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Abstract—Bounding the treewidth of Bayesian Networks has
been claimed to guarantee polynomial-time inference with little
harm to accuracy. However, there has been little empirical
evidence to support that claim. In this work we study empirically
the effect of bounding treewidth on generalization ability. Our
results suggest that adding a constraint to treewidth decreases the
model performance on unseen data and makes the corresponding
optimization problem more difficult.

I. INTRODUCTION

Bayesian networks are graphical models used for efficiently
representing dependency relations and joint probability dis-
tribuitions in multivariate uncertainty problems [1]. A Bayesian
Network has three main components: a set of random variables,
a directed acyclic graph (referred to as the network structure)
representing (in)dependences between variables, and a collec-
tion of conditional probability values that jointly specify a
joint probability distribution over the variables. Specifying a
Bayesian Network is a daunting task, and practitioners often
resort to automatic methods that “learn” both the structure and
the conditional probabilities from data [2].

In this paper, we refer to “learning Bayesian Networks”
specifically as the problem of learning a Bayesian Network
structure from data; given a Bayesian Network structure, we
can learn the parameters (i.e., the conditional probabilities)
from a complete data set efficiently. A popular approach for
learning Bayesian Networks, called score-based learning, uses
a score function that assigns a quality measure to any given
structure and searches for the score-optimizer structure within
a group of candidate structures [3]. The score functions usually
reward data fitness while penalizing the model complexity in
a sort of Occam’s razor policy: when faced with a choice
between two models that equally fit the data, choose the least
complex one. Maximizing the fitness of data guides the search
towards structures that assign high probability to the observed
data set. Penalizing complexity reduces model overfitting and
increases the generalization ability.

Most score functions penalize a structure by the (weighted)
number of edges in the network. Even though this favors sparse
graphs that tend to perform better on unseen data, it does
not balance for the overall complexity of the model: sparse
networks can represent fairly complex distributions, which can
still lead to overfitting when learning from small data sets.
There is a second reason why penalizing the network edge
density may not suffice. Very often, a Bayesian network is
learned so that it can be used for drawing arbitrary inferences
such as querying the posterior probability of a hypothesis
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Fig. 1: A directed grid with 9 nodes. Each node in this graph
has at most 2 parents. Still, the treewidth is 3.

after evidence is entered or selecting the states of a set of
variables so as to maximize its conditional probability [4].
These inferences are all known to be NP-Hard to compute, and
there is strong evidence that their complexity is exponential
in the network treewidth, which is a measure of tree-likeness
of a graph [5]–[7]. Controlling for sparsity does not limit
the treewidth of the learned structures, and this can lead to
learning models that perform poorly in applications due to
poor generalization and the use of approximate inference [8],
[9]. It is also very common to limit the number of parents (i.e.,
the in-degree) of nodes in the search. This again does not avoid
generating structures of high treewidth. For example, a squared
grid-like structure (such as the one in Figure 1) has maximum
in-degree of two, less than 2n edges, and treewidth

√
n, where

n is the number of nodes.

With these issues in mind, many researchers have suggested
constraining the search space, when learning Bayesian Net-
works, to structures of bounded treewidth, aiming at increased
performance of the learned structure in real-world applications
[9]–[13]. Since the task of estimating a network’s treewidth is
itself NP-Hard [14], extending current approaches to learning
Bayesian networks in this direction is not trivial, and research
on the topic has recently been very intense [9]–[13]. Even
though most of these works are motivated by the claim that
constraining the search space increases the performance of
learned networks, the empirical evidence has not been sub-
stantial. Moreover, they have overlooked the additional burden
that constraining the treewidth adds to search algorithms. To
illustrate this point, note that score functions decompose as a
sum of local score functions which depend only on a variable
and its (immediate) parents. Hence, once a topological ordering
among the variables is fixed, the problem of learning a score-
maximizing structure breaks down to a greedy search for the



best parent set of each node; the latter can be solved efficiently
if a low bound on in-degree is assumed. This fact is the base of
many approaches to learning Bayesian Networks such as the
popular Order-Based Sampling method of Teyssier and Koller
[15]. Such an approach can no longer be applied if a bound on
treewidth is imposed, since the constraint on treewidth makes
the subproblems interdependent, and one often has to consider
more complex structures (than orderings) such as (partial) k-
trees in order to decompose the problem [9], [12].

Our main goal in this paper is to empirically analize the
effect that constraining the treewidth has on the generalization
ability of learned Bayesian Networks. We do that by applying
the mixed-integer linear programming approach to learning
bounded treewidth Bayesian Networks described in [9] to a
collection of real data sets from the UCI repository. We mea-
sure generalization ability by computing the cross-validated
data likelihood of the model on held-out data. For each dataset
we learn structures with different limits in its treewidth (usually
3, 4, 5 and increments of 5 until the dataset’s maximum
number of variables). The results suggest that constraining
the search space actually leads to more difficult computational
problems as the errors returned by programming solvers are
often far larger for more constrained problems (ones with a
smaller treewidth bound). The severe constraint on treewidth
also tends to generate networks which generalize poorly on
the test set. When the bound on treewidth is more loose, the
performance of the learned networks is competitive with the
unconstrained networks.

The remainder of this paper is structured as follows.
We start with background knowledge on graph theory and
Bayesian Networks (Section II), and then move to the pre-
sentation of the mixed-integer linear programming approach
to learning bounded treewidth networks that we use (Section
III). The experimental results, our main contribution, appear
in Section IV, along with a discussion. Conclusions and
comments on future work appear in Section V.

II. PRELIMINARIES

In this section we present some necessary background on
graph theory and Bayesian Networks.

A. Graph Theory

A Directed Acyclic Graph (DAG) is a graph where the
edges have a direction associated with them such that there
are no directed cycles (i.e., one cannot reach a node from
itself following the direction of the edges). The parent set of
a node i, denoted by Pai, is the set of all nodes that have
an edge directed to this node. Similarly, the children set of a
node is the set of all node that it points to. The descendants
of a node comprises all the nodes that can be reached from
it, the node’s children, their children’s children, and so on.
The set of non-descendants of a node is the complement of its
descendants.

The moral graph is the equivalent undirected form of a
DAG and it is used by most operations in graphical models. It
can be obtained by adding an edge between all pair of nodes
that have a common child and dropping edge directions. Figure
2 show the moral graph of Figure 1.
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Fig. 2: The moral graph of the graph shown in 1. Red edges
are the added edges by linking common parents.
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Fig. 3: The cicle B-D-G-H-F-C (3a) has no chord. This can be
solved by inserting and edge, for example, from node G to C
(3b). However this creates tow new chordless cicles G-D-B-C
and G-H-F-C. Again, two new edges are inserted (3c).

The treewidth of a DAG is the treewidth of its correspond-
ing moral graph. The treewidth of any undirected graph can
be found in the size of the cliques in a chordal graph that
contains it (i.e. this graph is a subgraph of the given chrodal
graph). A chordal graph is a graph where all cycles of length
four or more have a chord. A cycle in an undirected graph has
a chord if it contains two nodes that are connected by an edge
not in the cycle. Any undirected graph can be made chordal
by inserting edges in it, a process called chordalization. A
clique is a subset of vertices in an undirected graph that form
a complete subgraph (i.e., all vertices are pairwise connected).
Figure 3 shows a chordalization of the graph of Figure 2.

The treewidth of a undirected graph can be found in the
maximum number of higher ordered neighbors according to its
perfect elimination order. A perfect elimination order is a linear
ordering of the nodes such that the higher ordered neighbors
of each node form a clique. A graph can have a perfect
elimination order if and only if it is chordal. Figure 4 shows
a chordal graph obtained from Figure 2 and its corresponding
perfect elimination order.

Thus, the treewidth of an undirected graph G is the
minimum w ≥ 0 such that G is a subgraph of a chrodal
graph with all cliques of size at most w+1 [16]. Alternatively,
the treewdith of a graph can be computed as the minimum
treewidth of a perfect elimination order. The perfect elimina-
tion order in Figure 4 has minimum treewidth 3, which is thus
the treewidth of the DAG shown in Figure 1.

B. Bayesian Networks

Bayesian Networks are probabilistic graphical models that
encode (in)dependences and joint probability distribuitions on
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Fig. 4: A perfect elimination order for a chordal graph.
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(a) Structure G

θA(T ) = P (A = T ) = 0.1
θC(T, T ) = P (C = T |A = T ) = 0.7
θC(T, F ) = P (C = T |A = F ) = 0.2
θB(T, T ) = P (B = T |A = T ) = 0.7
θB(T, F ) = P (B = T |A = F ) = 0.2
θD(T, T, T ) = P (D = T |C = T,B = T ) = 0.9
θD(T, T, F ) = P (D = T |C = T,B = F ) = 0.7
θD(T, F, T ) = P (D = T |C = F,B = T ) = 0.7
θD(T, F, F ) = P (D = T |C = F,B = F ) = 0

(b) Parameters Θ

Fig. 5: Example of a Bayesian Network.

multivariate domains. Formally a Bayesian Network is a triple
{V,G,Θ}, where V = {X1, X2, ..., Xn} is a finite set of
random variables; G = {V,E} is a DAG where the edge in
E represents dependency relationships between variables in
V ; and Θ = {θi(xi, xPai) = P (xi|xPai)} is a collection of
conditional probability values, one for each value xi of variable
Xi and configuration xPai of its parents Pai. A variable Xi

is assumed independent of all its non-descendants given its
parents Pai. Because of this, a Bayesian Network specifies a
joint probability distribution over V as:

P (X1, X2, ..., Xn) =

n∏
i=1

P (Xi|Pai) =

n∏
i=1

θi(xi, xPai). (1)

To learn a Bayesian Network is to estimate Θ and G
given a dataset D of historical observations of variables V .
A possible way to estimate the structure G is to find, for
each variable, another (minimal) set of variables that makes
it conditionally independet of all the others. This is called
constraint-based structure learning; we will not pursue such an
approach here. Alternatively, one can formulate the problem
as a combinatorial optimization where one searches for a
high scoring structure among the set of all possible DAGs.
Depending on the choice of scoring function, exact solutions of

constrain-based and score-based approaches are equivalent [2].

A scoring function is the key element that makes a search
method possible. It provides a measure of quality for a
structure to describe datasets sampled from a hypothetical
distribution (assumed to be the same used to sample the
observed dataset). There are different aproaches for deriving
such metrics, but most of them focus on rewarding the structure
by the log-likelihood of G according to D and penalizing the
structure complexity.

Given a Bayesian Network with structure G and conditional
probabilities Θ, and a data set D, we compute its data
loglikehood LG,D as:

LG,D(Θ) = log p(D|G, θ) (2)

=

n∑
i=1

∑
xPai

∑
xi

n(xi, xPai) log θi(xi, xPai), (3)

where n(xi, xPai) indicates the number of instances (i.e.,
rows) of D where Xi takes values xi and each Xj ∈ Pai
takes its corresponding value in xPai , and the inner sums are
resp. over the values of Xi and Pai.

Two commonly used score functions are the BIC score and
the BD score and its variants. The BIC score [17] was first
proposed as a heuristic for avoinding overfitting introduced by
maximizing likelihood and later provided a formal justification
as an asymptotic approximation for the marginal posterior
distribution of a graph. It is defined as:

sBIC(G) = max
θ
LG,D(Θ)− logN

2
· |G|, (4)

where N is the size of D (i.e., number of rows) and

|G| =
n∑
i=1

(|Xi| − 1)
∏

Xj∈Pa(Xi)

|Xj | (5)

is the number of free parameters (|Xi| denotes the num-
ber of values Xi can assume). It is well known that
arg maxθ LG,D(θ) = n(xi, xPai)/n(xPai) (these are known
as the maximum likelihood estimates of the conditional prob-
ability values).

The BD score [3] evaluates a structure by its marginal
posterior probability p(G|D) (up to a constant):

sBD(G) = log p(G)

∫
θ

p(D|G, θ)p(θ|G). (6)

The BDe score is a variant of the above metric which assigns
a prior distribution over the network parameters that satisfy
data likelihood equivalence: two structure with the same data
likelihood are assigned the same (BDe) score. The BDeu score
imposes an additional assumption that conditional probability
distributions are sampled with uniform probability [2].

It is important to note that the BDeu score evaluates the
marginal likelihood, as opposed to the maximum likelihood.
By integrating the parameters out of the equation it mea-
sures the expected likelihood averaged over different possible
choices of θ [1]. In this way, the BDe score helps avoiding
overfitting even more by being less optmistic regarding a
particular choice of parameters that maximizes the likelihood
only on testing data.



Both these score functions satisfy the decomposability
property that states that they can be written as a sum of
local score functions si(Pai). Furthemore, any of these local
scores can be computed in time polynomial in the dataset (but
exponential in the cardinality of Pai). Given the independence
relations encoded in a Bayesian Network, the score of a
complete network structure can be computed as a sum of scores
of each variable given only its parents in the graph. This way,
the goal of a search method is to find a structure G∗ such that:

G∗ = arg max
G∈Gn,k

∑
i∈V

si(Pai), (7)

where Gn,k is the set of all possible DAGs with n nodes and
treewidth at most k. This can be seen as a classic optmization
problem and be solved using known search techniques such as
Genetic Algorithms [18] or Hill Climbing [19]. Less obviously,
the problem above can be cast as a mixed-integer linear
programming optimization [9], [13], [20].

A linear program is a mathematical description of a
constrained optimization problem involving linear inequalities
over continuous variables and a linear objective. An Integer
Linear Program (ILP) is a special case where the variables are
restricted to take only integer values. When there is a mix of
continuous and integer variables the problem is called a Mixed-
Integer Linear Program (MILP). Casting the structure learning
problem as a MILP problem allows us to benefit from highly
optimized commercial solvers of mathematical programming,
and it has been shown to be very effective. In fact, one of the
most popular methods for learning Bayesian Networks with no
constraint on treewidth is based on a MILP formulation [21],
[22].

III. MIXED INTEGER LINEAR PROGRAM FORMULATIONS

In this section we present the MILP formulation for learn-
ing Bayesian Network structures proposed in [9]. We assume
that the scores for all variables of the network are pre computed
and can be retrieved in constant time (a common assumption).
We choose using the MILP approach because (i) it is an
anytime method, (ii) it is easy to relax the constraing on
treewidth, (iii) it allows for other constraints be easily inserted,
and (iv) it allows the use of commercial packages, which are
readily available and easy-to-use.

Figure 6 gives the integer program formulation. Our con-
straints are divided in two groups: A group that enforces
bounding treewidths (Constrs. 8b to 8d, 8i and 8k) and a group
related to learning the network structure (Constrs. 8e to 8l).

A. Bounding treewidth

This formulation aims at encoding all possible elimination
orders of a given graph G = (V,E). If a solution exists, a
chordalization of the graph with treewidth at most w can be
obtained from the integer program.

Variable zi, which takes real values (Constr. 8i), partially
defines the elimination order in the formulation (partially
because the formulation allows two nodes to have the same
value of z, indicating that any order results in the same chordal
graph). A variable i is eliminated before j if zi < zj .

Maximize: ∑
it

Pait.si(Fit) (8a)

Subject to: ∑
j∈N

yij ≤ w ∀i ∈ N (8b)

(n+ 1).yij ≤ n+ zj − zi ∀i, j ∈ N (8c)
yij + yik − (yjk + ykj) ≤ 1 ∀i, j, k ∈ N (8d)∑

t

Pait = 1 ∀i ∈ N (8e)

(n+ 1)Pait ≤ n+ vj − vi ∀i ∈ N, ∀t, ∀j ∈ Fit (8f)
Pait ≤ yij + yji ∀i ∈ N, ∀t, ∀j ∈ Fit (8g)
Pait ≤ yjk + ykj ∀i ∈ N, ∀t,∀j, k ∈ Fit (8h)

zi ∈ [0, n] ∀i ∈ N (8i)
vi ∈ [0, n] ∀i ∈ N (8j)

yij ∈ {0, 1} ∀i, j ∈ N (8k)
Pait ∈ {0, n} ∀i ∈ N, ∀t (8l)

Fig. 6: MILP formulation for learning Bayesian Networks of
bounded treewidth

Variables yij are binary valued (Constr. 8k), and ensure
that a node i is eliminated before j (zi < zj) and an edge
existis among them in the resulting chordal graph.

Constraint 8b bound the treewidth to be at most w by
bounding the number of high ordered neighbors of every
variable. By constrint 8c yij can only have value 1 if j appears
after i in the elimination order. Constraint 8d guarantes the
perfect elimination order of z because if variable j and k are
higher ordered neighbors of i, then they are also neighbors.

B. Structure learning

Having a chordal graph G′ = (V,E′), its perfect elimina-
tion order and a set of binary valued variables yij such that
it is 1 only if E′ contains ij and i is eliminated before j, the
rest of our formulation specifies all DAGs over N for which
the moral graph is a subgraph of G′.

The set Fi in constraints 8f to 8h is the set of all possible
parents sets for that variable. This can be just the subset of V \
{i}, but normally scoring functions can limit this subset or it
can even be specified by the user. An element Fit of this subset
is a set of variables denoting one of those possible parents
combinations. Each ∀t in each constraint is for 1, 2, ..., |Fi|.

The variable vi, takes real values in [0, n] (Constr. 8j) and
specifies a topological order for the variables. If vi > vj then
j is not an ancestor of i. The nary (constr. 8l) variable Pait
denotes if the tth parent set of Fi were chosen for variable i.

Only one possible parent set can be chosen for each
variable, as enforced by constraint 8e and those choices must
be acyclic (Constr. 8f). Constraints 8g and 8h ensure that the
edges of the found DAG have corresponding edges in G′.



Dataset Variables Sample Size
Mushroom 22 8124
WDBC 31 569
Audio 62 200

TABLE I: Datasets

C. Combining formulations

Having the set of variables yij , zi, vi, Pait with i, j ∈ V ,
t = 1, 2, ..., |Pai| and all satisfying constraints 8a to 8l. A
Directed Graph G = (V,E) where E = {i ← j : i, j ∈
V, ∃t s.t. Pait and j ∈ Fit} is acyclic, consistent with
parents Pai and has treewidth at most w.

This formulation produces an optimal structure. However,
both taks are difficult taks per se and their combination requires
significant time and memory resources. Fortunately most MILP
optmizers allow runs to be ended prematurely with a valid
(perhaps not optimal) solution. In this way, this formulation
can also be used to find approximate solution for learning
Bayesian Networks. Some solvers even provide an outer error
bound, showing the distance between the found solution for the
maximum score. This is the approach used in the experiments
reported in the next section.

IV. EXPERIMENTS

In this section we present our methodology and results.

A. Methods

We empirically analyzed the performance of our networks
by comparing their likelihood to the data. We used our MILP
formulation on a training portion of each dataset to learn the
structure and then we learned the network’s parameters and
calculated their log-likelihood to a test portion of each dataset.
We have also tried using the alternative MILP formulation of
Parviainen et al. [13], available through the authors’ imple-
mentation, but we found it to be too slow.

We scored the networks using the BDeu function. We
limited the maximum parents of each variable to 4 and used
equivalent sample sizes (ESS) of 1.0 and 0.5. The two dif-
ferent values of ESS are used to isolate possible performance
differences introduced by the score (and not by the constraint
on treewidth). For each variation in each dataset, we learned
networks of bounded treewidth, starting with treewidth 3, 4,
5 and then increments of 5 (or 10) until (and including) the
dataset‘s maximum number of variables (which is equivalent
as not imposing a bound to the networks’s treewidth). For each
iteration of treewdith, we ran a 5-fold cross validation to obtain
a more realiable estimate of the expected test likelihood.

As mentioned before, our chosen datasets were selected
from the UCI Repository1. We have selected datasets of
different dimensions used in previous works on learning
bounded treewidth Bayesian Networks [9], [11], but since our
preliminary tests showed that datasets with few variables (say
less than 15 variables) usually have “optimal” structures of
very small treewidth, such datasets were discarded from this
analysis. The datasets with 100 or more variables were also

1http://archive.ics.uci.edu/ml/

Parents Limit 3 4
ESS 1 0.5 1

Avg. GAP Avg. GAP Avg. GAP
tw 03 32.42% 62.98% 62.90%
tw 04 26.69% 49.54% 51.38%
tw 05 23.92% 44.06% 45.72%
tw 10 20.27% 32.57% 33.09%
tw 20 20.51% 33.61% 32.26%

tw unlm. 20.10% 32.90% 31.88%

TABLE II: Remaining GAP values for the optimal solution for
all MILP executions of the Dataset Mushroom
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Fig. 7: Likelihood for the networks learned from dataset
Mushroom, bounding the parent set to a maximum of 4 and
using a ESS score of 1

discarded for being computationally too costly to the MILP
approach used. We were then left with 3 datasets of different
dimensionality. These datasets are summarized in Table I. The
experiments were performed by programs wrtiten in Python
V.2.7. We used the CPLEX’s Python API to interface with
CPLEX version 12.6.1 for the MILP problems.

We called each unique learning experiment a task. For
example, the learning experiment of the first fold of the dataset
Mushroom with maximum number of parents limited to 4
and the BDeu score’s ESS parameter of 1.0 is one task.
We ran our experiments in a HPC cluster with nodes of
20 Intel R©Xeon R©CPU E7-2870 of 2.40GHz and 512GB of
available memory. Up to 6 tasks were allowed to run at the
same time on each node and each CPLEX optimizer assigned
to each task were given three cores to work in parallel. We
allowed the optimizer to run up to two hours (CPU time) and
we collected the found solution and the error gap of each task.

B. Results

We used the LibTW utility from [23] to calculate the
treewidth of the unbounded networks so we can see the
underlying treewidth of the “true” network of the training data.
Even though learning the true network of the training data is
not our main objective, we use this information so we can see
the upper bound of the network‘s treewidth on that dataset.
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Fig. 8: Scores for the networks learned from dataset Mush-
room, bounding the parent set to a maximum of 4 and using
a ess score of 1
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Fig. 9: Likelihood for the networks learned from dataset
Mushroom, bounding the parent set to a maximum of 4 and
using a ESS score of 0.5

The treewidth of the unbounded network for the dataset
Mushroom stayed between 6 and 9 (we give an interval since
different folds could yield different treewidths). In fact, our
results (Figures 7 and 9) shows that the network‘s performance
improves as the treewidth rises and stays at its best between
treewidths 5 and 10. Allowing higher treewidths has no impact
in the likelihood. By looking at the error gaps in Table II we
can see that decreasing the bound on treewidth had a significant
impact on the linear program’s performance. If we look at
graphs on Figures 8 and 10 we can see that the score of the
network follows the same behavior and because of that we
can say that the poor performance of the network bounded on
treewidth 3 is due to poor ability to learning a good network
rather than poor generalization. Varying the ESS parameter on
the score function had little differences in the learned networks.
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Fig. 10: Scores for the networks learned from dataset Mush-
room, bounding the parent set to a maximum of 4 and using
a ESS score of 0.5

Parents Limit 3 4
ESS 1 0.5 1

Avg. GAP Avg. GAP Avg. GAP
tw 03 25.11% 21.25% 27.32%
tw 04 22.71% 20.25% 25.46%
tw 05 23.09% 19.90% 22.82%
tw 10 19.90% 18.94% 20.54%
tw 15 18.98% 17.50% 19.06%
tw 20 18.48% 16.80% 19.10%
tw 25 18.42% 16.58% 18.11%
tw 30 18.26% 16.65% 18.27%

tw unlm. 18.36% 16.54% 18.09%

TABLE III: Remaining GAP values for the optimal solution
for all MILP executions of the Dataset WDBC

The overall treewidth of the (unbounded) WDBC dataset
stayed between 7 and 9. Again, in Figures 11 and 13 we
can see that bounding the treewidth even further impacted the
network‘s performance, altough it is hard to say if this is due
to poor performance of the network or high complexity in the
learning task (see the gap values in Table III). The WDBC
dataset showed the same assintotic behavior of Mushroom
dataset, but with higher variance, and also, the likelihood of
the network with an ESS parameter of 0.5 (Figure 13) showed
similar result but a much higher variance.

We couldn‘t find the treewidth of unbounded networks for
the audio dataset. As we can see from Figure 15 the audio
dataset didn‘t followed the expected assintotic behavior and
our learned networks had a significant higher likelihood with
low treewidths, even better than the unbounded performance.
This shows that, when the learning algorithm can find a good
solution, constraining the treewidth can lead to a better gen-
eralization. For the same reason, when the learning algorithm
can‘t find good solutions (i.e. treewidths 10 to 50 in Figure 15),
the network have a poor behavior no matter the treewidth.

We tested the Audio training data with an algorithm that
learns network structure with no bound on the treewidth [24].
Since it doen‘t have this restrinction it was expected that
the found solution would have a better performance. Indeed,
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Fig. 11: Likelihood for the networks learned from dataset
WDBC, bounding the parent set to a maximum of 4 and using
a ESS score of 1
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Fig. 12: Scores for the networks learned from dataset WDBC,
bounding the parent set to a maximum of 4 and using a ESS
score of 1

we found likelihood scores of up to 30% better than our
learning algorithm but unfortunately, we can‘t achieve this
same performance in leaning structures of bounded treewidth.

V. CONCLUSION

Overall our results showed that by considering only the
likelihood of the learned network to the test data, limiting the
treewidth have not outright improved the network‘s perfor-
mance as expected. It also showed that the relevance of higher
limits on treewidth only starts to matter with high dimension
datasets, the same datasets for which the current methods of
learning networks of bounded treewidth behave very poorly.
Still, more experiments are necessary to distinguish the effect
of bounded treewidht and the effect of poor performance of
learning algorithms (i.e. experiments that allow a lower the gap
on the found solutions). We also suggest a further evaluation of
performance by measuring the posterior inference capabilities
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Fig. 13: Likelihood for the networks learned from dataset
WDBC, bounding the parent set to a maximum of 4 and using
a ESS score of 0.5
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Fig. 14: Scores for the networks learned from dataset WDBC,
bounding the parent set to a maximum of 4 and using a ESS
score of 0.5

of the learned network, as well as its bahavior in multilabel
classification problems.
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