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Abstract

Partially ordered preferences generally lead to
choices that do not abide by standard expected util-
ity guidelines; often such preferences are revealed
by imprecision in probability values. We investi-
gate five criteria for strategy selection in decision
trees with imprecision in probabilities: “extensive”
I'-maximin and I'-maximax, interval dominance,
maximality and E-admissibility. We present algo-
rithms that generate strategies for all these crite-
ria; our main contribution is an algorithm for E-
admissibility that runs over admissible strategies
rather than over sets of probability distributions.

1 Introduction

A rational agent is often expected to comply with strict guide-
lines concerning decisions: acts are encoded as functions
from states to consequences, consequences are measured by
utilities, and utilities are weighted by probabilities. The ratio-
nal agent is then assumed to have a complete order that ranks
all acts: any two decisions can be compared, and either one
is better than the other, or the two are equivalent. Preferences
are then revealed by the agent’s consistent pattern of choice
among acts [Samuelson, 1948].

In this paper we wish to explore situations where prefer-
ences are partially ordered: given two acts, the agent may
prefer one to the other, or find them to be equivalent, or
find them to be incomparable. In this paper we want to re-
strict attention to models that assume a unigue utility func-
tion (up to a linear transformation) but that contemplate non-
unique probability values as a source of partially ordered
preferences [Jaffray, 1999; Machina, 1989; Seidenfeld, 2004;
Walley, 1991]. Imprecise beliefs may arise from an incom-
plete understanding of a decision situation, from lack of prior
knowledge or empirical data, from disagreements between
experts, or from lack of resources for a complete elicitation
procedure [Walley, 1991]. A gradual assessment of pref-
erences may in fact create intermediate models that are in-
complete but that are still useful for decisions [Wang and
Boutilier, 2003]. Whatever may be its origin, imprecise be-
liefs represented by a set of probability measures lead to par-
tially ordered preferences because each probability measure
in the set may create a different complete ordering among
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acts: the intersection of these complete ordering is the agent’s
partial ordering.

Thus our agents express their partially ordered preferences
by precise utilities and imprecise beliefs. Consider first the
static scenario where the agent must select a single act.
The agent may select an act that maximizes the minimum
expected utility. This solution is called a I'-maximin one
[Berger, 1985; Gilboa and Schmeidler, 1989]. An alterna-
tive solution is to find a set of acts such that any act in the
set is an optimal act with respect to at least a probability
measure in the set of possible probability measures. Such
acts are called E-admissible [Levi, 1980]. Other solutions,
such as maximality and interval dominance, can be found
in the literature, and there is considerable debate on which
solution should be adopted in practice [Seidenfeld, 2004;
Troffaes, 2004].

In this paper we focus on the more complex dynamic sit-
uation, where a decision tree represents a sequential deci-
sion problem with imprecise probabilities. We present algo-
rithms for computing strategies under “extensive” I'-maximin
and I'-maximax, interval dominance, maximality and E-
admissibility — we develop these algorithms within a mul-
tilinear programming framework. Our main contribution is
an algorithm for E-admissibility whose complexity depends
essentially on the number of admissible strategies — thus
avoiding a direct dependency on the potentially high com-
plexity of the underlying set of probabilities.

Section 2 briefly reviews the basics of decision trees and
sets of probabilities. Section 3 presents several algorithms
that handle decision trees from different perspectives. Section
4 presents examples that illustrate our methods, and Section
5 concludes the paper.

2 Decision trees and credal sets

A decision tree represents a sequential decision problem us-
ing nodes (choice, chance and value nodes) and arcs between
nodes [Raiffa, 1968]. Arcs indicate possible decisions (when
coming out of choice nodes) or possible states (when com-
ing out of chance nodes). A chance node is associated with
probability values, and value nodes are associated with utility
values.

An obvious solution method for solving a standard deci-
sion tree is by complete enumeration of all strategies (equiv-
alent to the representation of games in normal form [Luce



Figure 1: Decision tree for Example 1.

and Raiffa, 1957]). Explicit enumeration clearly becomes in-
feasible for large problems. A better approach is to take the
principle of dynamic feasibility': to assess sub-strategy s at a
choice node n — 1, one has to anticipate how one will choose
at (potential) “future” choice nodes n, and declare infeasi-
ble all future alternatives under s which are inadmissible at n
[Seidenfeld, 1988].

Example 1 Figure 1 depicts a sequential decision problem,
adapted from [Seidenfeld, 2004]. The chance node C is the
toss of a fair coin with probability of 0.5 for heads or tails
(g = 1 — g = 0.5). Suppose that p is a precise probability
value, say 0.25. At the initial choice node, there are four op-
tions. We must pay 0.4 utiles to take 1, 2a or 2b, and we pay
0.35 utiles to take decision 3. At D; we have twelve strate-
gies to evaluate. Using dynamic feasibility, we only have to
evaluate four strategies (1, 2a, 2b,(3, 3.b, 3.a)).

In this paper we only consider methods that employ dy-
namic feasibility. Some solutions, such as I'-maximin, pro-
duce strategies under dynamic feasibility that are not identi-
cal to strategies produced in the normal form (that is, when all
strategies are enumerated) [Seidenfeld, 2004]. We focus on
dynamic feasibility solutions for computational reasons: it is
impractical to enumerate all strategies as decision trees grow
larger. That is, we always work with the “extensive” form of
decision trees.

""This principle is also known as backward induction or is simply
taken as the basis for dynamic programming.

In this paper we wish to study situations where a chance
node is not associated with a single probability measure, but
rather with intervals or sets of measures. Such represen-
tations encode partially-ordered preferences [Walley, 1991;
Seidenfeld, 1995]; here we briefly review essential concepts
concerning sets of probabilities.

A credal set K(X) is a set of probability distributions (or
measures) for random variable X [Levi, 1980]. A credal set
captures imprecision in probability values; given a credal set
and a function f(X), one may compute lower expectations
E[f(X)] = inf E[f(X)] and upper expectations E[f(X)] =
sup E[f(X)], where E[f(X)] denotes standard expectation.
Lower and upper probabilities are defined similarly [Giron
and Rios, 1980; Walley, 1991]. A conditional credal set is ob-
tained by applying Bayes rule to every distribution in a credal
set. We adopt the following definition of independence, usu-
ally referred to as strong independence: two variables X and
Y are strongly independent when the credal set K (X, Y") has
all vertices satisfying stochastic independence of X and Y
(that is, all vertices factorize as P(X) P(Y")) [Couso et al.,
2000; Cozman, 2000].

In this paper we assume that all variables are categorical.
We also assume that credal sets are closed and convex with
finitely many vertices. Finally, we assume that any condi-
tioning event has lower probability strictly larger than zero.

3 Algorithmsfor decision trees associated
with credal sets

In this section we present algorithms that produce one or sev-
eral strategies for a given decision tree associated with im-
precise probabilities — that is, chance nodes are associated
with credal sets. We start with the relatively simple “exten-
sive” I'-maximin and I'-maximax solutions (here “extensive”
indicates that solutions are not necessarily valid for the nor-
mal form, but they are valid in an extensive form employing
dynamic feasibility). We then consider interval dominance,
maximality and E-admissibility solutions — all of which typ-
ically produce sets of strategies [Troffaes, 2004].

Given our reliance on dynamic feasibility, all solutions fol-
low a iterative plan: start with the leaves of the tree, and grad-
ually build the partial strategies that are admissible from a
certain point on. The skeleton of the procedure is as follows:

DECISIONTREE (decisiontree)

1 for each decision node D from depth N to 1 do
2 Aux «— null;

3 for each branch i of D do

4 if i links D to a choice node then

5 Aux < Aux U STRATEGIES(%);

6 elseif i links D to a chance node then

7 Aux < Aux U COMBINATION(%);

8 else//value node

9 Aux < Aux U ;

10 endif

11 endfor

12 X.Adm «— CRITERION—X(AUX);
13 endfor

14 return STRATEGIES(root of the decision tree);

The function STRATEGIES receives a decision node and
returns a list of admissible strategies. The function COM-



BINATION receives a chance node and makes recursively the
combination of all admissible strategies available on decision
nodes and value nodes. These functions simply build lists of
admissible strategies as the algorithm proceeds.

The function CRITERION-X is a generic function that
must be properly implemented to select all valid strategies
in an array of strategies. This function is implemented in sev-
eral forms in the remainder of this section, replacing X by the
appropriated criteria.

Variable Auz is an array of strategies. Each strategy is de-
fined by an array of choices; in Example 1, we have strategies
(3,3.b,3.b) and (3, 3.a, 3.b), among others.

It is important to understand that a strategy defines a mul-
tilinear constraint as long as the probabilities that influence
the strategy are imprecise. Consider for instance the strat-
egy (3, 3.a, 3.b) in Example 1. If probabilities ¢ and p are
interval-valued, then the value of the strategy is the multilin-
ear expression pq + (1 — p)(1 — q). All algorithms presented
in this paper require the computation of upper and lower ex-
pectations for strategies or algebraic operations on strategies;
these upper and lower expectations are obtained by multilin-
ear programming. To compute an upper expectation, it is nec-
essary to maximize a multilinear function subject to whatever
constraints are imposed on probability values.

In some problems it may be the case that the necessary
probabilities are not directly specified and must be gener-
ated through Bayes rule. For example, it may be necessary
to manipulate P(X|Y") for variables X and Y, but the deci-
sion tree may be associated with probabilities P(Y'|X) and
P(X) — this is particularly common in influence diagrams.
If P(Y|X) and P(X) are precisely specified, direct appli-
cation of Bayes rule yields P(X|Y). If P(Y|X) or P(X)
are only specified up to constraints, then it is necessary to
manipulate values of P(Y'|X) as unknowns and to introduce
the multilinear constraints P(Y'|X) P(X) = P(X|Y) P(Y).
Note that this constraint corresponds to Bayes rule.

To solve multilinear programs, we have used Sherali and
Tuncbilek’s Reformulation-Linearization (RL) method [Sher-
ali, 1992] in our implementation. The RL method substitutes
each product of variables [, ; 0; by a new artificial vari-
able 9 5, for all terms ¢ in the problem, thus obtaining a linear
program. The solution of each linear problem gives an up-
per bound to the solution of the multilinear problem. The
method iterates over the variables by branching over their
ranges whenever necessary, until each 9, is close enough
to [[ ¢, 0j. We have used the same method for computa-
tion of upper and lower conditional probabilities in multivari-
ate models with remarkable success [Campos and Cozman,
20041.

3.1 I'-Maximin and I'-M aximax

The I'maximin criterion selects the strategy with highest
lower expected value — a “pessimistic” solution [Berger,
1985; Gilboa and Schmeidler, 1989]. In a sequential setting,
the “extensive” I'-maximin solution is to take, at each choice
node, the I'-maximin solution at that point (this may be differ-
ent from the normal form) [Jaffray, 1999; Seidenfeld, 1995].
The I'-maximax criterion selects the strategy with highest up-
per expected value — certainly a very “optimistic” solution

[Satia and Lave, 1973].

This “extensive” form of I'-maximin leads to a procedure
that selects a single strategy for any given set of strategies.
Note that there may be several strategies with the same high-
est lower expected value, but these are all equivalent for this
criterion. The resulting algorithm is computationally simple
and similar to solution of standard decision trees; the only
difference is that the computation of a lower expectation re-
quires multilinear programming.

CRITERION-T'-MAXIMIN (Auz)
1 S nmull;MS+— —oc;

2 for each sin Aux do

3 if E[s] > MSthen

4 S— sMS— E[S];

5 endif

6 endfor

7  return MS

The I'-maximax solution has the same structure, but in-
stead of comparing lower expectations in line 3, we must
compare upper expectations. Both the I'-maximin and the I"-
maximax lead to a single strategy, even though the underlying
preferences are partially ordered.

3.2 Interval dominance

Interval dominance classifies admissible choices according to
astrict partial ordering. The ordering is generated by pairwise
comparison. Given two strategies r and s, if E[r] > EJs],
then s is inadmissible. The set of admissible strategies con-
sists of those strategies not classified as inadmissible [Trof-
faes, 2004]. The algorithm is quite simple, again requiring
multilinear programming. In this algorithm we associate an
“attribute” admissible to each strategy.

CRITERION-INTERVAL DOMINANCE (Aux)

1 MS -« CRITERION-GAMMA-MAXIMIN(Auz);
2 for i running over every strategy in Aux do

3 if E[MS] > E[Aux(i]] then

4 Aux[i].admissible < false,

5 endif

6 endfor

7 return All alternatives not marked as false;

This algorithm avoids unnecessary computations of upper
and lower expected values: instead of conducting explicit
pairwise comparisons, it uses the I'-maximin solution to yield
a linear number of multilinear programs (linear on the num-
ber of possible strategies). To show that the algorithm is cor-
rect, note that the choice with maximum lower expectation
is always admissible according to interval dominance crite-
rion, and the comparison of all strategies with the I"-maximin
strategy is sufficient for determine the admissible ones.

3.3 Maximality

The maximality criterion is also based on pairwise compar-
isons between strategies. Consider that a credal set represents
the imprecise beliefs of a particular problem. A strategy r is
maximal provided that there is no strategy s such that, for
each probability measure P in the credal set, the expected
value Fpls| is larger than Ep[r]. The maximality criterion



prescribes that any maximal strategy can be selected by a ra-
tional agent; the computational problem is to generate the set
of maximal strategies.

CRITERION-MAXIMALITY (Auz)

1 N <« Number of strategies in Aux;

2 fori=1...N-1do

3 forj=i+1...Ndo

4 if E[Aux[i] — Auz[j]] > 0then

5 Auz[j].admissible = false,

6 dseif E[Auz[i] — Auz[j]] < 0 then
7 Auzl[i].admissible = false

8 endif

9 endfor

10 endfor

11 return All alternatives not marked as false;

The algorithm CRITERION—-MAXIMALITY compares any
pair of strategies only once. If we know the upper/lower value
for E[s; — s;], we also know whether one dominates the other
and we do not need to evaluate E[s; — s;]. The term (s; — s;)
refers to a multilinear expression, obtained by subtracting the
multilinear expression of s; from the multilinear expression
of s;, and of course retaining all constraints on probability
values in these expressions. To verify whether IV alternatives
are admissible, the algorithm runs through at most O(N?)
multilinear problems.

3.4 E-Admissibility

The criterion of E-Admissibility restricts the decision maker’s
admissible choices to those that are Bayes for at least one
probability measure P in the relevant credal sets. That is,
given a choice set S of feasible strategies and a credal set
K representing imprecise beliefs, the strategy s € S is E-
admissible when, for at least one P € K, s maximizes ex-
pected utility [Schervish et al., 2003]:

&= U arg max(E[s])
peK

If neither option s; or s; is E-admissible, then their con-
vex combination as; & (1 — a)s; is not E-admissible. The
following fact, similar to the usual decision tree construction,
is also true. Let £ be the set of E-admissible strategies and
=& the set of E-inadmissible alternatives in a subtree D’ of
a decision tree D. A strategy s; € —& in D’ cannot be a
substrategy of an E-admissible strategy in D; that is, if we
detect that a substrategy is not E-admissible in a subtree, we
can discard any strategy that “contains’ it.

At first one may think that E-admissibility is qualitatively
different from the previous criteria, because it does not di-
rectly compare strategies. Rather, E-admissibility looks at
distributions on the underlying credal set, and compares
strategies for all distributions. Thus one might think that E-
admissibility is much more difficult to handle than the pre-
vious criteria; in fact this seems to be the existing consensus
on the issue [Troffaes, 2004]. However we wish to demon-
strate that E-admissibility can also be expressed using pair-
wise comparisons, when one works in our multilinear pro-
gramming framework.

For each strategy s, we are interested in finding a probabil-
ity distribution for which s is optimal in the standard expected

utility sense. If this probability distribution exists, then s is
E-admissible. That s, strategy s; € S is E-admissible if there
exists a P € K such that for all s; € S, s; # s;, we have
E[s; — sj] > 0. These (multilinear) constraints must all be
satisfied to show that s; is E-admissible; if the constraints
cannot be satisfied, then s; is not E-admissible. We thus ob-
tain the following algorithm, where LR is a list of constraints
produced by pairs of strategies:

CRITERION-E-ADMISSIBILITY (Aux)

1 N <« Number of strategies in Aux;

2 fori=1...Ndo

3 LR « null;

4 forj=1...Ndo

5 ifi #jthen

6 LR — LRU E[Aux[i] — Auz[j]] > 0;
7 endif

8 endfor

9 Q < set of all constraints on probability values plus LR;
10 P «— arg max, E[s;] s.t. constraints on Q;
11 if P is non-null then

12 Auzl[i].admissible = true,

13 else

14 Auz[i].admissible = falsg;

15 endif

16 endfor

17 return All alternatives not marked as false;

Lines 3 to 8 generate all constraints that are required to sat-
isfy E-admissibility of a strategy s;, and line 9 collects con-
straints on probabilities. Line 10 requires the solution of a
multilinear program. We emphasize that the whole algorithm
depends on N, the number of strategies, and not directly on
the number distributions in the credal sets. Even though the
properties of the credal sets certainly affect the solution of
the relevant multilinear programs, there is no need to repre-
sent the credal sets explicitly, or to enumerate their vertices —
steps that are necessary in existing methods [Troffaes, 2004].
In a sense, the complexity of credal sets is “hidden” within
the multilinear programs. This raises the question of how
efficient can be multilinear programming; we mention that
previous work has indicated that state-of-the-art multilinear
programming methods can handle problems containing hun-
dreds of variables [Campos and Cozman, 2004].

4 Examples

In this section we apply the various decision criteria to two
problems where beliefs are represented by credal sets. We
start by analyzing the example presented in Section 2, with a
small change: instead of adopting precise probability values,
we take ¢ € [0.4,0.5] and p € [0.25,0.75].

Algorithm DECISIONTREE begins evaluation at D3. The
array Auz contains three strategies (3.1), (3.2a) and (3.2b).
Function COMBINATION is called twice, producing expres-
sions: (3.2a) = px14+(1—p)=0 and (3.2b) = (1—p)*1+p*0.
The choice node D5 is analogous to Ds. At D, the func-
tion COMBINATION generates the following multilinear ex-
pressions for strategies 2.a and 2.b: E[2.a] = ¢ * (p *
1+ 1 -p*x0)+ (1 —q) *x(px0+ (1 —p)=*1)and
E[2.0] = gx(p*x0+(1—p)*1)+ (1 —q)* (px1+(1—p)*0).
Note that upper and lower expectations are obtained through



the maximization and minimization of these expressions sub-
jectto 0.25 < p < 0.75and 0.4 < g < 0.5. At sequential
option 3, the function COMBINATION combines all admissi-
ble strategies (those returned by CRITERION—X in the previ-
ous steps). The function CRITERION-X is called once more
and finally, the function STRATEGIES returns the admissible
strategies.

The evaluation by I'-Maximin in our example yields strat-
egy (2.a) or (2.b) or (3, (3.1,3.1)) with a payoff of 0.05 units
each. This example shows that sometimes the I'-Maximin cri-
terion may display somewhat strange behavior: while choices
(3.2a) and (3.2b) are inadmissible at D5 and D3, their com-
bination is the same as (2a) and (2b) which are admissible at
D1 [Seidenfeld, 2004]. Using I'-Maximax at D and D3 we
have two admissible alternatives: (3.2a) and (3.2b).

Using interval dominance at decision nodes Dy and D3, we
have that all strategies are admissible, thus, at decision node
D, we have nine possible combinations for the fourth deci-
sion plus the three first strategies. At node D, we obtain that
strategies (1) and (3,(3.1,3.1)) are dominated. From the re-
maining strategies, four of them have E[s] € [—0.04,0.26]
(combinations between the decision (3.1) and the options
(3.2a) or (3.2b)), two have E[s] = [—0.1,0.4] (same choice
at Dy and D3) and the last two have E[s] € [0.1,0.2].

According to the maximality criterion, we also have nine
possible combinations at D; for the fourth decision. The
dominated strategies are (1), (2a), (2b) and (3, (3.1,3.1)). The
other eight strategies are admissible.

Finally, if we use E-admissibility in the sequential option
3, the first of these (3.1) is E-inadmissible. Thus, at the initial
node we have the first three alternatives plus the four possible
combinations for the fourth option. Applying E-admissibility
on these strategies we have the first three inadmissible. Two
have E[s] € [—0.1,0.4] (same choice at Dy and D3) and the
other two have E[s] € [0.1,0.2].

Consider now a second example, the classic oil wildcatter
problem, but with probability intervals. The problem is as
follows. An oil wildcatter must decide either to drill or not to
drill. The cost of drilling is $70,000. If the decision is to drill,
the hole may be wet, dry or soak with a return of $120,000,
$0, and $270,000, respectively. At the cost of $10,000, the
oil wildcatter could decide to take seismic soundings of the
geological structure at the site. The soundings will disclose
whether the terrain has no structure (almost no hope for oil),
closed structure (indication for much oil) or an open structure
(indication for some oil). Table 1 shows conditional proba-
bilities (as interval-valued probabilities); take that prior prob-
abilities of the test on no structure, open structure and closed
structure are interval-valued as [0.181,0.222], [0.333,0.363]
and [0.444, 0.454].

Table 1: Conditional probabilities for the oil wildcatter prob-
lem.

S|T dry wet soak

no | [0.500,0.666] [0.222,0.272] [0.125,0.181]
open | [0.222,0.333] [0.363,0.444] [0.250,0.363]
closed | [0.111,0.166] [0.333,0.363] [0.454,0.625]

Figure 2 shows the decision tree for this problem.

not drill $0

$270,000
$120,000
$0
$0
$270,000
$120,000
$0
$0
$270,000
$120,000
$0
$0
$270,000
$120,000
$0

no sounding

sounding
-$10,000

Figure 2: Decision tree for the oil wildcatter problem.

We solve this problem using a criterion that produces a sin-
gle strategy (I'-maximin) and a criterion that produces several
strategies (E-Admissibility). Using I'-maximin we start by
finding the upper and lower expectations at Dy, D3, Dy, Ds,
thatis, maxs(3_ g pi * E;) and ming (3° g pi * E;) sub-
ject to Zm =1, p; > 0. The admissible strategies in these
nodes are respectively: (drill), (not drill), (drill) and (drill). At
decision node D; we have just two strategies (two multilinear
programs to solve): s; = {ns,d} and so = {s, (d,n,d,d)}.
Choosing s; we obtain the expectation [20, 000, 32, 000] and,
choosing ss the expectation is [25, 537.19, 42, 626.26]. Thus,
according to I'-maximin, the best option is take the strategy
s2. According to E-admissibility, the admissible strategies
at Dy, D3, Dy, Dy are: (drill), (not drill) or (drill), (drill)
and (drill). At D; the strategies are s1 = {ns,d},ss =
{s,(d,n,d,d)} and s3 = {s,(d,d,d,d)}. All three are ad-
missible, that is, these strategies can produce a maximal ex-
pectation for some probability p.

5 Conclusion

In this paper we have presented algorithms for strategy gen-
eration in decision trees associated with imprecise beliefs. As
such decision trees represent partially ordered preferences,
there are several criteria that can be used to generate strate-
gies. The paper contributes in two ways:

1. It presents a multilinear programming framework for
strategy generation. We emphasize that existing tech-
niques for multilinear programming can handle prob-
lems with hundreds of variables [Campos and Cozman,
2004], thus guaranteeing that our algorithms can be ap-
plied to large problems.

2. It presents an algorithm for E-admissibility that depends
essentially on the number of strategies to be compared,
and not so much on the underlying credal set.

Given the diversity of criteria, one may wonder whether there
is a “best criterion” in the field. The following comments
may be relevant to this question. It seems that ['-maximin is



appealing conceptually, and relatively simple from a compu-
tational point of view — but “extensive” I'-maximin solutions
can be incoherent in a sequential manner [Seidenfeld, 2004].
The I'-maximax criterion seems too optimistic, even though it
may be appropriate in some situations [Satia and Lave, 1973].
The other three criteria, interval dominance, maximality and
E-admissibility, produce sets of strategies with increasing se-
lectivity — that is, they are progressively more faithful to the
partial order of preferences. In particular, E-admissibiliy does
reveal the partial order of preferences in its sets of admissible
strategies. Our results show that interval dominance is linear
while maximality and E-admissibility are quadratic (here lin-
ear and quadratic are used informally to refer to the number
and size of multilinear programs). This is a significantly sim-
pler picture than previously believed [Troffaes, 2004]. Al-
together, E-admissibility emerges as a conceptually elegant
and computationally feasible criterion for decision trees with
imprecise probabilities.
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