
Automatic Summarization of Technical Documents
in the Oil and Gas Industry

João Marcos Correia Marques
Escola Politécnica

Universidade de São Paulo
São Paulo, Brazil

joao.marques@usp.br

Fabio Gagliardi Cozman
Escola Politécnica

Universidade de São Paulo
São Paulo, Brazil

fgcozman@usp.br

Ismael Humberto Ferreira dos Santos
CENPES - Petrobras Research Center

Petrobras
Rio De Janeiro, Brazil

ismaelh@petrobras.com.br

Abstract—We address extractive summarization of technical
documents in the oil and gas industry, a major and urgent task
due to the large volume of critical reports in that industry.
We examine five distinct state-of-the-art extractive algorithms;
to assess performance, a new open dataset was created using the
open access Journal of Petroleum Exploration and Production
Technology (JPEPT). Abstracts for papers in this journal were
used as ground truths for summarization. Algorithms were
refined to work with these documents in the best possible way.
Our most effective algorithm achieved a state-of-the-art ROUGE-
2 score of 0.123, taking 83 minutes to summarize the entire
JPEPT dataset.

Index Terms—Automatic Text Summarization, Extractive
Summarization, Natural Language Processing

I. INTRODUCTION

Hundreds of pages of reports are generated on a daily basis

within large organizations; those reports contain precious data

that could lead to actionable insights for companies [1]. This

is particularly true in the oil and gas industry, where reports

are often safety-critical and failure to act in due time on these

reports may cause catastrophic ecological and social damage.

Most of the information, however, is stored in a human-

friendly but machine-adverse format. Alas, manual extraction

of information does not scale well and automatic extraction

of structured information from unstructured text remains an

active area of research and debate within the machine learning

community [2].

One option is to keep the human in the loop, by producing

summaries of documents, and letting the end user analyze

those summaries. This is the path we have followed in our

effort to enhance information processing within a large oil

company. In this paper we describe automatic summarization

techniques aimed at the oil and gas industry.

Automatic text summarization is divided into three ap-

proaches: Abstractive, Extractive and Mixed summarization

[3]. In Extractive summarization, the goal is to devise algo-

rithms that select the most relevant sentences from a given

source and to present them as-is to the reader. In Mixed

summarization, the most relevant sentences are selected from

the text, but undergo post-processing prior to presentation

to ensure cohesion between sentences. Finally, Abstractive

summarization creates completely new sentences to summarize

the original text based on complex language models [3].

The construction of complex language models for adequate

post-processing or fully abstractive summarization, however, is

an open problem, with most solutions requiring large labelled

datasets, being applied to overly simplified problems and pre-

senting serious cohesion and legibility issues [4]. Indeed, most

applicable solutions available today are Extractive. This work

aims at providing a benchmark for Extractive techniques of

Automatic Text Summarization applied to technical literature

in the oil and gas industry, considering not only their textual

performance, but also their execution times.

This paper is organized as follows. Section II describes

metrics that are used to evaluate summarization techniques.

We describe our literature review and selection of techniques

in Section III. Section IV presents the dataset we have cre-

ated, a contribution that will be valuable to other researchers

interested in summarization of technical reports. Experimental

results are described and discussed in Section V.

II. AUTOMATIC SUMMARY EVALUATION METRICS

Let us first define the evaluation metric that is used in rank-

ing automatically generated abstracts. While there exist many

human-based strategies for assessing the quality of an auto-

matically generated abstract, such as the ones used by Parveen

and Stube [5], the most used metric in the field is the Recall-

Oriented Understudy for Gisting Evaluation (ROUGE) [3], [6].

ROUGE is, in fact, a set of metrics. Relevant to this work,

however, are the ROUGE-N and ROUGE-L metrics.

ROUGE-N is defined as the n-gram recall between a can-

didate summary and its set of references [6]:

ROUGE-N =
(

ΣS∈RefSumsΣgramn∈SCountmatch(gramn)
ΣS∈RefSumsΣgramn∈SCount(gramn)

)
,

(1)

where S is the set of sentences in the reference summaries,

gramn is an n-gram contained within this set of sentences

and Countmatch is the number of matching n-grams between

the automated summary and its references.

ROUGE-L, on the other hand, is based on the Longest

Common Sub-sequence between the abstracts, given that the

longer the sub-sequence of words that can be found between

431

2019 8th Brazilian Conference on Intelligent Systems (BRACIS)

2643-6264/19/$31.00 ©2019 IEEE
DOI 10.1109/BRACIS.2019.00082

two different texts, the more similar they should be [6]. It is

defined in (2),

Rlcs =
Σu

i=1LCSU (ri, C)

m
, (2)

where ri is a sentence from the reference summaries, ci is

a sentence from the automated summary, C is the set of

all sentences in the automated summary, containing n words

in total, and R is the set of all sentences in the reference

summaries, containing m words in total. Similarly, it is defined

in (3),

Plcs =
Σv

i=1LCSU (ci, R)

n
. (3)

We may then define the ROUGE-L metric in (4):

ROUGE − L = Flcs =
(1 + β2)RlcsPlcs

Rlcs + β2Plcs
, (4)

where β is the F-beta weighting factor, usually set to 1.

These metrics correlate well with human judgment of

abstracts, in particular the ROUGE-2 variant of ROUGE-N

and ROUGE-L [6]. These metrics, were, therefore, used to

determine which algorithms were worth exploring for our task.

III. EXTRACTIVE AUTOMATIC TEXT SUMMARIZATION

ALGORITHMS

There are many summarization algorithms in the literature,

so the first challenge in this work was to determine which

algorithms were appropriate to the realities of the oil and

gas industry. When doing so, we considered the constraints

of working within the context of a large oil company with

a substantial number of stored reports and an urgent need to

summarize them, so that this work could be applicable to the

real world. This helped us set the limits on execution times

and computational complexity of the algorithms to be tested.

Algorithms in the literature were ranked according to

their performance on the Document Understanding 2002

(DUC2002) dataset, whose main focus was on develop-

ing generic summarization algorithms for summarizing news

stories. This dataset is comprised of several news articles

spanning multiple topics and, for each topic, has at least 3

handcrafted abstractive and extractive summaries of varying

lengths made by different people. In their Survey on Automatic

Text Summarization, Gambhir and Gupta [3] aggregated the

performances of several state-of-the-art algorithms on that

dataset, as can be seen in Figure 1. One can clearly see that

the algorithms OCDSum-SaDE [7], BSTM [8], FGB [9] and

Sum Coh [5] were the best performing algorithms according

to the ROUGE-2 metric. In addition, when examining the

performances reported by Gambhir and Gupta for the simi-

lar summarization dataset, DUC2004, which can be seen in

Figure 2, we note that the Progressive algorithm [10] clearly

dominates its competitors and is, therefore, also worthy of

testing. These five algorithms were thus selected to be tested in

this work and are detailed in the following subsections. Their

selection is interesting as they also represent three different ap-

proaches to automatic text summarization: Pure Optimization-

based (Sum Coh and OCDSumSaDE), Maximum Likelihood

Estimation on Bayesian unigram language models (BSTM,

FGB) and Graph-based (Progressive) algorithms - and their

evaluation might provide valuable insight on the suitability of

each technique to the summarization of technical literature.

Fig. 1. State-of-the-art ROUGE-1 and ROUGE-2 performances on the
DUC2002 dataset [3]

Fig. 2. State-of-the-art ROUGE-2 performances on the DUC2004 dataset [3]

A. OCDSum-SaDE
Alguliev et al. [7] formulate the summarization problem as a

3-fold optimization task, aiming to optimize content coverage,

432

i.e., the amount of new information in the summary, diversity,

understood here as non redundancy between selected sentences

and length. In order to do so, the authors define sentences as

being represented by their Term Frequency-Inverse Sentence

Frequency (TF-ISF) matrices.

Letting the similarity between two sentences si and sj be

defined as the cosine similarity between their rows in the TF-

ISF matrix, as given by Expression (5), the authors define

coverage and diversity according to Expressions (6) and (7),

respectively,

sim(si, sj) =
si · sj
‖si‖ · ‖sj‖ , (5)

fcover(X) = sim(OD, OS) ·
n∑

i=1

sim(OD, si)xi, (6)

fdiver(X) =
n−1∑
i=1

n∑
j=i+1

sim(si, sj) · xixj , (7)

where OD stands for the average vector of the summary sen-

tences, OS stands for the average vector for all the sentences

within the document, n is the total number of sentences in the

document, and X is a binary vector of size n, in which xi is

one if, and only if, sentence xi has been selected as part of

the summary.

Having defined those metrics, they formulate summary

creation as the optimization of

Xopt = argmax
X

(
fcover(X)

fdiver(X)

)
(8)

subject to
n∑

i=1

lixi ≤ L, xi ∈ 0, 1, (9)

where L is the maximum summary length. The authors then

solve this optimization problem using a variant of the differ-

ential algorithm described by Storn and Price [11], selecting

all sentences for which xi is 1 to compose the final summary.

B. BSTM

Proposed by Wang et al. [8], the Bayesian Sentence-based

Topic Models is a converging iterative algorithm that generates

a unigram model-based probability distribution for each sen-

tence within each of the topics discussed in the main texts

by estimating the convergence of its variational bound via

Dirichlet Adjustment.

They first define the Dirichlet adjustment y of size K of a

vector x of size K with respect to the Dirichlet distribution

DK(α) as being described by

yk = exp

(
Ψ(αk + xk)−Ψ

(∑
i

(αi + xi)

))
, (10)

denoting it as y = PD(x;α). They then define the operation

Y =
PD(·,α),2←−−−−−− X as the following sequence of operations:

z = PD((Xd, .)
T ;α) followed by yd,k = zk/

∑
k zk, opera-

tion Y
1←− X as obtaining Y via normalizing each column of

X and finally, X as the element-wise multiplication between

matrices X and Y.

They then define iterative equations:

U
1←− BT

[
Y

BŨṼ T

]
Ṽ ◦ Ũ (11)

and

V
PD(·,α),2←−−−−−−

[
Y

BUṼ T

]T
(BU) ◦ Ṽ , (12)

where Y is the term-document matrix, B is the term-sentence

matrix, U is the sentence-topic matrix (the probability distri-

bution of each sentence over each topic), V is an auxiliary

document-topic matrix, K is the total number of latent topics

and Ṽ and Ũ are their estimates at the current step. They

also define the convergence metric - the variational bound -

according to

f̃(U, V ;Y) =
∏

d
B(α+ γd,.)

B(α)

∏
vkwd

(
BwvUvk

φvk;wd

)(Ywdφwk;wd)

,

(13)

where φvk;wd = BwvUvkVdk/
[
BUV T

]
wd

and γdk =∑
wv Ywdφvk;wd.

The authors then define Algorithm 1 to obtain the final

sentence-topic matrix Ufinal. The most probable sentences

for each topic from matrix U are selected to form the final

summary.

Algorithm 1 BSTM iterative algorithm

0: Randomly initialize U and V and normalize them

1: repeat
1: Update U using (11)

1: Update V using (12)

1: Compute f̃ using (13)

2: until f̃ converges.

3: return U

4: end =0

C. FGB

Wang et al. [9] have proposed the Factorization with Given

Bases (FGB) algorithm, which uses models that are similar to

BSTM, but that speeds up calculations by applying a slightly

different convergence criterion as described in Algorithm 2.

The most likely sentences for each topic in matrix U are

selected to compose the summary.

D. Sum Coh

This method, introduced by Parveen and Strube [5], is

an example of graph-based summarization, which takes into

consideration sentence importance, non-redundancy and local

coherence when creating the final summary. It starts by repre-

senting the whole text as a bipartite graph G = (Vs, Ve, Ee,s

with two sets of nodes: sentences and entities. Such graph,

called entity graph, was introduced by Guinaudeau and Strube

[12] to evaluate local coherence of documents. They provide

initial ranks for each entity, taking into consideration its

433

Algorithm 2 FGB iterative algorithm

0: Randomly initialize U and V to follow Dirichlet distribu-

tion with hyperparameters αU and αV , respectively.

1: repeat
1: Compute Cij = Yij/

[
BUV T

]
ij

;

1: U
U←− [BTCV

]
+ αU and normalize columns to 1;

1: Compute Compute Cij = Yij/
[
BUV T

]
ij

1: V
V←− [CTBU

]
+ αV and normalize rows to 1;

2: until U converges

3: return U,V

4: end =0

frequency in the text and its presence in the title and for each

sentence, and its similarity to the document’s title by using

Expression (5). They then apply the HITS algorithm [13] to

determine final ranks for each sentence. They finally create a

one-mode projection of this graph on the sentence nodes (P)

and use their outdegrees in this projection as a proxy for the

position penalized coherence between sentences:

f(si) =
coherence(si, P)

position(si)
=

Outdegree(si, P)

position(si)
. (14)

Having defined both sentence ranks and coherence, the au-

thors then treat the summarization as the optimization problem

X,Y = argmax
X,Y

⎛
⎝ n∑

i=1

Rank(si)i +
n∑

i=1

f(s1)i +
m∑
j=1

yj

⎞
⎠ ,

(15)

subject to the constraints⎧⎪⎨
⎪⎩
∑n

i=1 xi ≤ Len(summary);∑
ji
yj ≥ Entitiesxi i, fori = 1, ..., n;∑

ij
xi ≥ yj , forj = 1, ...,m,

(16)

where xi is a Boolean indicating whether a sentence has been

selected, while yi is a Boolean indicating whether an entity

has been selected, with the final summary being constructed

from the sentences indicated by xi.

E. Progressive

Ouyang et al [10] proposed a greedy selection method based

on the concept of conditional saliency. In order to define this

concept, they first establish the notion of subsuming relation-

ships between words. They start by defining the coverage of

a word w over a set of words W (COV (w|W)) according to

(17), in which SPAN(x) is the set of sentences in which the

set of words x is observed in the original text.

COV (w|W) =
|SPAN(w) ∩i SPAN(W)|

|SPAN(w)| , (17)

They then define the concept of subsuming words. For a

word w0 to subsume word w (denoted here as w0 ⊃ w)

condition (18) must be satisfied, in which λ1, λ2 ∈ [0, 1] are

hyperparameters in this model. An acyclic directed graph G is

then constructed having the words as nodes and the subsuming

relationships as directed edges.

w0 ⊃ w iff

{
COV (w|w0) ≥ λ1 and

COV (w|S) < λ2, where S = wi ∈W |w0 ⊃ wi.

(18)

The authors then finally define the concept of conditional

saliency in (19), where s is a candidate sentence to be added,

s’ is the set of current summary sentences and CON(wi, w
′
l)

is a Boolean variable indicating whether there exists a path

between word wi and word w′j in a subgraph of G containing

only the nodes and edges relating to the words in s ∪ s′.

CS(s|s′) =
∑
wi∈s

log

(
max
w′

j∈s′
CON(wi|w′j) · |SPAN(wi)|

)
,

(19)

Once the initial conditional saliencies for each sentence are

calculated, the algorithm adds the most salient sentence to

the summary and recalculates the conditional saliencies of

the remaining sentences, iteratively adding the most salient

sentences at each step (given the current summary) to the

summary until maximum summary length has been achieved.

IV. DATASET COLLECTION

To properly evaluate the performance of the previous five

algorithms in the task of summarizing technical literature

about oil and gas, a proper dataset was needed. To the

best of our knowledge, no open dataset of this kind is now

available. We, therefore, set forth to create it, following the

methodology described in Ref. [5], where a similar dataset

on the field of medicine was created using the PLOS ONE

open set of papers. We took as a source of documents

the open access Journal of Petroleum Exploration and
Production Technology (JPEPT). We manually collected all

the papers of the first three volumes of the journal (proper

citations omitted here due to length restrictions, but found

at https://github.com/joaomcm/Automatic-Summarization-of-
Technical-Literature-on-Oil-and-Gas, this project’s Github

repository). These papers were then processed as follows:

• The abstracts were removed from the papers’ body and

stored in a separate file.

• The remaining body of text was purged of tables, figures

and equations, while also removing sections of the papers

that merely described deductions and images.

• This clean version of the body was stored on another file.

This procedure yielded the JPEPT technical summary

database, described together with the DUC2002 dataset in

Table I. One can clearly see that the documents are, on average

much larger than those of DUC2002, both in the number

of words and sentences, which suggests that performance of

algorithms evaluated on the latter might be different from those

observed in the former.

434

TABLE I
DUC2002 AND JPEPT DATASET CHARACTERISTICS

Dataset # of Topics Avg. Docs/Topic Avg. Words/Doc Avg. sentences/Doc
DUC2002 59 6 613.2 30.8

JPEPT 69 1 2475.1 109.2

V. RESULTS

We produced a Python implementation of each algorithm

and tested it in the DUC2002 dataset to verify whether their

implementation’s performance was consistent with the perfor-

mance reported in Ref. [3]. The algorithms were then tested

on the newly created JPEPT dataset and the automatically

generated abstracts were compared with the actual abstract

of each paper. In addition, following Ref [5], two alternative

algorithms were proposed as benchmarks: Random and First.

The Random algorithm randomly picks sentences from the

body of the file until the maximum abstract length has been

reached, whereas the First algorithm picks the first k sentences

of the document until maximum abstract length was reached.

The desired abstract length was set to IEEE’s 250 word limit

for all algorithms running on the JPEPT dataset. Both algo-

rithms serve as trivial and random benchmarks, respectively.

All these experiments were run on an ASUS ROG G75VW

notebook, equipped with an Intel Core-i7 3630QM 2.4 GHz

processor with 16Gb of RAM and a GTX 670MX graphics

card running Ubuntu 16.04. As can be seen in Figure 3,

execution times varied widely, but were all well bellow the

8-hours threshold set for a system that should run overnight.

Fig. 3. Algorithm execution times on entire JPEPT dataset

With respect to performance, there was a technical tie

between Sum Coh and the Progressive algorithms. It can

be seen in Figure 4 that both algorithms clearly outperform

their competitors (including Random and First), but tie in

ROUGE-L performance by a small margin. This tendency

is confirmed by Table II, where we can see that both of

them significantly differ from competing algorithms (with at

least 10−2 significance), whereas no statistically significant

difference may be traced between their performances when

compared to one another.

A similar tendency is observed when analyzing ROUGE-2

performance, seen in Figure 5, with both Sum Coh and the

Progressive algorithm clearly outperforming their competition,

Fig. 4. Mean ROUGE-L scores on the JPEPT dataset

TABLE II
P-VALUE FOR THE SINGLE SIDED T-STUDENT TEST ON ROUGE-L

SCORES

Algorithm Progressive BSTM OCDSumSaDE FGB Sum Coh First Random

Progressive - >10−3 >10−5 >10−3 - >10−6 >8.10−3

Sum Coh 0.27 >10−3 >10−5 >10−3 - >10−6 >10−3

but presenting little difference between them. This tendency,

however, is shifted when we analyze the statistical significance

of the results, shown in Table III, where it can be seen that

Progressive significantly outperforming the other algorithms

(with at least 10−2 significance) and outperforming Sum Coh

at the 0.1 significance level, whereas Sum Coh fails to have

the same level of significance when compared to the BSTM

and Random algorithms.

Shockingly, the leading algorithm in the DUC2002 dataset

in Figure 1 performed the worst in all metrics when applied

to the JPEPT dataset. We conjecture that optimal parameters

reported in Ref. [7] for the differential evolution-base genetic

algorithm are inappropriate for the present task, as the datasets

— and hence, the search spaces — were considerably dif-

ferent, with DUC2002 having much redundant information

between files.

It is noteworthy, as well, that the standard deviation of

ROUGE-2 scores seems to be of the same order of magnitude

as the mean scores. To investigate the cause of such a high

ratio between standard deviation and mean ROUGE-2 scores,

a qualitative analysis of the results was performed. When

contrasting the top performing with the worst performing

abstracts created by the Progressive algorithm (which inciden-

tally also had the biggest standard deviation of scores), a clear

distinction could be traced. Indeed, in the worst performing

summaries, there was a clear tone mismatch between the

papers and their abstracts, which typically happened in papers

describing new modelling equations, rather than experiments.

On the other hand, the best performing papers tended to have

a similar discourse style, as well as longer introduction and

conclusion sections, which mostly served as the source of

the selected sentences. This suggests that more descriptive

technical reports would be better summarized by this method,

which is appropriate when considering its future applications.

435

Fig. 5. Mean ROUGE-2 scores on the JPEPT dataset

TABLE III
P-VALUE FOR THE SINGLE SIDED T-STUDENT TEST ON ROUGE-2 SCORES

Algorithm Progressive BSTM OCDSumSaDE FGB Sum Coh First Random

Progressive - >2.5.10−3 >10−5 >10−3 0.15 >10−6 >10−3

Sum Coh - >2.10−2 >10−5 >10−3 - >10−5 >2.10−2

VI. CONCLUSIONS

This work determined that, in terms of ROUGE perfor-

mance on the summarization of technical literature on oil and

gas, Sum Coh [5] and Progressive [10] are indistinguishable

from one another with any statistical significance, while signif-

icantly outperforming competing algorithms and keeping their

execution times well bellow the 8-hour overnight threshold.

We note, however, that before considering those algorithms

for commercial use, other aspects must be considered, such as

adaptability, reproducibility and interpretability. When taking

these factors into consideration, Progressive, being a deter-

ministic white-box model, allows for greater interpretability

and is more easily configured to suit one’s needs, while

always yielding the same performance. Sum Coh, on the other

hand, is a purely optimization-based method using Mixed

Integer Linear Programming (MILP), which is, in general,

NP-Hard [14]. Its solution is, therefore, hard to interpret in

an intuitive manner — and its consistency depends on the

MILP solver used. Finally, Sum Coh’s original code makes

use of Gurobi [15], a commercial optimization tool, whose

use could potentially increase the cost of development of a

commercial summarization solution. We must, then, conclude,

that the Progressive algorithm is a better fit for our domain of

interest.

We also note that Progressive’s ROUGE-2 performance in

the JPEPT dataset also surpasses Sum Coh’s reported in [5]

on a similar task of technical literature using the PLOS ONE

journal of medicine, of 0.09.

The Python implementations of all the above-mentioned

algorithms, as well as the pre-processing scripts used to

prepare their inputs and the newly created JPEPT dataset can

be found in this project’s public Github repository:

https://github.com/joaomcm/Automatic-Summarization-of-
Technical-Literature-on-Oil-and-Gas.

We hope that this initial work and our collected dataset will

help drive the research in the area towards the production of a

viable commercial automatic technical literature summarizer.

ACKNOWLEDGEMENTS

The second author has been partially supported by the

Conselho Nacional de Desenvolvimento Cientifico e Tec-

nológico (CNPq), grant 312180/2018-7. The work was also

supported by the Fundação de Amparo a Pesquisa do Estado

de São Paulo (FAPESP), grant 2016/18841-0, and also by

the Coordenação de Aperfeiçoamento de Pessoal de Nivel

Superior (CAPES) - finance code 001

REFERENCES

[1] H. Chen, R. H. L. Chiang, and V. C. Storey, “Business
Intelligence and Analytics: From Big Data to Big Impact,” MIS
Quarterly, vol. 36, no. 4, p. 1165, 2012. [Online]. Available:
http://www.jstor.org/stable/10.2307/41703503

[2] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and
P. Kuksa, “Natural language processing (almost) from scratch,” Journal
of Machine Learning Research, vol. 12, no. Aug, pp. 2493–2537, 2011.

[3] M. Gambhir and V. Gupta, “Recent automatic text summarization
techniques: a survey,” Artificial Intelligence Review, vol. 47, no. 1, pp.
1–66, 1 2017. [Online]. Available: https://doi.org/10.1007/s10462-016-
9475-9

[4] F. Liu, J. Flanigan, S. Thomson, N. Sadeh, and N. A. Smith, “Toward
Abstractive Summarization Using Semantic Representations,” ArXiv e-
prints, 5 2018.

[5] D. Parveen and M. Strube, “Integrating Importance, Non-Redundancy
and Coherence in Graph-Based Extractive Summarization.” in IJCAI,
2015, pp. 1298–1304.

[6] C.-Y. Lin, “Rouge: A package for automatic evaluation of summaries,”
Text Summarization Branches Out, 2004.

[7] R. M. Alguliev, R. M. Aliguliyev, and N. R. Isazade,
“Multiple documents summarization based on evolutionary
optimization algorithm,” Expert Systems with Applications,
vol. 40, no. 5, pp. 1675–1689, 4 2013. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0957417412010688

[8] D. Wang, S. Zhu, T. Li, and Y. Gong, “Multi-document
Summarization Using Sentence-based Topic Models,” in Proceedings
of the ACL-IJCNLP 2009 Conference Short Papers, ser.
ACLShort ’09. Stroudsburg, PA, USA: Association for
Computational Linguistics, 2009, pp. 297–300. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1667583.1667675

[9] D. Wang, S. Zhu, T. Li, Y. Chi, and Y. Gong, “Integrating Document
Clustering and Multidocument Summarization,” ACM Trans. Knowl.
Discov. Data, vol. 5, no. 3, pp. 14:1–14:26, 8 2011. [Online]. Available:
http://doi.acm.org/10.1145/1993077.1993078

[10] Y. Ouyang, W. Li, R. Zhang, S. Li, and Q. Lu, “A progressive sentence
selection strategy for document summarization,” Information Processing
& Management, vol. 49, no. 1, pp. 213–221, 1 2013. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0306457312000672

[11] R. Storn and K. Price, “Differential Evolution – A Simple and Efficient
Heuristic for global Optimization over Continuous Spaces,” Journal of
Global Optimization, vol. 11, no. 4, pp. 341–359, 12 1997. [Online].
Available: https://doi.org/10.1023/A:1008202821328

[12] C. Guinaudeau and M. Strube, “Graph-based local coherence modeling,”
in Proceedings of the 51st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), vol. 1, 2013, pp.
93–103.

[13] J. M. Kleinberg, “Authoritative Sources in a Hyperlinked Environment,”
J. ACM, vol. 46, no. 5, pp. 604–632, 9 1999. [Online]. Available:
http://doi.acm.org/10.1145/324133.324140

[14] S. Burer and A. N. Letchford, “Non-convex mixed-integer nonlinear
programming: A survey,” Surveys in Operations Research and Manage-
ment Science, vol. 17, no. 2, pp. 97–106, 7 2012. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1876735412000037

[15] L. L. C. Gurobi Optimization, “Gurobi Optimizer Reference Manual,”
2018. [Online]. Available: http://www.gurobi.com

436

