X2)P (X3) ln P (X8|X2, X3),

ln Q∗(X10) ∝
∑

X3,X4

P (X3)P (X4) ln P (X10|X3, X4),

ln Q∗(X12) ∝
∑

X4

P (X4) ln P (X12|X4).

From these equations we get approximate credal sets
KQ(X6 = 0) = [0.099, 0.346], KQ(X8 = 0) =
[0.203, 0.664], KQ(X10 = 0) = [0.278, 0.753] and
KQ(X12 = 0) = [0.532, 0.810]. Running the 2U algo-
rithm in this polytree and computing the lower/upper
probabilities for all variables, we get a mean square
error (MSE), between exact probabilities and those
obtained by SV2U, of 2%. Results can be seen in Fig-
ure 8. The advantage of the SV2U algorithm over a
method like the L2U algorithm [9] is that variational
approach gives convergence guarantees that are not
offered by L2U.

We also realized tests with the Alarm network that
has 37 nodes and in order to use the SV2U algorithm,
we binarized some variables. This network has 46
arcs and the approximated polytree structure is ob-
tained removing 10 arcs. Running the 2U algorithm
and computing lower/upper probabilities for all vari-
ables without evidence, we get a MSE of 1, 7%, against
MSE of 1, 3% from L2U algorithm. Results can be
seen in Figure 9.

7 Summary and Conclusions

In this paper we have introduced an explicitly vari-
ational approach to inference in credal networks —
we have focused on mean field methods and their ap-
plication to strong extensions. We have investigated
the characteristics of such methods and some neces-
sary approximations to make them rely solely on lo-
cal computations. The paper is thus an initial step in
the construction of general approximation methods
for credal networks. The next step in this investiga-
tion is a more comprehensive study of the empirical
characteristics of the SV2U algorithm.

Given the generality and flexibility of variational
methods, the set-based methods proposed in this pa-
per seem to be a promising approach to credal net-
works. Models that contain continuous variables and
local credal sets defined by infinitely many constraints
are not handled by most existing algorithms; they can
in principle be dealt with using variational principles.
Hopefully this paper will serve as an initial step in a
fruitful avenue of research.
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Figure 7: Pyramid network, multilayered graph associated with binary variables, used to test the SV2U algo-
rithm.
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Figure 8: Results of the SV2U algorithm in the Pyramid network. Lower/upper probabilities are computed
exactly and approximately, and an MSE=2% is obtained.
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Figure 9: Results of the SV2U algorithm in the ”Binarized” Alarm network. Lower/upper probabilities are
computed exactly and approximately, and an MSE=1, 7% is obtained.
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