
Learning Probabilistic Description Logics: A

Framework and Algorithms

José Eduardo Ochoa Luna1, Kate Revoredo2, and Fabio Gagliardi Cozman1

1 Escola Politécnica, Universidade de São Paulo,
Av. Prof. Mello Morais 2231, São Paulo - SP, Brazil

2 Departamento de Informática Aplicada, Unirio
Av. Pasteur, 458, Rio de Janeiro, RJ, Brazil

eduardo.ol@gmail.com,katerevoredo@uniriotec.br,fgcozman@usp.br

Abstract. Description logics have become a prominent paradigm in
knowledge representation (particularly for the Semantic Web), but they
typically do not include explicit representation of uncertainty. In this
paper, we propose a framework for automatically learning a Probabi-
listic Description Logic from data. We argue that one must learn both
concept definitions and probabilistic assignments. We also propose algo-
rithms that do so and evaluate these algorithms on real data.

1 Introduction

Description logics (DLs) [2] form a family of knowledge representation formalisms
that model the application domain by defining the relevant concepts of the do-
main and then using these concepts to specify properties of objects and relation
among concepts. Even though DLs are quite expressive, they have limitations,
particularly when it comes to modeling uncertainty. Thus probabilistic exten-
sions to DLs have been proposed, defining different Probabilistic Description
Logics (PDLs). For instance, the PDL crALC [6, 22, 7] allows one to perform
probabilistic reasoning by adding uncertainty capabilities to the DL ALC [2].

PDLs have been extensively investigated in the last few years [5, 8, 19]. To
build a PDL terminology with large amounts of data, one must invest consid-
erable resources. Thus, machine learning algorithms can be used in order to
automatically learn a PDL. To the best of our knowledge, the only proposals
for learning PDLs were described in [20] and [24]. Both focused on learning
crALC, but the former focused on learning concept definitions and the latter
on probabilistic inclusions.

In this paper, we argue that to completely learn a PDL one must learn its con-
cept definitions and probabilistic inclusions. We expect that learning algorithms
can accommodate together background knowledge and deterministic and proba-
bilistic concepts, giving each component its due relevance. Therefore, we propose
a framework for automatically learning a PDL from relational data. Focusing on
crALC, we propose algorithms that do so and evaluate these algorithms on real
data; compared to the existing work mentioned in the previous paragraph, we

This is a preprint version of a paper published in:
Lecture Notes in Artificial Intelligence, vol. 7094, Springer, 2011.
When citing, please cite the final version published by Springer.

contribute by presenting a more complete framework, and by comparing several
algorithms in our experiments.

The paper is organized as follows. Section 2 reviews basic concepts of DLs,
PDLs, crALC and machine learning in a deterministic setting. Section 3 presents
our algorithm for PDL learning. Experiments are discussed in Section 4, and
Section 5 concludes the paper.

2 Basics

In this section we briefly review both deterministic and probabilistic components
of PDL.

2.1 Description Logics

Description logics (DLs) form a family of representation languages that are typi-
cally decidable fragments of first order logic (FOL) [2]. Knowledge is expressed
in terms of individuals, concepts, and roles. The semantics of a description is
given by a domain D (a set) and an interpretation ·I (a functor). Individuals
represent objects through names from a set NI = {a, b, . . .}. Each concept in the
set NC = {C, D, . . .} is interpreted as a subset of a domain D. Each role in the
set NR = {r, s, . . .} is interpreted as a binary relation on the domain.

Concepts and roles are combined to form new concepts using a set of construc-
tors. Constructors in the ALC logic are conjunction (C⊓D), disjunction (C⊔D),
negation (¬C), existential restriction (∃r.C), and value restriction (∀r.C). Con-
cept inclusions/definitions are denoted respectively by C ⊑ D and C ≡ D, where
C and D are concepts. Concepts (C ⊔ ¬C) and (C ⊓¬C) are denoted by ⊤ and
⊥ respectivelly. Information is stored in a knowledge base (K) divided in two
parts: the TBox (terminology) and the ABox (assertions). The TBox lists con-
cepts and roles and their relationships. A TBox is acyclic if it is a set of concept
inclusions/definitions such that no concept in the terminology uses itself. The
ABox contains assertions about objects.

Given a knowledge base K =< T ,A >, the reasoning services typically in-
clude (i) consistency problem (to check whether the A is consistent with respect
to the T); (ii) entailment problem (to check whether an assertion is entailed by
K; note that this generates class-membership assertions K |= C(a), where a is
an individual and C is a concept); (iii) concept satisfiability problem (to check
whether a concept is subsumed by another concept with respect to the T). The
latter two reasoning services can be reduced to the consistency problem [2].

2.2 Probabilistic Description Logics and crALC

Several probabilistic descriptions logics (PDLs) have appeared in the literature.
Heinsohn [11], Jaeger [13] and Sebastiani [25] consider probabilistic inclusion
axioms such as PD(Professor) = α, meaning that a randomly selected object is a

Professor with probability α. This characterizes a domain-based semantics: prob-
abilities are assigned to subsets of the domain D. Sebastiani also allows inclusions
such as P (Professor(John)) = α, specifying probabilities over the interpretations
themselves. For example, one interprets P (Professor(John)) = 0.001 as assigning
0.001 to be the probability of the set of interpretations where John is a Professor.
This characterizes an interpretation-based semantics.

The PDL crALC is a probabilistic extension of the DL ALC that adopts an
interpretation-based semantics. It keeps all constructors of ALC, but only allows
concept names on the left hand side of inclusions/definitions. Additionally, in
crALC one can have probabilistic inclusions such as P (C|D) = α or P (r) = β

for concepts C and D, and for role r. If the interpretation of D is the whole
domain, then we simply write P (C) = α. The semantics of these inclusions is
roughly (a formal definition can be found in [7]) given by:

∀x ∈ D : P (C(x)|D(x)) = α,

∀x ∈ D, y ∈ D : P (r(x, y)) = β.

We assume that every terminology is acyclic; no concept uses itself. This as-
sumption allows one to represent any terminology T through a directed acyclic
graph. Such a graph, denoted by G(T), has each concept name and role name
as a node, and if a concept C directly uses concept D, that is if C and D appear
respectively in the left and right hand sides of an inclusion/definition, then D

is a parent of C in G(T). Each existential restriction ∃r.C and value restriction
∀r.C is added to the graph G(T) as nodes, with an edge from r to each restriction
directly using it. Each restriction node is a deterministic node in that its value
is completely determined by its parents.

The semantics of crALC is based on probability measures over the space of
interpretations, for a fixed domain. Inferences, such as P (Ao(a0)|A) for an ABox
A, can be computed by propositionalization and probabilistic inference (for exact
calculations) or by a first order loopy propagation algorithm (for approximate
calculations) [7].

2.3 Learning Description Logics

The use of ontologies for knowledge representation has been a key element of
proposals for the Semantic Web [1, 9]. Considerable effort is currently invested
into developing automated means for the acquisition of ontologies [16].

Most early approaches were only capable of learning simple ontologies such
as taxonomic hierarchies. Some recent approaches such as YINYANG [12], DL-
FOIL [9] and DL-Learner [18] have focused on learning expressive terminologies
(we refer to [20] for a detailed review on learning description logics). To some
extent, all these approaches have been inspired by Inductive Logic Programming
(ILP) [15] techniques, in that they try to transfer ILP methods to description
logic settings. The goal of learning in such deterministic languages is generally to
find a correct concept with respect to given examples. Given a knowledge base
K, a target concept Target such that Target 6∈ K, a set E = Ep ∪ En of positive

and negative examples given as assertions for Target, the goal of learning is to
find a concept definition C(Target ≡ C) such that K∪C |= Ep and K∪C 6|= En.

A sound concept definition for Target must cover all positive examples and
none of the negative examples. A learning algorithm can be constructed as a
combination of (1) a refinement operator, which defines how a search tree can
be built, (2) a search algorithm, which controls how the tree is traversed, and
(3) a scoring function to evaluate the nodes in the tree defining the best one.

Refinement operators allow one to find candidate concept definitions through
two basic tasks: generalization and specialization [17]. Such operators in both
ILP and description logic learning rely on θ-subsumption to establish an ordering
so as to traverse the search space. If a concept C subsumes a concept D (D ⊑ C),
then C covers all examples which are covered by D, which makes subsumption
a suitable order. Arguably the best refinement operator for description logic
learning is the one available in the DL-Learner system [17, 18].

In a deterministic setting a cover relationship simply tests whether, for given
candidate concept definition (C), a given example e holds; that is, K ∪ C |=
e where e ∈ Ep or e ∈ En. In this sense, a cover relationship cover(e,K, C)
indicates whether a candidate concept covers a given example [9].

In DL learning, one often compares candidates through score functions based
on the number of positive/negative examples covered. In DL-Learner a fitness
relationship considers the number of positive examples as well as the length of
solutions when expanding candidates in the tree search.

The learning algorithm depends basically on the way we traverse the can-
didate concepts obtained after applying refinement operators. In a determinis-
tic setting the search for candidate concepts is often based on the FOIL [23]
algorithm. There are also different approaches (for instance, DL-Learner, an
approach based on genetic algorithms [16], and one that relies on horizontal
expansion and redundance checking to traverse search trees [18]).

3 Learning with the PDL crALC

A probabilistic terminology consists of both concepts definitions and probabilis-
tic components (probabilistic inclusions in crALC). The key in learning under a
combined approach is to give a due relevance to each component. In this section
we combine existing algorithms into a single framework that allows for logical
and probabilistic learning.

We argue that negative and positive examples underlie the choice of either a
concept definition or a probabilistic inclusion. In a deterministic setting we ex-
pect to find concepts covering all positive examples, which is not always possible.
It is common to allow flexible heuristics that deal with these issues. Moreover,
there are several examples that cannot be ascribed to candidate hypotheses3.

3 In some cases the Open World Assumption inherent to description logics prevent us
for stating membership of concepts.

When we are unable to find a concept definition that covers all positive exam-
ples we assume such hypothesis as candidates to be a probabilistic inclusion and
we begin the search for the best probabilistic inclusion that fits the examples.

As in description logic learning three tasks are important and should be
considered: (1) refinement operators, (2) scoring functions and (3) a traverse
search space algorithm.

The refinement operator described previously is used for learning the deter-
ministic component of probabilistic terminologies.

3.1 The Probabilistic Score Function

In our proposal, since we want to learn probabilistic terminologies, we adopt a
probabilistic cover relation given in [14]:

cover (e,K, C) = P (e|K, C).

Every candidate hypothesis together with a given example turns out to be a
probabilistic random variable which yields true if the example is covered, and
false otherwise. To guarantee soundness of the ILP process (that is, to cover
positive examples and not to cover negative examples), the following restrictions
are needed:

P (ep|K, C) > 0, P (en|K, C) = 0.

In this way a probabilistic cover relationship is a generalization of the deter-
ministic cover, and is suitable for a combined approach. Probabilities can be
computed through Bayes’ theorem:

P (e|K, C1, . . . , Ck) =
P (C1, C2, . . . , Ck|T)P (T)

P (C1, . . . , Ck)
,

where C1, . . . , Ck are candidate concepts definitions, and T denotes the target
concept variable. Here are three possibilities for modeling P (C1, . . . , Ck|T): (1)
a naive Bayes assumption may be adopted [14] (each candidate concept is in-
dependent given the target), and then P (C1, . . . , Ck|T) =

∏
i P (Ci|T); (2) the

noisy-OR function may be used [20]; (3) a less restrictive option based on tree
augmented naive Bayes networks (TAN) may be handy [14]. This last possibility
has been considered for the probabilistic cover relationship used in this paper.
In each case probabilities are estimated by maximum (conditional) likelihood
parameters. The candidate concept definition Ci with the highest probability
P (Ci|T) is the one chosen as the best candidate.

As we have chosen a probabilistic cover relationship, our probabilistic score
is defined accordingly:

score(K|C) =
∏

ei∈Ep

P (ei|K, C),

where C is the best candidate chosen as described before.
In the probabilistic score we have previously defined, a given threshold allows

us to differentiate between a deterministic and probabilistic inclusion candidate.
Further details are given in the next section.

3.2 The Algorithm to Learn Probabilistic Terminologies

The choice between a deterministic or a probabilistic inclusion is based on a
probabilistic score. We start by searching a deterministic concept. If after a set
of iterations the score of the best candidate is below a given threshold, searching
for a probabilistic inclusion is better than to keep searching for a deterministic
concept definition. Then, the current best k-candidates are considered as start
point for probabilistic inclusion search. The complete learning procedure is shown
in Algorithm 1.

Require: an initial knowledge base K =< T ,A >, a target concept CT and a
training set E.

1: SearchTree with a node {C = ⊤, h = 0}
2: repeat

3: choose node N = {C, h} with highest probabilistic score in SearchTree
4: expand node to length h + 1:
5: add all nodes D ∈ (refinementOperator(C)) with length =h + 1
6: learn parameters for all nodes D

7: N = {C, h + 1}
8: expand alternative nodes according to horizontal expansion factor and h + 1[18]
9: until stopping criterion

10: N ′ = best node in SearchTree
11: if score(N ′) > threshold then

12: return deterministic concept C′ ∈ N ′ (CT ≡ C′)
13: else

14: call ProbabilisticInclusion(SearchTree, CT)
15: end if

Algorithm 1: Algorithm for learning probabilistic terminologies.

The algorithm starts with an overly general concept definition in the root
of the search tree (line 1). This node is expanded according to refinement ope-
rators and horizontal expansion criterion (line 4), i.e, child nodes obtained by
refinement operators are added to the search tree (line 5). The probabilistic pa-
rameters of these child nodes are learned (line 6) and then they are evaluated
with the best one chosen for a new expansion (line 3) (alternative nodes based
on horizontal expansion factor are also considered (line 8)). This process conti-
nues until a stopping criterion is attained (difference for scores is insignificant);
After that, the best node obtained is evaluated and if it is above a threshold,
a deterministic concept definition is found and returned (line 12). Otherwise, a
probabilistic inclusion procedure is called (line 14).

The Algorithm 2 learns probabilistic inclusions. It starts retrieving the best
k nodes in the search tree and computing the conditional mutual information for
every pair of nodes (line 2). Then an undirected graph is built where the vertices
are the k nodes and the edges are weighted with the value of the conditional
mutual information [21] for each pair of vertices (lines 4 and 5). A maximum
weight spanning tree [4] from this graph is built (line 6) and the target concept

is added as a parent for each vertice (line 7). The probabilistic parameters are
learned (line 8). This learned TAN-based classifier [10] is used to evaluate the
possible probabilistic inclusion candidates (line 9) and the best one is returned.

Require: SearchTree previously computed and a target concept CT

1: for each pair of candidates Ci, Cj in first k nodes of the SearchTree do

2: compute the conditional mutual information I(Ci, Cj |CT)
3: end for

4: build an undirected graph in which vertices are the k candidates
5: annotate the weight of an edge connecting Ci to Cj by the I(Ci, Cj |CT)
6: build a maximum weight spanning tree from this graph
7: add CT as parent for each Ci

8: learn probabilities for P (Ci|Parents(Ci))
9: return the highest probabilistic inclusion P (CT |C

′) = α

Algorithm 2: Algorithm for learning probabilistic inclusions.

4 Experiments

In order to evaluate the proposed framework we have divided the analysis in
two stages. In a first stage, the framework was compared with the arguably
best description logic learning algorithm available (the DL-Learner system). The
second stage evaluated suitability of the framework for learning probabilistic
crALC terminologies in real world domains. In this sense, comparisons with two
previous approaches [20, 24] were performed. Experiments were run on a CORE
2 DUO 2.2 GHz computer with 4GB memory over a Linux Ubuntu platform.
Each stage is detailed as follows.

4.1 Experiments on Description Logic Learning

The aim of the first stage was to investigate whether by introducing a probabilis-
tic setting the framework behaves as well as traditional deterministic approaches
in description logic learning tasks. In this preliminar evaluation (generally speak-
ing, there is a lack of evaluation standards in ontology learning [18]) we have
considered five datasets available in the DL-Learner system and reported in [18].
After a five-fold cross validation process, both accuracy and definitions length
were measured. Evaluation results are shown in Table 1.

The best solution is the one that has both highest accuracy and shortest
length. In Table 1, three algorithms are compared: (DL-Learner) the best de-
scription logic learning algorithm; (Noisy) a probabilistic Noisy-OR approach
for learning crALC [20] with focus on concept learning and (Framework) the
combined approach proposed in this paper. The Noisy algorithm had a slightly
lower performance than DL-Learner in terms of accuracy. On the other hand, the
Framework (combined approach) obtained similar accuracies like DL-Learner.

Table 1. Learning description logics results. Accur. (Accuracy) and Length (solution
length)

DL-Learner Noisy Framework

Problem Accur. Length Accur. Length Accur. Length

trains 100 5 99.5 7 100 6
moral I 97.8 3 96.5 5 97.7 4
moral II 97.8 8 96.0 8 97.6 8
poker I 100 5 98.8 6 100 5
poker II 100 11 99.7 12 100 11

Further differences are observed when solution lengths are under analysis. The
DL-Learner algorithm is concerned with finding shorter solutions (longer solu-
tions are penalized in DL-Learner) whereas in the Noisy algorithm this issue is
neglected. Conversely, the Framework aims at finding suitable shorter solutions
because it also uses such a penalization scheme.

Despite of the fact that the framework is focused on learning probabilis-
tic terminologies it is worth noting that two of the tested algorithms (mainly
the Framework) can be competitive for learning description logics. It should be
noted, however, that some induced definitions can be only meaningful when a
probabilistic component is attached.

4.2 Experiments on Learning Probabilistic Terminologies

In this second stage we focused on learning of crALC probabilistic terminologies
from real world data. To do so two public data sources were explored: the Lat-
tes curriculum platform and the YAGO-Wikipedia ontology. Due to the lack of
previous learning results, comparisons have been performed by measuring accu-
racy and fitness of probabilistic terminologies to data. In addition, two previous
approaches for learning crALC [20, 24] have also been evaluated.

In the first set of experiments, datasets were constructed from information
extracted of the Lattes curriculum platform 4. This repository offers public rela-
tional data from Brazilian researchers. Information is given in HTML format so
a parsing procedure was run to extract assertions on concepts and roles. Exam-
ples include name, institution, languages, address, etc. It was focused extraction
of relational information through publication analysis, works supervised, exa-
mination board participations and so on. The universe was restricted to 1050
researchers. In Table 2 some features of the Lattes datasets are given.

After a 10-fold cross validation process, accuracy (Accur.) and amount of
nodes originated (# Nodes) when constructing relational Bayesian network were
considered for comparisons. Table 3 shows some experimental results obtained
in these Lattes datasets. The best solution is the one that returns the highest
accuracy and the fewest amount of nodes. The Noisy algorithm [20] got the

4 http://lattes.cnpq.br

Table 2. Lattes curriculum datasets.

Problem axioms concepts roles examples

lattes I 2494 14 12 208
lattes II 2603 14 10 146
lattes III 2650 13 10 230
lattes IV 2350 2 13 34

worst values on accuracy and fewer amount of possible nodes. The Inclusion
algorithm (which focuses learning of probabilistic inclusions [24]) got better re-
sults in accuracy than Noisy, however, it returned a greater amount of nodes.
Finally, the Framework proposed (combined algorithm) obtained the best results
on accuracy and a lower amount of nodes like the Noisy algorithm.

Table 3. Results of crALC learning (Lattes). Accur. (accuracy) and # Nodes (amount
of nodes of relational Bayesian network).

Noisy Inclusion Framework

Problem Accur. # Nodes Accur. # Nodes Accur. # Nodes

lattes I 76.74 48 76.84 51 77.13 49
lattes II 69.52 54 72.77 58 74.42 56
lattes III 73.48 56 74.68 62 78.45 58
lattes IV 71.5 78 71.56 110 72.34 75

Further experiments were performed on datasets obtained from Wikipedia-
YAGO ontology. Wikipedia articles consist mostly of free text, but also contain
various types of structured information in the form of Wiki markup. Such in-
formation includes infobox templates, categorization information, images geo-
coordinates, links to external Web pages, disambiguation pages, redirects be-
tween pages, and links across different language editions of Wikipedia.

In the last years, there were several projects aimed at structuring such huge
source of knowledge. Examples include The DBpedia project [3], which extracts
structured information from Wikipedia and turns it into a rich knowledge base,
and YAGO [26], a semantic knowledge base based on data from Wikipedia and
WordNet5. Currently, YAGO knows more than 2 million entities (like persons,
organizations, cities, etc.). It knows 20 million facts about these entities. Unlike
many other automatically assembled knowledge bases, YAGO has a manually
confirmed accuracy of 95%. Several domains ranging from films, places, historical
events, wines, etc. have been considered in this ontology. Moreover, facts are
given as binary relationships that are suitable for our learning settings.

5 wordnet.princeton.edu/

Subsets of Wikipedia-YAGO facts were used for learning probabilistic crALC
terminologies. Two domains were focused: first, about scientists (1335); second,
about film directors (2000). Table 4 shows some features of these datasets.

Table 4. Dataset Wikipedia-YAGO.

Problem axioms concepts roles examples

scientists I 7180 11 32 438
scientists II 6534 11 32 378
directors I 8006 12 35 626
directors II 7234 12 35 389

In Table 5 results obtained with these datasets are exhibited. After a 10-fold
cross validation process, accuracy and amount of nodes when creating relational
Bayesian network were evaluated. Learning in these datasets was a more complex
task than Lattes. Indeed, it can be inferred of the accuracy values (lower values)
and the amount of nodes obtained. Meanwhile, the same patterns were observed,
i.e., the Framework returned the best results in accuracy and a lower amount
of nodes. On the other hand, the Inclusion algorithm had better accuracy than
Noisy but a greater amount of nodes.

Table 5. Results of crALC learning (Wikipedia-YAGO). Accur. (accuracy) and #
Nodes (amount of nodes in relational Bayesian network).

Noisy Inclusion Framework

Problem Accur. # Nodes Accur. # Nodes Accur. # Nodes

scientists I 81.4 53 82.33 56 83.44 55
scientists II 82.3 65 82.46 69 84.55 68
directors I 65.67 67 67.14 69 73.56 66
directors II 69.45 74 71.3 79 74.75 76

By evaluating these two real world datasets, we conclude that the combined
framework outerperforms the other approaches in learning probabilistic crALC
terminologies. Our proposal obtains balanced results in accuracy and structural
complexity.

5 Conclusion

We have presented a framework for learning deterministic/probabilistic compo-
nents of terminologies expressed in crALC, and contributed with experiments
that show the value of the framework. This unified learning scheme employs a

refinement operator for traversing the search space, a probabilistic cover and
score relationships for evaluating candidates, and a mixed search procedure.
The search aims at finding deterministic concepts; if the score obtained is below
a given threshold, a probabilistic inclusion search is conducted (a probabilis-
tic classifier is produced). Experiments with probabilistic terminologies in two
real-world domains suggest that this framework do lead to improved likelihoods.

We note that the current literature does not explore in depth the use of
data to learn knowledge bases in description logics that can handle uncertainty
explicitly. The present contribution is a step in this direction.

Acknowledgements

The third author is partially supported by CNPq. The work reported here has
received substantial support through FAPESP grant 2008/03995-5.

References

1. G. Antoniou and F. van Harmelen. Semantic Web Primer. MIT Press, 2008.
2. F. Baader and W. Nutt. Basic description logics. In Description Logic Handbook,

pages 47–100. Cambridge University Press, 2002.
3. C. Bizer, J. Lehmann, G. Kobilarov, S. Auer, C. Becker, R. Cyganiak, and S. Hell-

mann. DBpedia - a crystallization point for the web of data. Web Semant.,
7(3):154–165, 2009.

4. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algo-
rithms. MIT Press, 2001.

5. P. C. G. Costa and K. B. Laskey. PR-OWL: A framework for probabilistic on-
tologies. In Proceeding of the 2006 conference on Formal Ontology in Information
Systems, pages 237–249, Amsterdam, The Netherlands, The Netherlands, 2006.
IOS Press.

6. F. G. Cozman and R. B. Polastro. Loopy propagation in a probabilistic descrip-
tion logic. In Sergio Greco and Thomas Lukasiewicz, editors, Second International
Conference on Scalable Uncertainty Management, Lecture Notes in Artificial In-
telligence (LNAI 5291), pages 120–133. Springer, 2008.

7. F. G. Cozman and R. B. Polastro. Complexity analysis and variational inference for
interpretation-based probabilistic description logics. In Conference on Uncertainty
in Artificial Intelligence, 2009.

8. C. D’Amato, N. Fanizzi, and T. Lukasiewicz. Tractable reasoning with Bayesian
description logics. In SUM ’08: Proceedings of the 2nd international conference
on Scalable Uncertainty Management, pages 146–159, Berlin, Heidelberg, 2008.
Springer-Verlag.

9. N. Fanizzi, C. D’Amato, and F. Esposito. DL-FOIL concept learning in description
logics. In ILP ’08: Proceedings of the 18th International Conference on Inductive
Logic Programming, pages 107–121, Berlin, Heidelberg, 2008. Springer-Verlag.

10. N. Friedman, D. Geiger, and M. Goldszmidt. Bayesian network classifiers. Machine
Learning, 29:131–163, 1997.

11. J. Heinsohn. Probabilistic description logics. In International Conf. on Uncertainty
in Artificial Intelligence, pages 311–318, 1994.

12. L. Iannone, I. Palmisano, and N. Fanizzi. An algorithm based on counterfactuals
for concept learning in the semantic web. Applied Intelligence, 26(2):139–159, 2007.

13. M. Jaeger. Probabilistic reasoning in terminological logics. In Principals of Know-
ledge Representation (KR), pages 461–472, 1994.

14. N. Landwehr, K. Kersting, and L. DeRaedt. Integrating Näıve Bayes and FOIL.
J. Mach. Learn. Res., 8:481–507, 2007.

15. N. Lavrac and S. Dzeroski. Inductive Logic Programming: Techniques and Appli-
cations. Ellis Horwood, New York, 1994.

16. J. Lehmann. Hybrid learning of ontology classes. In Proceedings of the 5th Interna-
tional Conference on Machine Learning and Data Mining, volume 4571 of Lecture
Notes in Computer Science, pages 883–898. Springer, 2007.

17. J. Lehmann and P. Hitzler. Foundations of refinement operators for description
logics. In Hendrick Blockeel, Jude W. Shavlik, and Prasad Tadepalli, editors, ILP
’07: Proceedings of the 17th International Conference on Inductive Logic Program-
ming, volume 4894 of Lecture Notes in Computer Science, pages 161–174. Springer,
2007.

18. J. Lehmann and P. Hitzler. A refinement operator based learning algorithm for
the ALC description logic. In Hendrick Blockeel, Jude W. Shavlik, and Prasad
Tadepalli, editors, ILP ’07: Proceedings of the 17th International Conference on
Inductive Logic Programming, volume 4894 of Lecture Notes in Computer Science,
pages 147–160. Springer, 2007.

19. T. Lukasiewicz. Expressive probabilistic description logics. Artif. Intell., 172(6-
7):852–883, 2008.

20. J. Ochoa-Luna and F.G. Cozman. An algorithm for learning with probabilistic
description logics. In Bobillo, F., et al. (eds.) Proceedings of the 5th International
Workshop on Uncertainty Reasoning for the Semantic Web, volume 527, pages
63–74, Chantilly, USA, 2009. CEUR-WS.org.

21. J. Pearl. Probabilistic Reasoning in Intelligent Systems: networks of plausible in-
ference. Morgan Kaufman, 1988.

22. R. B. Polastro and F. G. Cozman. Inference in probabilistic ontologies with at-
tributive concept descriptions and nominals. In 4th International Workshop on
Uncertainty Reasoning for the Semantic Web (URSW) at the 7th International
Semantic Web Conference (ISWC), Karlsruhe, Germany, 2008.

23. J. R. Quinlan and R. M. Cameron-Jones. FOIL: A midterm report. In Proceedings
of the European Conference on Machine Learning, pages 3–20. Springer-Verlag,
1993.

24. K. Revoredo, J. Ochoa-Luna, and F. Cozman. Learning terminologies in proba-
bilistic description logics. In Antônio da Rocha Costa, Rosa Vicari, and Flavio
Tonidandel, editors, Advances in Artificial Intelligence SBIA 2010, volume 6404
of Lecture Notes in Computer Science, pages 41–50. Springer / Heidelberg, Berlin,
2010.

25. F. Sebastiani. A probabilistic terminological logic for modelling information re-
trieval. In ACM Conf. on Research and Development in Information Retrieval
(SIGIR), pages 122–130, 1994.

26. F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: a core of semantic knowledge.
In WWW ’07: Proceedings of the 16th international conference on World Wide
Web, pages 697–706, New York, NY, USA, 2007. ACM.

