Generating Random Bayesian Networks with Constraints
on Induced Width

Jaime S. lde and FabioG.Cozman and Fabio T. Ramos!

Abstract.
distributed Bayesian networks with constraints on induaédth.
The algorithms use ergodic Markov chains to generate sanphe
introduction of constraints on induced width leads to stalinet-

works but requires new techniques. A tool that generategoran

networks is presented and applications are discussed.

1 INTRODUCTION

It is often the case that theoretical questions involvirtifiaial in-
telligence techniques are hard to answer exactly. Many guels-
tions appear in the theory of Bayesian networks; for exanttev
does quasi-random sampling algorithms compare to pseminm
sampling? Significant insight into such questions could loaioed
by analyzing large samples of Bayesian networks. Howeveraiy
be difficult to collect hundreds of “real” Bayesian networfks an

experiment, or it may be the case that an experiment mustibe co

ducted for a specific type of Bayesian network for which feegdlf

examples are available. One must then randomly generatesiay

networks that are somehow close to “real” networks. In fany
researchers have used random processes to generate et
past, but without guarantees of that every allowed graphodyzed
with the same uniform probability (for example, [14, 15]).

We would like to have a method that generates Bayesian neswor

uniformly; that is, we would like to guarantee that averatgen
with generated networks produce unbiased estimates. Wel\atso
like to have generation methods that are flexible in the sénageon-
straints on generated networks can be added with relatse &or
example, it should be possible to add a constraint on thermani
number of parents for nodes, the average number of childrethe

maximum number of loops. Ad hoc methods are usually condocte

for a particular set of constraints, and it is hard to imagiays to
add constraints to them.
Finally, we would like to generate “realistic” networks,vinever

hard it may be to define what is a “real” Bayesian network. A rea

sonable strategy is to look for properties that are commaisigd
to characterize Bayesian networks, and to allow some dooter
them. This is the strategy followed by Ide and Cozman [5)y tiow
control over the degree of a node, thus allowing some cooiret
the “density” of the connections in the generated Bayesiwaorks.
We have found that such a strategy is reasonable but notcperfe-
strictions solely on node degree and number of edges leaulely
random” edges — real networks often have their variabldsioiiged

in groups, with few edges between grodpanother strategy, sug-

1 Escola Politecnica, Univ. de Sao Paulo, Sao Paulo, Brd&nail:
jaime.ide@poli.usp.br
2 Tomas Kocka brought this fact to our attention.

We present algorithms for the generation of uniformly gested by T. Kocka (personal communication), would be talpce

Bayesian networks with a large number of equivalent graahshis
is a property observed in real networks. However we would tik
use properties with clear intuitive meaning, so that useosinalgo-
rithms would quickly grasp the properties of generated nétea

A quantity that characterizes the algorithmic complexitfy o
Bayesian networks, and is easy to explain and to understatie in-
duced width. Indirectly, the induced width captures howsgea net-
work is. Besides, it makes sense to control induced widthyeaare
usually interested in comparing algorithms or parameitegiresults
with respect to the complexity of the underlying netwdrdnfortu-
nately, the generation of random graphs with constrainiadaced
width is significantly more involved than the generation odghs
with constraints on node degree and number of edges. In dipisrp
we report on new algorithms that accomplish generation aplgs
with simultaneous constraints on all these quantitiesaded width,
node degree, and number of edges.

Following the work of Ide and Cozman [5], we divide the gerera
tion of random Bayesian networks into two steps. First weegete
a random directed acyclic graph that satisfies constramtaduced
width, node degree, and number of edges; then we generdia-pro
bility distributions for the graph. To generate the randarapl, we
construct ergodic Markov chains with appropriate statiguigstribu-
tions, so that successive sampling from the chains leadsetgen-
eration of properly distributed networks. The necessaepith and
algorithms are presented in Sections 2 and 3.

The methods presented in this paper focus on Bayesian retwor
but they convey a general method for generation of testiagngkes
in artificial intelligence. The idea is to generate unifoyrdistributed
examples using Markov chains. This strategy allows one &ilyea
add and modify constraints on the generated examples dadvhat
a few steps are taken. The theory in Section 3 can serve asla gui
for exactly what steps must be taken to guarantee apprepeatilts.

A freely distributed program for Bayesian network genematis
presented in Section 4. In Section 4 we also discuss applicabf
random networks.

2 BASIC CONCEPTS

This section summarizes material from [5] and [3].

A directedgraph is composed of a set of nodes and a set of edges.
An edge(u,v) goes from a node: (the paren) to a nodev (the
child). A pathis a sequence of nodes such that each pair of consecu-
tive nodes is adjacent. A path i<gcleif it contains more than two
nodes and the first and last nodes are the same. A cydiecisted
if we can reach the same nodes while following arcs that ateen

3 Carlos Brito suggested this strategy.

same direction. A directed graphasyclic (a DAG) if it contains no
directed cycles. A graph isonnectedf there exists a path between
every pair of nodes. A graph s@ngly-connectedalso called goly-

whichp{s) > 0, is equal to one (that ig7.C.D.(s|p's) > 0) = 1).
Aperiodicity is ensured ifp;; > 0 (pi; is aself-loop probability.
A Markov chain isergodicif there exists a vector (the stationary

tree, if there exists exactly one path between every pair of nodesgjstribution) satisfyingim,— e PEJS-) = m;, for all i and;; a finite

otherwise, the graph imultiply-connectedor multi-connectedor
short). Anextreme sub-graplof a polytree is a sub-graph that is
connected to the remainder of the polytree by a single patianl
undirectedgraph, the direction of the edges is ignored. éwmered

aperiodic, irreducible and positive recurrent chain iodig. A tran-

sition matrix is calledloubly stochastid the rows and columns sum
. . N N

to one (thatis, ify 5", pi; = Land} ;" pi; = 1). A Markov

chain with such a transition matrix has a uniform statiordisgribu-

graphis a pair containing an undirected graph and an ordering otjo [11].

nodes. Thewidth of a node in an ordered graph is the number of its

neighbors that precede it in the ordering. Width of an ordering is
the maximum width over all nodes. Theduced widtrof an ordered
graph is the width of the ordered graph obtained as followdes are
processed from last to first; when nodeis processed, all its preced-
ing nodes are connected (call these conneciiimthsced connections
and the resulting grapimduced graph An example is presented at
Figure 1. Thenduced widthof a graph is the minimal induced width
over any ordering; the computation of induced width is an héird
problem [3], and computations are usually based on hecsidi.

A Bayesian network represents a joint probability densitgraa
set of variablesX [10]. The density is specified through a directed
acyclic graph; every node in the graph is associated wittriable
X; in X, and with a conditional probability densip(X; |pa(X;)),
wherepa(X;) denotes the parents df; in the graph. A Bayesian
network represents a unique joint probability density [3GX) =
[, p(Xilpa(X;)) (consequence of Markov condition. Themoral

graph of a Bayesian network is obtained by connecting parents of

any variable and ignoring direction of edges. Tihd@uced widttof a
Bayesian network is the induced width of its moral graph.idfer-
enceis a computation of a posterior probability density fogqueery
variable givenobservedvariables; the complexity of inferences is
directly related to the induced width of the underlying Bsige net-
work [3].

We use Markov chains to generate random graphs, followihg [8
Consider a Markov chaif§X;,t > 0} over finite domainsS and
P= (pij)ﬁ‘le to be aM x M matrix representing transition prob-
abilities, whereM is the number of states and; = Pr(Xiy1 =
jlX: = 1), for all t [11, 13]. Thes-step transition probabilities is
given by P° = pEj) = Pr(Xits = j|X¢ = i), independent of.

A Markov chain isirreducibleif for all i,j there existss that satis-
fieSpE;.) > 0. A Markov chain is irreducible if and only if all pair
of states intercommunicate. A Markov chairpissitive recurrentf
every state € S can be returned to in a finite number of steps; it
follows a that finite irreducible chain is positive recurt.eft Markov
chain isaperiodicif the greatest common divisor of all thoseor

(d) ®

Figurel. a) Network, b) moral graph, c) induced graph for ordering
F,L,D, H, B, and d) induced graph for orderirlg H, D, B, F'. Dashed
lines represent induced connections.

©

3 GENERATING RANDOM DAGS

In this section we show how to generate random DAGs with con-
straints on induced width, node degree and number of eddes. A
such a random DAG is generated, it is easy to construct a aepl
Bayesian network by randomly generating associated pilitlyatis-
tributions — if all variables in the Bayesian network areecgtrical,
probability distributions are produced by sampling Ditethdistri-
butions. More general methods can be contemplated (for pleam

it may be interesting to generate logical nodes togethédr pribba-
bilistic nodes) and are left for future work.

To generate random DAGs with specific constraints, we coaistr
an ergodic Markov chain with uniform limiting distributipsuch that
every state of the chain is a DAG satisfying the constraBystun-
ning the chain for many iterations, eventually we obtaintesfsctory
DAG.

Algorithm PMMixed produces an ergodic Markov chain with the
required properties (Figure 2). The algorithm is signifittamore
complex than the algorithms presented by Ide and CozmaiT 8.
added complexity comes from the constraints in inducedhwigitich

a price is worth paying as the induced width is a propertyt¢hatac-
terizes a Bayesian network much more accurately than nagteele

The algorithm works as follows. We create a setafodes (from
0 ton — 1) and a simple network to start. The loop between lines 03
and 08 constructs the next state (next DAG) from the curreté s
Lines 05 and 08 verify whether the induced width of the curBehG
satisfies the maximum value allowed; constraints on maximade
degree and maximum number of edges must also be checked there
If the current DAG is a polytree, the next DAG is constructetines
04 and 05; if the current DAG is multi-connected, the next D&G
constructed in lines 07 and 08. Depending on the currentgidif
ferent operations are performed (the procedures AorR and@R
respond to the valid operations). Note that the particutacgdure
to be performed and the acceptance (or not) of the resulth@ 3
probabilistic, parameterized hy

Algorithm PMMixed is essentially a mixture of proceduresrRo
and AR. These procedures are used by Ide and Cozman [5] to pro-
duce respectively multi-connected graphs and polytred¢ls @on-
straints on node degree. We need both to guarantee irrélityaih
Markov chains when constraints on induced width are preskat
procedure AR creates a needed “path” in the space of posythes
is used in Theorem 3. The mixture of procedures has two o#er b
efits: first, it creates more complex transitions, hopefinyreasing
the convergence of the chain; second, it eliminates a céstnion
node degree that was needed by Ide and Cozman [5].

The PMMixed algorithm can be understood as a sequence of prob
abilistic transitions that follow the scheme in Figure 3.

We now establish ergodicity of Algorithm PMMixed.

Theorem 1 The Markov chain generated by Algorithm PMMixed is
aperiodic.

Algorithm PMMixed: Generating DAGs with induced Proof. If we have symmetric transition probabilities between two

width control neighbor states, its rows and columns sum one, because Ithe se

Input: Number of nodesx), number of iterationsX), max- loop probabilities are complementary to all other prokitied. Pro-
imum induced width, and possibly constraints on node degree cedure AorR is clearly symmetric; procedure AR is also sytame
and number of nodes. ric [5]. We just have to check that transitions between el and
Output: A connected DAG with: nodes. multi-connected graphs are symmetric; this is true bectnasesi-
01. Create a network with nodes, where all nodes have jyst tions from polytree to multi-connected are accepted witibpbility

ggeé)arer;ti,vexcept.the first node that does not have any parent , ang multi-connected to polytree transitions are alsogtecewith
- RepealV imes: the same probability. QED

03. If current graph is a polytree:)
04. With probabilityp, call Procedure AorR; with We need the following lemma to prove Theorem 3.

probability (1 — p), call Procedure AR. Lemmal After removal of an arc from a multi-connected DAG, its
05. If the resultl_ng graph satisfies imposed induced width does not increase.

constraints, accept the graph;

otherwise, keep previous graph; Proof. When we remove an arc, the moral graph stays the same or
06. else (graph is multi-connected): contains less arcs; by just keeping the same ordering, thecéd
07. Call Procedure AorR. o width cannot increase. QED
08. If the resulting graph is a polytree and satisfies

imposed constraints, accept with probabil- Theorem 3 The Markov chain generated by Algorithm PMMixed is

ity p; else accept if it satisfies imposed irreducible.

constraints; otherwise keep previous graph.
09. Return current graph afté¥ iterations. Proof.Suppose that we have a multi-connected DAG witiodes; if

we prove that from this graph we can reach a simple sortedqFige
Procedure AR: Add and Remove ure 4 (c)), the opposite transformation is also true, bezafshe
01. Generate uniformly a pair of distinct nodeg; symmetry of our transition matrix — and therefore we coulacte
02. If the arc(i, 7) exists in the current graph, keep the sgme any state from any other (during these transitions, graphst me-
state; else) N main acyclic, connected and must satisfy imposed conssjaigo,
03. Invert the arc with probability 1/2 1, i), and then we start by finding a loop cutset and removing enough arcsttirob
04. Find the predecessor noklén the path betweenand, a polytree from the multi-connected DAG [10]. The inducedithi
remove the arc betwegnand j, and add an ar¢i, j) or arc does not increase during removal operations by Lemma 1. Brom

(J i) depending on the result of line 03. polytree we can move to a simple polytree (Figure 4 (b)) incaire
Procedure AorR: Add or Remove sive way. For all extreme sub-graphs of our polytree, fotheaair
01. Generate uniformly a pair of distinct nodes; of extreme sub-graphs (call themnanches, it is possible to “cut” a
02. If the arc(i, j) exists in the current graph, delete the arc, branch and add it in the other branch, by the procediif with-
provided that the underlying graph remains connected; else out ever increasing the induced width. Doing this we get ajumi
03. Add the arc if the underlying graph remains acyclic, bthe branch. If we have more than two branches connected to a nede,
wise keep same state. repeat this process by pairs; we do this recursively untibggmple

polytree. Now that we have a simple polytree, we get a simple t
(Figure 4 (a)) just inverting arcs to the same directionhatt ever
Figure2. Algorithm for generating DAGs, mixing operations AR and getting an induced width greater than two. The last step igetca
AorR. simple sorted tree (Figure 4 (c)) from the simple tree. Tleaidere
is illustrated in Figure 5. We want to sort labelled nodesfrbton.
Start removing ar¢n, k) and adding ar¢!, i) (step 1 to 2). Remove

--------------- ~{multiconnected! arc(j, n) and add ar¢n — 1, n) (step 2 and 3). Note that in this con-
,,,,,,,,, . figuration, the induced width is one. Now, remove @ic- 1, 0) and
““““““““““ +_polytree | add arc(j, k) (step 3 and 4). Repeat steps 2 and 4 for all nodes. So,
NS auurnne ‘1 from any multi-connected DAG it is possible to reach a singoleed

e | . tree. The opposite path is clearly analogous, so we can go dry
\ 1P, et DAG to any other DAG, and the chain is irreducible. Note thai-c
M"M If . straints on node degree and maximum number of edges can lbe dea
> (iicomested- ~ ~ ~{muicomested with within the same processes. QED

By the previous theorems we obtain:

Fi 3. Struct f PMMixed.
oure ructure o e Theorem 4 The Markov chain generated by Algorithm PMMixed is

ergodic and its unique stationary converges to a uniforriritigtion.

Proof. It is always possible to stay in the same state for procedures

AR and AorR; therefore, all states have a self-loop profigigteater ->® () 4._>® ®_.@__>®

than zero. QED
@ (b) (©

Theorem 2 The transitioh matrix defined by the Algorithm PM- Figure4. Simple trees used in our proofs: (a) Simple tree, (b) Simple
Mixed is doubly stochastic. polytree, (c) Simple sorted tree.

@i @@ OO —0

step 2 ®——>—>®—>®—>—>®—>®
®

@ OGO —®

seps @— @@ —@—@

Figure5. Basic moves to obtain a simple sorted tree.

The algorithm PMMixed can be implemented quite efficiereky,
cept for the computation of induced width — finding this valse
a NP-hard problem with no easy solution. There are hewsidtic

If pl(p+q)

d(p+a)

reed

Figure7. Structure of PMMixed with procedure J.

line 04 and after line 07 in the algorithm PMMixed. The contplal-
gorithm can be understood as a sequence of probabilistisitians
that follow the scheme in Figure 7. All previous theorems ban

computing induced width; some of which have been found tofbe oeasily extended to this new situation; the only one that rbastub-

high quality [6]. Consequently, we must change our goateiad of
adopting constraints on exact induced width, we assuméhtbatser
specifies a maximum widtgiven a particular heuristicWe call this

stantially modified is Theorem 3. Transitions from polytteenulti-
connected DAGs are performed with probability— ¢); transitions
from multi-connected DAGSs to polytrees are performed witbba-

width theheuristic width Our goal then is to produce random DAGs bility 1 — (p + q) x quq = 1 — q. The value ofp andq control the

on the space of DAGs that have constraints on heuristic width
Apparently we could still use the PMMixed algorithm herethwi
the obvious change that lines 05 and 08 must check heurigdit w
instead of induced width. However such a simple modificat®on
not sufficient: because heuristic width is usually computetth lo-
cal operations, we cannot predict the effect of adding antbuéng

edges on it. That is, we cannot adapt Lemma 1 to heuristichwidt
in general, and then we cannot predict whether a “path” betwe

DAGs can in fact be followed by the chain without violating.nis-
tic width constraints. We must create a mechanism that wallbgv
the chain to transit between arbitrary DAGs regardlesseétiopted
heuristic. Our solution is to add a new type of operation csjsel
by procedure J (Figure 6) — this procedure allows “jumps’hfro
arbitrary multi-connected DAGS to polytrees. We also asstinat
any adopted heuristic is such thiétthe DAG is a polytree, then the
heuristic width is equal to the induced widtaven if a given heuris-
tic does not satisfy this property, the heuristic can belyasodi-
fied to do so: test whether the DAG is a polytree and, if so,rnetu
the induced width of the polytree (the maximum number of pire
amongst all nodes).

Procedure J must be called with probability— p — q) both after

Procedure J: Sequence of AorR
01. If the current graph igolytree
02. Generate uniformly a pair of distinct nodeg;
03. Ifarc(i,) does not exist in current graph,
add the arc; otherwise, keep the same state.
04. If the current graph iswulti-connected
05. Generate uniformly a pair of distinct nodeg.
06. Ifarc(s,) exists in current graph, remove the arc;
otherwise, keep the same state.
07. If the new graph satisfies imposed constraints, accept th
graph; otherwise, keep previous graph.

Figure6. Procedure J.

mixing rate of the chain; we have observed remarkable iritbéatys
to these values.

4 THE BNGenerator AND APPLICATIONS

The algorithm PMMixed (with the modifications indicated in
Figure 7) can be efficiently implemented with existing omer
heuristics, and the resulting DAGs are quite similar to taxis
Bayesian networks. We have implemented the algorithm uaing
O(nlogn) implementation of the minimum weight heuristic. The
result is theBNGeneratopackage, freely distributed under the GNU
license (at http://www.pmr.poli.usp.br/ltd/Softwar&lBenerator).
The software uses the facilities in the JavaBayes system, in
cluding the efficient implementation of ordering heuristic
(http://www.cs.cmu.edu/“javabayes). The BNGeneratoicepts
specification of number of nodes, maximum node degree, marim
number of edges, and maximum heuristic width (for minimum
weight heuristic, but other heuristics can be added). Tlievace
also performs uniformity tests using @ test. Such tests can be
performed only for small number of nodes (as the number cfiptes
DAGs grows extremely quickly [12]), but they allowed us tettthe

3
2
o9
n@ﬁ ,,3 @ (;54 azz y
nodes nodes, o

nc;e21

J“ 4 Qst

node
|

node26._

o7
/

)
nodes - ‘(;5 /
“nodet7

no;e18 @ nodess / ‘@
@« o % node7
Hodes, node0"_ gsh
4 , 4 5 nodet2
® ~nodet0
fisde2r noded
nodet1 =
o —]

Editvariable [EditFunction [EditNetwork |

Figure8. Bayesian network generated with BNGenerator: 30 nodes,
maximum degree 20, maximum induced width 2.

algorithm and its procedures. We have observed the relatiast
mixing of the chain with the transitions we have designed.

firmed comments in the literature that suggest that stanGésts
sampling cannot profit from quasi-random samples, whilaigitt-

To show how to use our previous results, we discuss the evaluforward importance sampling presents essentially the daghav-

ation of a particular inference algorithm that has receiattdntion
in the literature but have no conclusive analysis yet. Dudédack
of space, we present a brief summary of rather extensive; tesire
details can be found in a longer technical report [4]. Twceotppli-
cations can be found in that technical report: a study onelation
between heuristic width and d-connectivity, and a studyaiver-
gence for loopy propagation in networks with non-zero philiiges.

Consider the behavior of Monte Carlo methods associatelal wit

quasi-random numbers. That is, numbers that form low discre
ancy sequences — numbers that progressively cover the gpace
the “most uniform” manner [7, 9]. There have been quite ss&ce
ful applications of quasi-Monte Carlo methods for integmatin
low-dimensional problems; in high-dimensional problethgre has
been conflicting evidence regarding the performance ofigaste
Carlo methods. As a positive example, Cheng and Druzdzalrodxd
good results in Bayesian network inference with importasam-
pling using quasi-random numbers [1]. We have investigtitedol-
lowing question: How does quasi-random numbers affectdstah
importance sampling and Gibbs sampling algorithms in Bayes
networks? We have used the importance sampling schemeddyv
Dagum and Luby [2], and have investigated the behavior ofddal
sequences in random networks. The summary of our inveistigat
is as follows. First, pseudo-random numbers are clearfeb#tan
quasi-random numbers in medium-sized networks for Giblos- sa
pling. Second, pseudo-random number have a small edge oasi-q
random numbers for importance sampling; however the @iffees
are so small that both can be used. In fact it is not hard to fetd n
works that behave better under quasi-random importancelsam
than under pseudo-random importance samgling.

The methodology indicated in this example can be appliedhero
inference algorithms and theoretical questions relateditected
acyclic graphs and Bayesian networks.

5 CONCLUSION

In this paper we have presented a solution for the generafiani-
formly distributed random Bayesian networks with contre¢iokey
guantities. The main idea is to generate DAGs with controlren
duced width, and then generate distributions associattrtiag gen-
erated DAG. Given the NP-hardness of induced width, we have r
sorted to “heuristic width” — the width produced by one of thany
high-quality heuristics available. We generate DAGs usditaykov
chains, and the need to guarantee heuristic width conttiaiads to

a reasonably complex transition scheme encoded by algof-

Mixed and procedure J. The algorithm can be modified to accom-
[10]

modate a number of other constraints (say constraints omthe-
mum number of parents). The methodology used to derive thlese
gorithms and proving their convergence can be employedrergée
testing examples in other fields of artificial intelligengée reliance
on Markov chains demands convergence proofs and mixingstime
but it allows the manipulation of constraints and guarasiafeuni-
formity that do not seem to be handled by other methods.

4 As a notable (not randomly generated) example of this phenom the
Alarm network does behave slightly better with quasi-randban with
pseudo-random importance sampling (corroborating reséylitCheng and
Druzdzel [1]).

[11]

[12]

[13]
. .14
We have observed that this strategy does produce “realistic
looking” Bayesian networks. Using such networks, we have-co [15]

ior under pseudo- and quasi-random sampling for mediuedsiet-
works. We have also investigated the relationship betweemistic
width and d-connectivity and the performance of loopy pozteon,
and reported on those issues elsewhere.

ACKNOWLEDGEMENTS

We thank Carlos Brito for suggesting the use of induced width
Robert Castelo for pointing us to Melancon et al's work, Guy
Melancgon for confirming some initial thoughts, Nir Friedméor

indicating how to generate distributions, and Haipeng Guradst-
ing the BNGenerator. We also thank Jaap Suermondt, Tomdsakoc
Alessandra Potrich and Marcia D’Elia Branco for providingpor-
tant ideas, and Y. Xiang, P. Smets, D. Dash, M. Horsh, E. Santo
and B. D’Ambrosio for suggesting valuable procedures. Tisé diu-
thor was supported by FAPESP grant 00/11067-9. This work was
(partially) developed in collaboration with HP Brazil R&ihe third
author was supported by HP Brazil R&D and was responsiblafor
vestigating loopy propagation. The second author wasaghigrsup-
ported by CNPq through grant 300183/98-4.

REFERENCES
(1]

J. Cheng and M. Druzdzel, ‘Computational investigatioh low-
discrepancy sequences in simulation algorithms for Bayesiet-
works’, in Conf. on Uncertainty in Artificial Intelligencepp. 72-81,
SF, CA. Morgan Kaufmann.

P. Dagum and M. Luby, ‘An optimal approximation algorithfor
Bayesian inferenceArtificial Intelligence 93(1-2), 1-27, (1997).

R. Dechter, ‘Bucket elimination: An unifying frameworior proba-
bilistic inference’, inConf. on Uncertainty in Artificial Intelligencep.
211-219, SF, CA. Morgan Kaufmann.

J. S. Ide and F. G. Cozman and F. T. RamBsgneration of Random
Bayesian Networks with Constraints on Induced Width, witplisa-
tions to the Average Analysis of d-Connectivity, Quasdmm Sam-
pling, and Loopy PropagatignTech. Report BT/PMR, University of
Séao Paulo, Brazil, 2004.

J. S.lde and F. G. Cozman, ‘Random generation of Bayemamorks’,
in Brazilian Symp. on Artificial IntelligenceSpringer-Verlag, (2002).
U. Kjaerulff, ‘Triangulation of graphs — algorithms gig small total
state space’, Technical Report R-90-09, Department of &fattics
and Computer Science, Aalborg University, Denmark, (Mdr@80).

J. G. Liao, ‘Variance reduction in Gibbs sampler usin@gsjuandom
numbers’,Journal of Computational and Graphical Statistic3),
253-266, (September 1998).

G. Melancon and M. Bousque-Melou, ‘Random generatibdays for
graph drawing’, Technical Report technical report INS-B®0Dutch
Research Center for Mathematical and Computer Science-(2000).
H. Niederreiter,Random Number Generation and Quasi-Monte Carlo
Methods volume 63 ofCBMS-NSF regional conference series in Appl.
Math., SIAM, Philadelphia, 1992.

J. Pearl, Probabilistic Reasoning in Intelligent Systemislorgan-
Kaufman, 1988.

S. |. Resnick,Adventures in Stochastic ProcessBi#khauser, Cam-
bridge, MA, USA; Berlin, Germany; Basel, Switzerland, 1992

R. W. Robinson, ‘Counting labeled acyclic digrapha’New Directions
in the Theory of Graph=ed., F. Harary, pp. 28-43, Michigan, (1973).
Academic Press.

S. M. RossStochastic Processedohn Wiley & Sons; New York, 1983.
P. Spirtes, C. Glymour, and R. Schein€gusation, Prediction, and
Search (second editionMIT Press, 2000.

Y. Xiang and T. Miller, ‘A well-behaved algorithm for iulating de-
pendence structure of Bayesian networks’|nternational Journal of
Applied Mathematigsvolume 1, pp. 923-932, (1999).

(2]
(3]

(5]
(6]

9]

