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Abstract. Predicting potential links between unconnected nodes in a network,
as collaboration networks, is a problem of great practical interest. Link predic-
tion is mostly based on graph-based features and recently, on approaches that
consider semantics of the domain. However, there is uncertainty in these pre-
dictions and considering it, can improve the prediction results. In this paper,
we propose an algorithm for link prediction that uses a probabilistic ontology
described with the probabilistic description logic CRALC. Moreover, our ap-
proach is scalable through a combination with graph-based features. A dataset
based on the Lattes curriculum platform is used to evaluate empirically our
proposal.

1. Introduction

Many social, biological, and information systems can be well described by networks,
where nodes represent objects (individuals), and links denote the relations or inter-
actions between nodes. Predicting a possible link in a network is an interesting
issue that has recently gained attention, due to the growing interest in social net-
works. For instance, one may be interested in finding potential friendship between
two persons in a social network, or a potential collaboration between two researchers.
Thus link prediction [Liben-Nowell and Kleinberg 2003, Taskar et al. 2003] aims at pre-
dicting whether two nodes (i.e., people) should be connected given that we know
previous information about their relationships or interests. A common approach is
to exploit the network structure, where numerical information about nodes is ana-
lyzed [Liben-Nowell and Kleinberg 2003, Taskar et al. 2003, Hsu et al. 2006]. However,
knowledge about the objects represented in the nodes can improve prediction results. For
instance consider that the researchers Joe and Mike do not have a publication in common,
thus they do not share a link in a collaboration network. Moreover, graph features do not
indicate a potential link between them. However, they have published in the same journal
and they both teach the same course in their respectively universities. This information
can be an indication of a potential collaboration between them. Given this, approaches
that are based on the semantics related to the domain of the objects represented by the
nodes [Wohlfarth and Ichise 2008, Sachan and Ichise 2011] have been proposed. In some
of them, an ontology modeling the domain and the object interests were used in the pre-
diction task.



However, there is uncertainty in such predictions. Often, it is not possible to guar-
antee the relationship between two objects (nodes). This is maybe due to the fact that in-
formation about the domain is incomplete. Thus, it would be interesting if link prediction
approaches could handle the probability of a link conditioned on the information about the
domain. In our example, knowing that the probability of the relationship between Joe and
Mike conditioned on the knowledge of them publishing in the same journal and teaching
the same course is high implies a link between them in the network; otherwise, a link
is not suggested. In graph-based approaches, probabilistic models learned through ma-
chine learning algorithms were used for link prediction. Some examples of probabilistic
models are Probabilistic Relational Model (PRM) [Friedman et al. 1999], Probabilistic
Entity Relationship Model (PERM) [Heckerman et al. 2004] and Stochastic Relational
Model (SRM) [Yu et al. 2006]. On approaches based on semantics we claim that ontolo-
gies must be used to model the domain. Therefore, to model uncertainty, probabilistic
approaches, such as probabilistic ontologies, must be considered.

An ontology can be represented through a description logic
[Baader and Nutt 2002], which is typically a decidable fragment of first-order logic
that tries to reach a practical balance between expressivity and complexity. To encode
uncertainty, a probabilistic description logic (PDL) must be contemplated. The literature
contains a number of proposals for PDLs [Heinsohn 1994, Jaeger 1994, Sebastiani 1994].
In this paper we adopt a recently proposed PDL, called Credal ALC (CRALC)
[Cozman and Polastro 2008, Polastro and Cozman 2008, Cozman and Polastro 2009],
that extends the popular logic ALC [Baader and Nutt 2002]. In CRALC one can
specify sentences such as P(Professor|Researcher) = 0.4, indicating the proba-
bility that an element of the domain is a Professor given that it is a Researcher.
These sentences are called probabilistic inclusions. Exact and approximate in-
ference algorithms that deal with probabilistic inclusions have been proposed
[Cozman and Polastro 2008, Cozman and Polastro 2009], using ideas inherited from the
theory of Relational Bayesian Networks (RBN)[Jaeger 2002].

In this paper, we propose to use a probabilistic ontology defined with the PDL
CRALC for semantic link prediction. Moreover, we combine it with graph-based ap-
proaches in order to make our proposal scalable.

The paper is organized as follows. Section 2 reviews basic concepts of PDLs and
CRALC. Section 3 presents our algorithm for semantic link prediction through the PDL
CRALC. Experiments are discussed in Section 4, and Section 5 concludes the paper.

2. Probabilistic Description Logics and CRALC

Description logics (DLs) form a family of representation languages that are typically de-
cidable fragments of first order logic (FOL) [Baader and Nutt 2002]. Knowledge is ex-
pressed in terms of individuals, concepts, and roles. The semantics of a description is
given by a domain D (a set) and an interpretation -* (a functor). Individuals represent ob-
jects through names from a set N} = {a, b, ...}. Each concept in the set Nc = {C, D, ...}
is interpreted as a subset of a domain D. Each role in the set Ng = {r, s, ...} is interpreted
as a binary relation on the domain.

Several probabilistic descriptions logics (PDLs) have appeared in the literature.
Heinsohn [Heinsohn 1994], Jaeger [Jaeger 1994] and Sebastiani [Sebastiani 1994] con-



sider probabilistic inclusion axioms such as Pp(Professor) = «, meaning that a randomly
selected object is a Professor with probability «.. This characterizes a domain-based se-
mantic: probabilities are assigned to subsets of the domain D. Sebastiani also allows
inclusions such as P(Professor(John)) = «, specifying probabilities over the interpreta-
tions themselves. For example, one interprets P(Professor(John)) = 0.001 as assigning
0.001 to be the probability of the set of interpretations where John is a Professor. This
characterizes an interpretation-based semantic.

The PDL CRALC is a probabilistic extension of the DL ALC that adopts an
interpretation-based semantic. It keeps all constructors of ALC, but only allows con-
cept names on the left hand side of inclusions/definitions. Additionally, in CRALC one
can have probabilistic inclusions such as P(C|D) = « or P(r) = f for concepts C' and
D, and for role r. If the interpretation of D is the whole domain, then we simply write
P(C) = a. The semantic of these inclusions is roughly (a formal definition can be found
in [Cozman and Polastro 2009]) given by:

VeeD : P(C(x)|D(z)) = a,

VeeD,yeD : P(r(z,y)) =p.

We assume that every terminology is acyclic; no concept uses itself. This assumption
allows one to represent any terminology 7 through a directed acyclic graph. Such a
graph, denoted by G(7), has each concept name and role name as a node, and if a concept
C' directly uses concept D, that is if C' and D appear respectively in the left and right
hand sides of an inclusion/definition, then D is a parent of C' in G(7T). Each existential
restriction Jr.C' and value restriction Vr.C' is added to the graph G(7) as nodes, with
an edge from r and C' to each restriction directly using it. Each restriction node is a
deterministic node in that its value is completely determined by its parents. The graph
G(T) is a Relational Bayesian Network (RBN) [Jaeger 2001].

Example 1. Consider a terminology 7; with concepts A, B, C,D. Suppose
P(A) = 09,B C A,C C BU3r.D,P(BJA) = 0.45, P(C|B L 3r.D) = 0.5, and
P(D|Vr.A) = 0.6. The last three assessments specify beliefs about partial overlap among
concepts. Suppose also P(D|—-Vr.A) = e ~ 0 (conveying the existence of exceptions to
the inclusion of D in Vr.A). Figure 1 in the left depicts G(7), while the graph in the right
illustrates the grounding of G(7) for a domain with two individuals (D = {a, b}).

Figure 1. G(7) for terminology 7 in Example 1 and its grounding for domainD =

{a, b}



The semantic of CRALC is based on probability measures over the space of inter-
pretations, for a fixed domain. Inferences, such as P(A,(ap)|.A) for an ABox .4, can be
computed by propositionalization, generating a grounding RBN, where one slice is built
for each individual. Therefore, not always exact probabilistic inference is possible. In
[Cozman and Polastro 2009], a first order loopy propagation algorithm was proposed for
approximate calculations.

3. Link Prediction with CRALC

In this section we describe how to apply the PDL CRALC for semantic link prediction in
a scalable way.

As in graph-based approaches, nodes are entities (represented by letters a, b, ¢, . . .)
in a network A/, and we are interested in defining whether a link between a and b is
suitable given that there is no link between these nodes in N. Interests, i.e., semantics
between the nodes is modeled through a probabilistic ontology represented by the PDL
CRALC. In addition, graph path information is used to improve probabilistic inference.
In summary, the semantic link prediction task proposed in this paper can be described as:

Given:

a network A defining relationship between objects;
an ontology O in CRALC describing the domain of the objects;
the ontology concept C that defines the semantics of the network objects;
the ontology role r(_, _) that defines the semantics of the relationship be-
tween network objects;
Find:

e arevised network \; with new relationship between objects.

The proposed algorithm for link prediction receives a network of a specific
domain. For instance, in a co-authorship network the nodes represent researchers
and the relationship can have the semantic "has a publication with” or ”is ad-
vised by”. Therefore, the ontology represented by CRALC describes the domain
of publications between researchers, having concepts like Researcher, Publication,
StrongRelatedResearcher and NearCollaborator and roles like hasPublication,
hasSamelnstitution and sharePublication. This ontology can be learned
automatically through a learning algorithm as the ones proposed in
[Ochoa-Luna et al. 2010, Revoredo et al. 2010, Ochoa-Luna et al. 2011].  Thus, the
nodes represent instances of one of the concepts described in the PDL CRALC and the
semantic of the links is described by one of the roles in the PDL CRALC. These concept
and role must be informed as inputs to the proposed algorithm. The link prediction
algorithm is described in Algorithm 1.

The algorithm starts by looking for all pairs of instances of the concept C defined
as the concept that provides the semantic for the network nodes — this is a general set-
ting, as a rule the set of possible pairs is restricted. For each pair, it checks whether a link
between the corresponding nodes exists in the network. If not the probability of the link
is calculated through the probability of the defined role conditioned on evidences (step 5).
The evidences are provided by the instances of the ontology. The number of instances in
an ontology has a great impact in inference. Usually one considers that more instances
better inference. However, evidences for different individuals can turn out the inference



Require: a network N, an ontology O, the role 7(_, _) representing the semantic of the
network link, the concept C describing the objects of the network and a threshold.
Ensure: a revised network N}
1: define Ny as \V;
2: for all pair of instances (a, b) of concept C do
3:  if does not exist a link between nodes a and b in the network A/ then

4: compute evidence based on a, b and nodes in their path;
5: infer probability P(r(a,b)|evidence) using the RBN created through the
ontology O;
6: if P(r(a,b)|evidence) > threshold then
7: add a link between a and b in network N f>
8 end if
9: endif
10: end for

Algorithm 1: Algorithm for link prediction through CRALC.

process computationally expensive, since in a RBN a slice is created for each individ-
ual, and then inference should be done for each slice. In [Cozman and Polastro 2009],
an approximate inference algorithm was proposed where all slices without evidence are
consolidated in a unique slice, thus making inference feasible in real domains. There-
fore, less individuals with evidence faster inference is. From another perspective we are
interested in predicting a relationship between two individuals, a and b. Therefore, evi-
dences for these two individuals and other individuals strongly related to them are more
relevant for link prediction than evidences from other individuals in the network. Thus, in
this paper we propose to consider evidences about a, b and the individuals in their path,
which makes the link prediction problem scalable for large networks. Therefore, in step
4 the nodes (individuals) belonging to the path between a and b are found. The infer-
ence is then performed through CRALC lifted variational method on ontology O. If the
probability inferred is greater than a threshold then the corresponding link is added to the
network. Alternatively, when the threshold to be considered is not known a priori, a rank
of the inferred links based on their probability is done and the top-k, where k would be a
parameter, are chosen.

4. Experiments

In order to evaluate our proposal empirical experiments were performed. To do so, a real
world dataset was used and our algorithm was combined with state-of-the-art measures
on a classification model for link prediction. This section reports on steps involved in this
process.

4.1. Scenario Description

The Lattes Curriculum Platform is the public repository of Brazilian scientic curriculum
which is comprised by approximately a million of registered researchers. Information is
given in HTML format, and ranges from personal information such as name and address
to a list of publications, examination boards’ participations, main research areas, main re-
search projects and advising information. There is implicit relational information in these



HTML pages, for instance co-authoring networks, advising/adviser links, relationships
on institutions. We have randomly selected a set of 1100 researchers from engineering
and math backgrounds. Based on assertional data about these researchers a probabilistic
ontology has been learned. This ontology has also been extended with some probabilis-
tic roles — learning is mainly addressed to probabilistic inclusions and concepts. The
revised ontology is as follows.

P(Publication) = 0.3
P(Board) = 0.33
P(sharePublication) = 0.22
P(wasAdvised) = 0.05
P(hasSamelnstitution) = 0.14
P(sameExaminationBoard) = 0.31
ResearcherLattes = Person
M(3hasPublication.Publication

Mdadvises.Person M Jparticipate.Board)

P(PublicationCollaborator | Researcher M 3sharePublication.Researcher) = 0.91
P(SupervisionCollaborator | Researcher M JwasAdvised.Researcher) = 0.94
P(Samelnstitution | Researcher M JhasSamelnstitution.Researcher) = 0.92
P(SameBoard | Researcherr

dsameExaminationBoard.Researcher) = 0.95
P(NearCollaborator | Researcher 1 JsharePublication.3hasSamelnstitution.

JsharePublication.Researcher) = 0.95
FacultyNearCollaborator = NearCollaborator

M dsameExaminationBoard.Researcher

P(NullMobilityResearcher | Researcher M JwasAdvised.
JhasSamelnstitution.Researcher) = 0.98
StrongRelatedResearcher = Researcher
M (3sharePublication.Researcher M
JwasAdvised.Researcher)
InheritedResearcher = Researcher
M (dsameExaminationBoard.Researcher I
JwasAdvised.Researcher)

In this probabilistic ontology concepts and probabilistic inclusions denote mutual
research interests. For instance, a PublicationCollaborator inclusion refers to Researchers
who share a Publication, thus relates two nodes (Researcher) in a collaboration graph.
Therefore, the concept Researcher and the role sharePublication are inputs to the algo-
rithm we showed in Algorithm 1. To perform inferences and therefore to obtain link
predictions we resort to the variational algorithm in CRALC.

In addition, we have also defined a collaboration network based on publication co-
authoring. Topological graph information was computed accordingly. Figure 2 depicts a
subset of collaborations among researchers.

If we carefully inspect this collaboration graph we could be interested, for in-
stance, in predicting links among researchers from different groups. Since filling form is
prone to errors, there is uncertainty regarding real collaborations. Thus, in Figure 2 one
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Figure 2. Lattes collaboration network.

could further investigate whether a link between researcher R (red octagon node) and the
researcher B (blue polygon node) is suitable.

In order to infer this, the probability of a possible link between R and B is cal-
culated, P(link(R, B)|E), where E denotes evidence about researchers such as publica-
tions, institution, examination board participations and so on. The role sharePublication
is the one defining the semantic of the links in the graph. Therefore, it is through it
that we must calculate P(link(R, B)|E). Since the concept PublicationCollaborator
is defined by the role sharePublication and considering as evidence Researcher(R) M
JhasSamelnstitution.Researcher(B) one can infer P(link(R, B)|E) through:

P(PublicationCollaborator(R) |Researcher(R)
M3hasSamelnstitution.Researcher(B)) = 0.57.

If we took a threshold of 0.60, the link between R and B would not be included.
One could gain more evidence, such as information about nodes that indirectly

connect these two groups (Figure 2), denoted by I, I5. The inference would be

P(PublicationCollaborator(R) |Researcher(R)
M3sharePublication(/;).3sharePublication(B)
M3sharePublication(/5).3sharePublication(B)) = 0.65.

Because more information was provided the probability inferred was different.
The same threshold now would preserve the link.



In order to compare with existing graph-based algorithms, topological features
have also been defined. Thus, for every researcher (every node) the number of shared
neighbors and possible paths between two nodes have been computed.

4.2. Methodology

In this section we describe our main design choices to run the experiments. According
to cross validation principles, our dataset (1100 researchers) has been divided in training
and validation sets. To avoid skeweness (due to unbalanced classes,i.e., few links in the
Lattes dataset), every fold is comprised by balanced negative and positive instances, where
positive instances correspond to a link between two nodes while negative instance means
that there is not a link between these two nodes.

In order to classify possible links and therefore to perform comparisons with pre-
vious approaches we resort to the Logistic regression classification algorithm.

In a classification approach for link prediction, features are commonly extracted
from topological graph properties such as neighbor nodes and paths between nodes. In
addition, these numerical features also stem from joint probability distributions and se-
mantics.

To perform comparisons, we resort to two baseline graph-based numerical fea-
tures. First, the Katz measure [Liben-Nowell and Kleinberg 2003], which is a weighted
sum of the number of paths in the graph that connect two nodes, with higher weight for
shorter paths. This leads to the following equation:

Katz(z,y) =Y _B'pi
i=1

where p; is the number of paths of length ¢ connecting = and y, while 5 (< 1) is a
parameter used to regularize this feature. A small value of 5 considers only shorter paths.

Since computing all paths (co) is expensive we only consider paths of length at
most four (2 < 4).

The second numerical feature is the  Adamic-Adar measure
[Adamic and Adar 2001] which computes the similarity between two nodes in a
graph. Let I'(x) be the set of all neighbors of node x. Then the similarity between two
nodes z, y is given by

1
Adamic-Adar(z,y) = > = ——r
cer(nr(y) 108 P(2)]

The intuition behind the score is that instead of simply counting the number of
neighbors shared by two nodes, we should weight the hub nodes less and rarer nodes
more. In this way, Adamic-Adar weighs the common neighbors with smaller degree more
heavily.

Finally, we also use the probability, P(r(x,y)|evidence), given by our probabilis-
tic description logic model, as a numerical feature in the classification model. We wish
to investigate whether this probabilistic logic measure can improve the classification ap-
proach for link prediction.



4.3. Results

In order to evaluate suitability of our approach in predicting co-authorships in the Lattes
dataset, two experiments were run. In the first experiment two baseline scores, Katz and
Adamic-Adar, have been used as features in the logistic regression algorithm. After a
ten-fold cross validation process the classification algorithm yielded results on accuracy
which are depicted in Table 1.

One can see that on the Lattes dataset, the Katz feature yields the best accu-
racy (75.495%) when the two baseline features are used in isolation. Katz has been
shown to be among the most effective topological measures for the link prediction task
[Liben-Nowell and Kleinberg 2003]. Furthermore, when we combine the Katz and the
Adamic-Adar features, we improve the accuracy to 75.585%.

Table 1. Classification results on accuracy (%) for baseline features: Adamic-
Adar (Adamic), Katz and a combined one (Adamic+Katz)

Adamic Katz Adamic+Katz
Lattes dataset  72.25 \75.495\ 75.585

In the second experiment, a probabilistic feature based on our probabilistic de-
scription logic approach was introduced into the model. Results on accuracy for this
feature are depicted in Table 2. The PDL feature performs better than the other features.
This feature alone yields 76.83% on accuracy. When we combine all the three features
together, there is an improvement in accuracy to 77.23%.

Table 2. Classification results on accuracy(%) for probabilistic description log-
ics and baseline features: crRALC based (cralc) and Adamic-Adar, Katz, crRALC
(Adamic+Katz+cralc).

cralc Adamic+Katz+cralc

Lattes dataset 76.83 77.23

It is worth noting that the probabilistic logic feature probability outer performs
all other features and allow us to improve the classification model for link prediction on
accuracy.

Nothing prevent us to define ad-hoc probabilistic networks to estimate link proba-
bilities. However, by doing so we are expected to define a large propositionalized network
(a relational Bayesian network) [Revoredo et al. 2011] or estimate local probabilistic net-
works [Wang et al. 2007]. These approaches do not scale well since computing proba-
bilistic inference for large networks is expensive.

To overcome these performance and scalability issues, we resort to probabilistic
inference in CR.ALC which is based on variational methods — tunned by evidence defined



according nodes’s neighborhood. Thus, for a ten thousand network, if evidence is given
for 5 nodes, then there is only 6 slices which have messages interchanged. In our experi-
ments, the average runtime for inference (1100 nodes network) was 43.401 milliseconds.
On the other hand, a propositionalized relational Bayesian network fails to run inference
due to out of memory issues.

5. Conclusion

We have presented an approach for predicting links that resorts to both graph-based and
ontological information. Given a collaborative network, we encode interests and graph
features through a CRALC probabilistic ontology. In order to predict links we resort to
probabilistic inference, where only information about two nodes being analyzed and the
nodes in their path are used as evidence. Thus, making the proposal scalable. Results
focused on an academic domain, and we aimed at predicting links among researchers.
These preliminary results showed the potential of the idea.

As future work we intend to evaluate other metrics to reduce the number of evi-
dences and consider other datasets.

Previous combined approaches for link prediction [Caragea et al. 2009,
Aljandal et al. 2009] have focused on machine learning algorithms [Mitchell 1997].
In such schemes, numerical graph-based features and ontology-based features are
computed; then both features are input into a machine learning setting where prediction
is performed. Unless from such approaches, in our work we adopt a generic ontology
(instead of a hierarchical ontology, expressing only is-a relationships among interests).
Therefore, our approach uses more information about the domain to help the prediction.
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