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Abstract. This paper presents two approximate algorithms for inference in graphi-

cal models for binary random variables and imprecise probability. Exact inference
in such models is extremely challenging in multiply-connected graphs. We describe
and implement two new approximate algorithms. The first one is the Iterated Partial
Evaluation (IPE) algorithm, directly based on the Localized Partial Evaluation (LPE)

technique. The second one is the Loopy 2U (L2U) algorithm, an extension of the
popular loopy belief propagation algorithm employed in Bayesian network inference.
Experiments show excellent performance for these algorithms.

1 Introduction

Graphical models associated with probabilities find widespread use in artificial intelligence,
both to represent and to reason about uncertainty. In this coBaygsian networkare the

most popular tool [17]. A Bayesian network is a directed acyclic graph, where each node is
associated with a random variable and each arc represents a direct probabilistic dependency.
A Bayesian network encodes a single joint distribution over all variables in the network, and
an inference is a computation of conditional probability for some event. Inference techniques
are well developed — among them, the junction tree algorithm [13] and variable elimina-
tion [7] are quite efficient methods.

In this paper we focus on situations where beliefs cannot be cast as sharp numeric values;
that is, we have imprecise and incomplete beliefs that do not constrain probability values up
to a single real number. Instead we consider sets of probability measures as suitable represen-
tations for beliefs. We deal with graphical models that represent uncertainty through sets of
probability measures — graphical models that are often referrediedal network$5, 10].

In a credal network, a collection of sets of probability measures is associated with a directed
acyclic graph. Inference in a credal network is the computation of lower and upper bounds
for the conditional probability of some event. The complexity of inference in credal networks
is generally high (even for tree-like networks [18]), and approximate inference seems to be a
natural solution for large networks [1].

This paper describes two new algorithms for approximate inference in large credal net-
works: the Iterated Partial Evaluation (IPE) and the Loopy 2U (L2U) algorithms. The first
algorithm is an extension dfocalized Partial EvaluatiofLPE), an algorithm for inference
in Bayesian networks [9]. The IPE algorithm produces an approximation by combining a
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sequence of partial evaluations; each one of these partial evaluations deals with a polytree-
shaped network with binary variables, a particular type of credal network for whickUhe
algorithm produces inferences in polynomial time [10]. The second algorithm is an exten-
sion ofloopy belief propagationa popular technique for approximate inference in Bayesian
networks [16]. Loopy belief propagation has had notable success for approximate inference
in Bayesian networks. We show how loopy belief propagation can be applied to credal net-
works and demonstrate that the result is an excellent method for approximate inference. We
note that both IPE and L2U are briefly sketched in a related paper [6]; in this paper we present
a complete derivation and discussion.

Sections 2 and 3 reviews basic facts about credal networks and the 2U algorithm respec-
tively. Sections 4 and 5 describe the IPE and L2U algorithms respectively; results and discus-
sions are presented in Section 6. Section 7 contains concluding remarks and a discussion of
future work.

2 Credal networks

In this section we present a few facts on credal networks (and their basic eleoredtd,
set9; a more detailed discussion can be found elsewhere [5, 10].

A convex set of probability distributions is callecceedal sef14]. A credal set for vari-
ableX is denoted by (X ); we assume that every variable is categorical and that every credal
set has a finite number of vertices. A conditional credal set is a set of conditional distributions,
obtained by applying Bayes rule to each distribution in a credal set of joint distributions [20].
Given a credal sek’(X') and a functionf (X ), thelowerandupperexpectations of (X ) are
defined respectively aB[f(X)] = minyx)exx) Ep[f(X)] and E[f(X)] = maxyx)ex(x)
E,[f(X)] (here E,[f(X)] indicates standard expectation). Tlwsver probability and the
upper probabilityof eventA are defined respectively d@(A) = minyx)exx) P(A) and
P(A) = maxyx)exx) P(A). Lower and upper conditional probabilities for a variable
given an event’ are defined accordingly:

- o . p(X = ZE,E)
P(X =z|E) = AT RE) (1)
PX —2|E) = max PE=TE) 2)

HX)EK(X) P(FE)

A credal networkis a directed acyclic graph where each node of the graph is associated
with a variableX; and with a collection of conditional credal sét3 X;|p(X;)), wherep(X;)
denotes the parents of; in the graph (note that we have a conditional credal set for each
value ofp(X;)). As an example, consider the “DogProblem” network (described by Charniak
[4]). This network is associated with binary variables; suppose that the variables are associ-
ated with the credal sets indicated in Figure 1. If we observe that the dog is barking (evidence
H = true), itis only possible to infer thaP(F = true|H = true) € [0.18,0.35].

Exact inference in general credal networks displays high complexity; even for polytree-
shaped credal networks, inference is a NP-complete problem [18]. Such a situation has led to
the development of several algorithms for approximate inference [3, 2, 1, 18, 19].
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Node Credal set

G F P(F=true) 0[0.15 0.25]
B P(B=true) (J[0.01 0.05]
L P(L=true/F=true) 0[0.8 0.9]

0 P(L=true/F=false) (J[0.01 0.1]
D P(D=true/F=true,B=true) 0[0.2 0.3]
P(D=true/F=true,B=false) (][0.9 0.95]

P(D=true/F=false,B=true) [0[0.05 0.1]

0 P(D=true/F=false,B=false) 0[0.6 0.7]
H P(H=true/D=true) J[0.6 0.7]

P(H=true/D=false) J[0.01 0.05]

Figure 1: Example of credal network: the DogProblem network, here associated with binary variables and
collections of credal sets. F:family-out, B:bowel-problem, L:light-on, D:dog-problem and H:hear-bark.

3 The 2U algorithm

In this paper, we present algorithms for inference in general credal networkdiwahy
variablest The focus on binary variables is justified given the importance of such variables in
qualitative reasoning, probabilistic logic and related fields [15]. Given that we rely critically
on the 2U algorithm, in this section we present a detailed account of this procedure.

The 2U algorithms is an exact interval propagation algorithms for polytrees with binary
variables [10]. This algorithm is a extension of Pearl’s belief propagation [17] to probability
intervals.

In Pearl's propagation, each nodé computes a belieBel(z) = P(X = z|E) =
am(X)A(X), combining messages from its children() and parentsiy), whereE denotes
the set of observed nodes ands a normalization constant [17]. To extend this algorithm
to credal sets, it is necessary to absorb the constaarsd 3 in order to computey( X |E)
by means of composition of independent terms [10]. Hence new message definitions and
formulas are derived as listed below:

We should note that several ideas in this paper are applicable to non-binary networks, even though actual
implementation leads to other complexity issues.
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1 1\ "
m(z) = Zp(x\U)Hﬂx(Ui% (4)
A = T]AY (5)
. —1
my,(x) = <1+<W(x) )Hk# ) , ©)
v plalu) + (A =1)7!
M= e T - )
p(X|U;) = Z p(X‘U)HT"X(Uk)- (8
Uy, £U; ki

In Equation (3), a new quantity* = % is defined (note that messages from Pearl’'s
belief propagation are replaced By. The r messages are computed using similar expres-
sions (Equation (4)). Messaga%_ from children are replaced b&{é. Messages sent to
parentsrty, (x) have new formulas (Equation (6)) as a functionAgfand messages sent to
children are written as functions afandp (Equations (7) and (8)).

The 2U algorithm modifies the messages (3)-(8) to account for probability intervals (note
that probability intervals are complete summaries of credal sets for binary variables):

1 1\
P(X =z|E) = (1 + <L — 1) i) B (10)
N N 7(z) A
a(z) = J et > o) [ rx (W), (11)
mx(uj) € {mx (uz), Tx (uj)} U i

7(z) = J et > p(z|U) HWX(UZ-), (12)

mx (uj) € {mx (u;), Tx (uj)}
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Table 1: Extreme values for the subproblem of Equations (15) and (16).
Different formulas depending on value &f

’\Ui TU'L
Ay (AY) Ay (AY)
X Blafug) +(AX —1)~! plalug) +(AX 1)~
AT <1 SEITar D @) (A —1)-1
AX =1 1
X pla|ui)+(AX=1)~1 Plalug)+(AX —1)~!
A>T AT plafu;) T(AX—1)-1
AY = T]AS. (13)
J
—X —X
A= T4 (14)
J
-1
(x) (H( ! 1) ! > (15)
Ty, \r) = — — x )
’ m(x) sz;&jAYk
—1
Ty (2) <1+(1 1) L ) (16)
Ty,(r) = 1) = ,
! T(z) [Tz Ay,

Equations (15) and (16) require the values:

min

v . - min i\ x
AX = jeA{l,...,n},j#1 AX ¢ {AX,KX} AX (A ) 9
wx (uj) € {mx(uz), Tx (uj)}
u max a —=U;
—u, max <U4 X
AX = JE{l yn}, i £ ( AX € A%, 5% AX (A )) )

mx (uj) € {mx (uj), Tx (uj)}

whereﬁ)U; (AY) and/A\g; (A*) are computed according to Table 1.

For each node, through Equations (11)-(16), lower and upper messages are computed, ba-
sically following the structure of Pearl’s propagation. Any node produces a local computation
and the global computation is concluded by updating all nodes in sequence.

4 L2U: Loopy 2U

A popular algorithm for inference in Bayesian network is loopy propagation [16]. Loopy
propagation applies Pearl’'s propagation to multiply connected networks. Here we describe a
“loopy” variant of the 2U algorithm for multiply connected binary credal networks. First, a
sequencé of nodes is randomly chosen, such that every node that is relevant to the inference
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L2U: Loopy 2U algorithm

01. Load the network;

02. Initialize nodes without parents and evidence nodes.

03. Choose arbitrarily a sequengdeing on a path in the network;

04. Repeat until the values converge or a time limit is reached:

05. for each nod& of the sequenc§, compute:

06. x(*V(z) and7(z) givenp(z|U), p(x|U) and messages from its
parentgrg?(Ui) ;

07.  AGDX and A"V given messages from its childr@f}?X ;

08.  messages to be sent to its childrgii ¥ (z) and7\." " (x) givenz“+) (x) and
7+ (), and messages from other childr@ﬁk)X anngX;
09. messages to be sent to its parexifs""”: andK?l)U", givenp(X|U)

given AUFDX, A and messages from other pare@%(Uk) andﬁg’?(Uk);
10. Compute the queried nodes belief intendalsX = z,|E) andP(X = z,|E),

givenx(z,), 7(z,), andA¥e, A7,

Figure 2: The L2U algorithm.

is in S. Initialization of variables and messages follows the same steps used in the 2U algo-

rithm. Then nodes are repeatedly updated following the sequeniterations are indexed

by 7, which starts at 1, and updates are repeated until convergence of probabilities is observed

or until a maximum number of iterations is reached. The algorithm is presented at Figure 2.
The whole algorithm follows the loopy propagation scheme, but instead of messages from

Pearl’s propagation algorithm, here we use interval messages from the 2U algorithm. As in

Pearl’'s algorithm, nodes without parents and observed nodes are initialized (line 02), but

here with some modifications given the new formulas for messages. If axiaslebserved

and set to value;, thenAX = X\(z)/\(z) = 1/0 = oo; and if it is observed tar, then

A* = Xz)/Mz) = 0/1 = 0. In lines 06 and 07 messages are updated given the messages

from parents and children of nodé (Equations (11)-(14)), and in lines 08 and 09 messages

to be sentto its parents and children (Equations (13)-(16)) are updated. Computation of Equa-

tions (9) and (10) for each node require a search wi2hielements, where is the number

of parents. Computation of Equations (15) and (16) require a search Withirelements.

Therefore, the overall complexity of L2U algorithm@¥ k x 22"ma=) in the worst case, where

k is the number of iterations and,,, is the maximum number of parents that a node can

have.

5 lIterated Partial Evaluation (IPE)

Draper and Hank’s Localized Partial Evaluation (LPE) algorithm produces approximate in-
ferences by “cutting” local parts of a network and running interval-based inferences in a
selected sub-network [9]. Our proposal is to compute inferences for parts of a network that
form a polytree. We thus selectcatset [17] of the network; we then create a polytree by
cutting arcs from the variables in the cutset — these arenilssing arcsn localized partial
evaluation [9]. Figure 3 illustrates the process. LPE algorithm is then run on the polytree,
but note that in binary networks we can use the 2U algorithm for these interval-based infer-
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L

Figure 3: An example ofmissing arcgdashed lines). Left: the multi-connected network; Right: the messages
over the missing arcs.

IPE: Iterated Partial Evaluation algorithm

01. Load the networkv;

02. Initialize nodes without parents and evidence nddes

03. Repeat times:

04. find acutset and construct a polytre® , replacing some arcs by missing args;

05. for each polytreéV; , repeat 2U propagation and complBelN;i (x) of each
variableX.

06. Obtain the intersection @ely, (x) and compute3ely; (z).

Figure 4: The IPE algorithm.

ences. Using the 2U algorithm as the inference engine and in polynomial time, we obtain an
approximate probability interval for any node in the credal network. The idea of the IPE algo-
rithm is to repeat this process for several cutsets and to return the intersection of the resulting
intervals.

The IPE algorithm is described in Figure 4. DenoteNoyhe original credal network and
by N, a polytree obtained by deletion of missing arcs (given a cutset). In line 02, messages
are initialized as in the L2U algorithm. In line 04, messages of missing arcs are set as follows:
messages to be sent to its childreq, (v) = 0 and7y,(x) = 1; and messages from other

chiIdrenA@fk =0 andKﬁk = o0o. Messages of missing arcs are not updated. We repeat lines
04 and 05 times, updating messages of each variable and for each variable, we compute
Bely, (). Line 06 produces the intersection of intervaisly. (x) obtained in each itera-

tion 4; thus we get at the end an intervakly. (). Consider that intervaBely(z) has the

extremesP (X = z|E) andP(X = z|E); then:

Theorem 1. The probability interval produced by the IPE algorithiig/ - (x), contains the
exact intervalBel y (x) requested by the inference.

Sketch of proofThe interval of each run of LPE, for each set of missing arcs, con-
tains the point probability of an original Bayesian network defined by the credal network
[8] — in credal networks, we know that the extreme valuesefy(x) (P(X = z|F) and
P(X = z|E)) are computed from one combination of the local credal sets [10]. Then, the
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Figure 5: Experiments: (a) Pyramid network, with 20 variables, no evidence, 100 iterations and MSE=5,1%; (b)
"Binarized” Alarm network, with 37 variables, no evidence, 100 iterations and MSE=7,2%.

interval of all point probability combinationdel . (x), always contains the extreme values
of Bely(z), and the intervaBel v (x) obtained from intersection of all approximate intervals
contains the exact interval. QED

6 Tests and results

We have implemented the IPE algorithm and run experiments in the network topologies em-
ployed by Murphy [16] to test loopy propagation: the Pyramid and Alarm networks. The
Pyramid network is a multilayered graph associated with binary variables and local connec-
tions among layers. The Alarm network is a classic model used in medical diagnostic; we set
all variables to binary values, so as to run IPE algorithm. For both networks, we generated
several realizations of random, uniformly distributed conditional probability tables [12, 11].
Results can be viewed in Figure 5; most inferences are quite accurate, with mean square error
(MSE) of 5% for Pyramid and 7.2% for Alarm.

The L2U algorithm was also implemented and tests were conducted in the same networks
used to test the IPE algorithm. The L2U algorithm converges after 4 iterations in the Pyramid
network, and after 9 iterations in "binarized” Alarm network. The mean square error (MSE)
of several approximate inferences was only 1.3% for both networks; these results can be
viewed in Figure 6. It should be noted that L2U generally produces approximate inferences
quite quickly: inferences (in all variables) for the "binarized” Alarm network were produced
in less than one second in a Pentium computer.

We also performed tests in very large and connected credal networks, and we obtained
surprising results. For a very connected random network with 50 nodes, binary variables and
induced width of 10, we obtained convergence with L2U in 13 iterations (about 8 minutes of
processing timej.

2There is no way to quantify the accuracy of this result at this point, as there is no exact algorithm that can
handle such networks.
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Figure 6: Experiments: (a) Pyramid network, with 20 variables, no evidence, and 4 iterations;(b) "Binarized”
Alarm network, with 37 variables, no evidence, and 9 iterations.

Overall, the L2U algorithm is fast and returns satisfactory results, with low errors. How-
ever it displays the same disadvantage of all loopy propagation algorithms: there are no the-
oretical guarantees about convergence. On other hand, the IPE algorithm gives bounds that
always contain the right answer.

7 Conclusion

This paper describes in detail two new algorithms for approximate inference in credal net-
works: the IPE and L2U algorithms. Their implementations are limited to networks with
binary variables as they make critical use of the polynomial character of the 2U algorithm.
However, the central ideas in IPE and L2U are not limited to binary networks, and could be
extended, in future work, to more general kinds of networks.

The L2U algorithm is particularly promising for practical application, even though a solid
convergence analysis is missing at this point. Clearly several challenges are yet to be over-
come, but it seems that the algorithms presented here are viable methods for fast inference in
large credal networks.
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