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Abstract
We describe a Physics-Informed Neural Network
(PINN) that simulates the flow induced by the as-
tronomical tide in a synthetic port channel, with
dimensions based on the Santos – São Vicente –
Bertioga Estuarine System. PINN models aim to
combine the knowledge of physical systems and
data-driven machine learning models. This is done
by training a neural network to minimize the resid-
uals of the governing equations in sample points.
In this work, our flow is governed by the Navier-
Stokes equations with some approximations. There
are two main novelties in this paper. First, we de-
sign our model to assume that the flow is periodic
in time, which is not feasible in conventional sim-
ulation methods. Second, we evaluate the benefit
of resampling the function evaluation points during
training, which has a near zero computational cost
and has been verified to improve the final model,
especially for small batch sizes. Finally, we discuss
some limitations of the approximations used in the
Navier-Stokes equations regarding the modeling of
turbulence and how it interacts with PINNs.

1 Introduction
The Santos – São Vicente – Bertioga Estuarine System houses
the Port of Santos, which is of fundamental importance for
Brazilian trade and economy. Therefore, it is of utmost im-
portance to have a reliable system to model and forecast
oceanographic variables in that region. Figure 1 shows satel-
lite images of the estuarine system.

[Costa et al., 2020] have developed the Santos Operational
Forecasting System (SOFS), which monitors and predicts
variables such as tides, currents, salinity, and temperature
near the port. This model is based on the Princeton Oceanic
Model (POM-rain), by [Blumberg and Mellor, 1987], which
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numerically approximates the solution of the Navier-Stokes
equations that describes fluid flows.

Fluid simulation is notoriously complex and expensive,
and consequently some approximations must be made for
them to become computationally feasible, with a balance be-
tween accuracy and computational cost. The chaotic nature
of fluids adds to this challenge, as small errors or short-term
approximations largely affect the accuracy of predictions if a
long forecast horizon is required.

The rapid development of Machine Learning (ML) models
in recent years has led to great progress in various areas and
allowed a wholly new approach to problems involving time-
series forecasts. By training these models with large datasets,
the models can recognize complex patterns and address the
prediction of physical system. However, a purely data-driven
approach to the problem of ocean forecasting is also not com-
pletely desirable, as such models require very large amounts
of data to train, which might not always be available, and they
may lead to non-physical solutions when presented to previ-
ously unseen scenarios [Karniadakis et al., 2021].

Physics-Informed Machine Learning models present a
compromise between the two approaches in an attempt to
combine their advantages and minimize their shortcomings.
The literature presents several different ways of combining
physical and data-driven models [Kashinath et al., 2021;
Raissi et al., 2019; Willard et al., 2020]. These approaches in-
clude, but are not limited to: using ML to estimate the error in
the physics-based models [Xu and Valocchi, 2015]; using ML
to increase the resolution of known flow fields [Nair et al.,
2019; Fukami et al., 2020]; substituting the governing equa-
tions by trained neural networks [Wu et al., 2020]; adding
physical constraints to the ML model [Beucler et al., 2021;
Read et al., 2019].

In this work we propose a Physics-Informed Neural Net-
work (PINN) that uses the governing equations of the physi-
cal system in its fitness evaluation. The solution of the equa-
tion is unknown in the whole domain, and the ML model is
used to approximate it. [Li et al., 2021] calls this approach
a neural-FEM, comparing it to the Finite Elements Method
(FEM) of solving partial differential equations. In this anal-
ogy, the neural network works as one large and complex finite



Figure 1: Satellite image of the Santos – São Vicente – Bertioga Estuarine System. (Adapted from Google® Maps, https://maps.google.com).

element, which spans the whole domain and solves the equa-
tion within its solution space, similarly to the classical FEM,
in which several elements, each with a relatively simple solu-
tion space, are spread along the domain in a mesh.

We focus on a synthetic, rectangular port channel whose
dimensions resemble those of the Port of Santos. It is 10 km
long and 500 m wide. At the entrance, the depth is 15 m in
the center and 13 m at both sides, at its other end, the depths
are linearly reduced to 5 m and 3 m, respectively. Figure 2
depicts the channel. Note that the drawings are not to scale
due to the different orders of magnitude in the lengths. The
open end of the channel is exposed to the astronomical tide
and its 12-hour cycle. All other sides are closed.

This paper makes two contributions: First, we demonstrate
the capability of a PINN model to reach the fully developed
solution of a system that is periodic in time while skipping the
transient phase, as opposed to more traditional ways of simu-
lation, which need a long accommodation phase, when the ef-
fects of the initial condition are still present. The other contri-
bution of this work is to evaluate the effect of resampling the
function evaluation points during the training of the PINN.
This has allowed us to maintain the error margins while re-
ducing the number of function points evaluated at once. This
smaller batch size, in turn, reduces the computational cost,
especially in terms of the memory footprint, allowing either
cheaper computers to train the model or larger models to be
trained in a given computer.

The remainder of this paper is structured as follows: In
Section 2, we present the governing equations of our phys-
ical system, its boundary conditions and physical assump-
tions that were made. In Section 3, we describe the PINN
implementation and training procedure. Section 4 shows the
results obtained after training was complete. Finally, Sec-
tion 5 finishes with some conclusions and suggestions for fu-
ture works.

2 Governing Equations and Boundary
Conditions

In our systems of interest, flow is governed by the Navier
Stokes equations, as described by [Blumberg and Mellor,
1987] and implemented in their POM-rain scheme. A mode
splitting technique is used to separate the three dimensions in
an external mode, which comprises the horizontal directions
(x and y), and an internal mode, which corresponds to the
vertical direction (z); this way the number of variables to be
solved at once is greatly reduced. Moreover, the cited authors
suggest that the internal mode can be removed altogether, to
further simplify the problem. Here we make the following
approximations:

1. Removal the internal mode;
2. Disregard Coriolis acceleration;
3. Disregard viscous forces at the surface and at the bot-

tom;
4. The fluid is incompressible and has a constant density;
5. Disregard convective terms.
The mass conservation equation is then:

∂η

∂t
+

∂(ŪD)

∂x
+

∂(V̄ D)

∂y
= 0, (1)

where η is the water surface elevation with respect to some
standard height, Ū and V̄ are the flow velocities in x and y
direction respectively – the bar denotes that these velocities
are averaged along the z direction. In addition, D is the total
height of the water column, given by:

D(t, x, y) = H(x, y) + η(t, x, y), (2)

where H is the depth at a given coordinate (x, y).
The equation for momentum conservation in the x direc-

tion becomes:
∂(ŪD)

∂t
− F̃x + gD

∂η

∂x
= 0, (3)
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Figure 2: Channel dimensions (not to scale). The blue, wavy line
denotes the free surface of the water, and the dotted line denotes the
open boundary of the channel.

g is the local acceleration of gravity and F̃x is a dissipative
term, given by:

F̃x =
∂

∂x

[
2HĀM

∂Ū

∂x

]
+

[
HĀM

(
∂Ū

∂y
+

∂V̄

∂x

)]
, (4)

where AM is the Smagorinsky diffusivity:

AM = C∆x∆y
1

2

[(
∂Ū

∂x

)2

+
1

2

(
∂Ū

∂y
+

∂V̄

∂x

)2

+

(
∂V̄

∂y

)2
]
. (5)

The equation for the momentum conservation in y is anal-
ogous. The symbol C denotes a non-dimensional parameter,
which is set to 0.2 in this work. Symbols ∆x and ∆y de-
note the mesh spacings at each point of the grid. The model
needs these values to estimate the effect of small eddies on
the overall dissipation, as will be discussed later in this sec-
tion. However, the method described in this work is meshless
and, instead of a regular grid, uses a set of randomly dis-
tributed points in the domain. Therefore, we set ∆x and ∆y
to the mean spacing in x and y in the domain. With a total
length Lxi in the domain direction xi, n points to be uni-
formly distributed and considering there are 3 dimensions in
the solution space, these parameters can be calculated by:

∆xi =
Lxi

n1/3
. (6)

We follow POM-rain’s implementation and use a form
of fluid modeling that is known as Large Eddy Simulation
(LES). This type of fluid model only requires larger structures
– or eddies – to be resolved by the solver. Smaller structures,

which are too small for the simulation to capture, have their
effect modeled by terms that are added to the governing equa-
tions [Zhiyin, 2015]. In turbulent flows, energy usually flows
from large to small structures in the phenomenon known as
Kolmogorov energy cascade [Kolmogorov, 1991]. In turn,
small eddies cause a dissipative effect on the larger scales,
which is usually modeled as a “turbulent viscosity” term that
is added to the fluid’s own viscosity. For practical purposes,
this type of modeling allows coarser grids to be used for sim-
ulations, drastically reducing their computational cost. If no
form of turbulence model is used, the grid would need to be
fine enough to capture all eddies in the fluid, down to the Kol-
mogorov scale, which describes the smallest eddies possible
before the turbulent kinetic energy is dissipated by the fluid’s
viscosity, in what is known as Direct Numerical Simulation
(DNS).

We now discuss the boundary conditions employed in
modeling.

The synthetic channel is represented by a rectangular do-
main, with different boundary conditions in each side. We
use the fact that the channel is symmetric to our advantage,
imposing a symmetry boundary condition at its center line
(y = 0). Therefore, only the y ≥ 0 region is considered. This
condition is obtained by imposing a Neumann boundary con-
dition for the elevation and the longitudinal velocity, such that
their derivatives normal to the center line are null. A Dirichlet
boundary condition is used for the transversal velocity, such
that it is null at the center line. The inlet (at x = 0) is ex-
posed to the astronomical tide, therefore we use a Dirichlet
boundary condition to set the elevation level to the sine wave,

η(t, x = 0, y) = A sin(ωt), (7)

with A set to 1 meter and ω such that the period is 12 hours.
Both components of the velocity are under a Neumann condi-
tion such that their derivative normal to the boundary is null.
At the end and at the side of the channel (x = xf and y = yf ),
we have set no-slip wall conditions, which impose zero veloc-
ity and a null derivative of elevation normal to the boundary.
The Neumann boundary conditions are needed to make sure
that the problem is well-posed.

Time is taken to be periodical, with a cycle length of 12
hours. Hence there is no need to set an initial condition. This
is done as part of the Fourier Features that are encoded in the
network. More details on their implementation are given in
the following sections.

3 Physics-Informed Neural Network
Our goal is to build a model that receives coordinates t, x
and y and outputs the variables η, Ū and V̄ for any point of a
channel at any given time during the astronomical tide’s 12-
hour cycle. For this, we use a PINN model consisting of the
following elements:

1. Normalization layer for spatial coordinates;

2. Fourier features computation for time;

3. Multilayer Perceptron (MLP);

4. Boundary conditions encoding.



The normalization layer is used so that the spatial input
coordinates (x and y) are linearly transformed to a range be-
tween zero and one:

x̂i =
xi

Lxi

, (8)

where the x̂i denotes the normalized xi coordinate.
The time input (t) receives a different treatment to re-

flect the temporal periodicity of the system. A Fourier Fea-
tures layer is used, converting the value of t to the pair
[cos(ωt), sin(ωt)]T , with ω chosen so that the period equals
12 hours.

The MLP network is fully connected and has 4 hidden lay-
ers of 20 neurons each, with a hyperbolic tangent activation
function. Larger amounts of layers and neurons were tested
with little impact on the results. Residual connections are
added every two layers, which allows for better computations
of the gradients and aids the convergence during training [He
et al., 2016]. The inputs come from both the normalization
and the Fourier Features layers. There are three outputs: η̃,
Ũ and Ṽ , one for each variable in the problem. The tilde de-
notes that these variables are the direct output of the MLP and
may not observe the boundary conditions of the problem.

After the MLP, there is a Boundary-encoded output layer,
as described by [Sun et al., 2020]. This layer makes sure that
the Dirichlet boundary conditions are always observed. The
layer works by combining the output of the MLP to a known
function that perfectly observes the Dirichlet boundary con-
dition in the following manner:

η = dη(x, y)η̃ + ηp, (9)

where ηp is the particular solution for the water elevation
and dη is a distance function, which is continuous and dif-
ferentiable, and is equal to zero where the value of η is set
by a Dirichlet boundary condition and non-zero everywhere
else. The concept behind this definition is that the value of
η is fixed to ηp at the boundary conditions but remains under
control of the neural network everywhere else in the domain.
This operation is analogous to Ū and V̄ . We have defined the
following equations for d:[

dη
dŪ
dV̄

]
=

[
tanh(αbx̂)

tanh(αb(1− x̂)) tanh(αb(1− ŷ))
tanh(αbŷ) tanh(αb(1− x̂)) tanh(αb(1− ŷ))

]
. (10)

The hyperbolic tangent function is used so that the value
of d is constant and close to one when away from the bound-
aries. αb is set to 10.56, which causes d to reach 0.99 when
its distance to the boundary is equivalent to 25% of the do-
main. The Neumann boundary conditions cannot be set by
using this method and are implemented via an additional loss
function during training, as will be shown later in this section.

The particular solution for this case is set as Ūp = V̄p = 0
and

ηp = A sin(ωt), (11)

with A set to 1 meter and ω such that the period is 12 hours.
This solution observes all Dirichlet boundary conditions.

As a summary, Figure 3 shows the final configuration of
the network.

3.1 Loss function
We define the loss function of the network as the sum of the
mean absolute value of the residual of each governing equa-
tion: mass conservation (Eq. 1), and momentum conserva-
tion for both directions (Eq. 3); for normalization purposes,
each residual is multiplied by the total length in time of the
domain (Lt). We also add to this loss function the mean abso-
lute value of the Neumann boundary conditions residual, each
multiplied by the total length of the domain in their respective
direction (Lx and Ly).

Therefore, given that ηi, Ūi and V̄i are the PINN’s output
at coordinate (ti,xi,yi), the residuals relative to the governing
equations are computed as:

Rf,1,i =

∣∣∣∣∂ηi∂t
+

∂(ŪiDi)

∂x
+

∂(V̄ Di)

∂y

∣∣∣∣ , (12)

Rf,2,i =

∣∣∣∣∂(ŪiDi)

∂t
− F̃x + gDi

∂ηi
∂x

∣∣∣∣ , (13)

Rf,3,i =

∣∣∣∣∂(V̄iDi)

∂t
− F̃y + gDi

∂ηi
∂y

∣∣∣∣ , (14)

with F̃x computed by Eq. 4 and F̃y by its analogous in y.
The residuals relative to the Neumann boundary conditions
are given by:

Rb,1,i = Mη,i,x

∣∣∣∣∂ηi∂x

∣∣∣∣+MŪ,i,x

∣∣∣∣∂Ūi

∂x

∣∣∣∣+MV̄ ,i,x

∣∣∣∣∂V̄i

∂x

∣∣∣∣ ,
(15)

Rb,2,i = Mη,i,y

∣∣∣∣∂ηi∂y

∣∣∣∣+MŪ,i,y

∣∣∣∣∂Ūi

∂y

∣∣∣∣+MV̄ ,i,y

∣∣∣∣∂V̄i

∂y

∣∣∣∣ . (16)

Note that MY,i is either zero or one, depending on whether
point i has a Neumann condition for variable Y in that partic-
ular direction.

The loss function of the model is given by:

L =
1

nf

nf∑
i=1

3∑
n=1

LtRf,n,i +
1

nb

nb∑
i=1

(LxRbx,i + LyRby,i). (17)

The governing equations are evaluated at nf random points
uniformly distributed along the domain, while the Neumann
boundary conditions are evaluated at nb points uniformly dis-
tributed at the boundaries. One characteristic of PINNs is that
there is an infinite pool of points for the loss to be evaluated.
Consequently, the set of evaluation points can be changed as
many times as desired. In this work, we compare models that
were trained with a fixed set of points to ones trained with a
set that is reshuffled between each iteration.

3.2 Implementation
Our code is written in Python and uses the PyTorch mod-
ule for the machine learning tasks. The optimization is per-
formed with the Adam algorithm. All tests were executed on
a Nvidia® GeForce™ RTX3080 graphics card, with 10 GB of
available memory. The code is available on GitHub1.

1https://github.com/marlonsmathias/PINN Port Channel

https://github.com/marlonsmathias/PINN_Port_Channel
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4 Results
The model was trained for various numbers of function eval-
uations, from nf = 300 to nf = 100000, both reshuffling the
training batch every iteration and keeping it fixed. The num-
ber of boundary conditions evaluation points was kept fixed
at nb = 1000.

Figure 4 shows the time series of all three output vari-
ables as predicted by the PINN for the case trained with
nf = 10000 and resampling, three sampling positions are
used, at the beginning, middle and end of the channel; η and
Ū are measured at the center line, while V̄ is measured three
quarters across the channel. Figure 5 shows the velocity fields
for the same case; one field is shown for every 2 hours of the
cycle. Note that the V̄ component of the solution was magni-
fied by 100 times for better visualization.
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Figure 4: Time series of all three output variables at the beginning,
middle and end of the channel. η and Ū are measured at the center
line, while V̄ is measured three quarters across the channel.
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Figure 5: Velocity fields of the solution. One for every 2 hours. The
V component was amplified by 100 times for better visualization.

and to measure the benefits of resampling the batch after each
iteration, we have defined a testing grid consisting of uni-
formly distributed points along the spatial and temporal do-
mains, where the residual of the governing equations is mea-
sured. Due to the non-deterministic nature of the training, we
have averaged the residual values from 5 runs of each case.
The evaluation grid consists of 101 points in the x direction,
11 points in the y direction and 51 points in time. We have
computed both the mean absolute value (MAE) and the root
mean square (RMS) of the residuals.



Additionally, we wish to understand the memory require-
ments of each batch size; for this, we have used PyTorch’s
cuda.max_memory_allocated method to measure the
largest amount of memory allocated by the tensors during
training. Along with the total training time, this is an im-
portant measure of computational cost because it can be used
to estimate the maximum batch size a given system can use.
Furthermore, it is important to keep in mind that this case
contains a relatively simple geometry and only two spatial di-
mensions; thus, in case one wishes to study more complex
scenarios or include the third spatial dimension in the fluid
modeling, it is likely that larger batch sizes will be needed,
which leads to the necessity of reducing the memory foot-
print of the training.

Table 1 summarizes the results. It is worth noting that the
values of ∆x and ∆y used in Eq. 5 for the computation of the
Smagorinsky diffusivity were kept consistent with the values
used during training. Further in this section, we will discuss
the effects of these values on the resulting flow profiles. Com-
paring the results obtained with and without resampling the
training batches, one can see that this technique has a very
positive effect on the cases where smaller batches were used
but the difference becomes negligible as the batch size in-
creases.

In terms of memory usage, the maximum amount of mem-
ory allocated by the tensor’s scales almost linearly with the
batch size, apart from some overhead. There was no differ-
ence in memory allocation whether or not resampling was
used. The GeForce™ RTX3080 GPU used in these tests has
more than enough memory for our largest batch size; how-
ever, as discussed earlier, this test scenario is relatively sim-
ple and thus may require smaller batch sizes when compared
to more complex cases that more closely resemble real-world
scenarios; therefore, employing a technique such as this may
be crucial when implementing more challenging models, es-
pecially for situations where only GPUs with smaller working
memories may be available.

The time per iteration for the Adam optimizer was mostly
constant for all values of nf . Those cases have also failed
to reach 100% of the GPU usage, as measured by the
nvidia-smi command. Furthermore, using smaller val-
ues of nf has allowed multiple cases to run simultaneously;
for instance, when two cases with nf = 10000 were run in
parallel, the time per iteration has remained at 0.12 seconds,
while the GPU usage has increased to 94%, up from 33% for
just one case. This illustrates another advantage of smaller
batch sizes, i.e., running more than one case at once in the
same hardware. In all cases, convergence was achieved af-
ter around 50000 iterations, which translates to under 2 hours
of real time. For the sake of comparison, the same training
was run on a Quadro™ P6000 GPU, which is comparatively
slower; this time for nf ≤ 30000, each iteration took 0.36
seconds, however, for nf = 100000, the GPU reached 100%
usage and the time per iteration was increased to 0.56 sec-
onds.

After training, it was noted that by changing the number
of function evaluation points, the resulting velocity profile
would change considerably, as seen in Fig. 6. This is at-
tributed to the computation of the Smagorinsky diffusivity,

which considers the grid spacing in each direction to replicate
the effect of the sub-grid dissipation observed in more tra-
ditional Computational Fluid Mechanics simulations. In the
training of this model, we have approximated the grid spac-
ing values as shown in Eq. 6, similarly to the approximation
used in the meshless method of [Mramor et al., 2022]. In the
next section, we discuss some alternatives for the modeling of
the sub-grid dissipation in a LES model solved by this type
of PINN.

5 Conclusion
In this work, we have implemented and trained Physics-
Informed Neural Networks to predict the water flow induced
by astronomical tides in a synthetic port channel. With a
small addition to the network, in the form of the Fourier fea-
tures computed for the temporal input, we have shown that a
PINN can be trained to take into account the flow periodic in
time. There is a considerable advantage in this type of model-
ing over more traditional forms of fluid simulation. For those
forms of simulation, one would have to define an arbitrary
initial condition for the flow and then simulate it for several
cycles, until the effects of this (usually non-physical) initial
condition dissipate and all that is left in the domain is the pe-
riodic solution.

For the sake of comparison, we have implemented the same
governing equations shown in this paper in a Matlab pro-
gram that simulates this channel. A regular mesh was used
in the domain, consisting of 512 by 32 nodes in the x and y
directions, respectively, a sixth-order spectral-like finite dif-
ferences scheme [Lele, 1992] was implemented for the spa-
tial derivatives, along with a fourth order Runge-Kutta time
stepping scheme, with steps of 0.5 seconds. Ten tide cycles
were needed to sufficiently dissipate the effects of the initial
condition and reach a fully developed flow. This simulation
was multi-threaded to 16 CPU cores and took 9 hours to fin-
ish. Obviously, it is difficult to compare both scenarios due to
the widely different techniques and hardware used. However,
this experiment demonstrates the great potential of PINNs for
temporally periodic cases, which took under 2 hours to train
for the results shown in this paper.

One issue yet to be resolved is the modeling of the sub-
grid structures of the LES. [Moin, 2002] argues that instead
of relying on the sub-grid dissipation, as done by the POM-
rain model, it is best to use a numerical low-pass filter for the
LES, which allows better control over the dissipation of small
fluid structures. The optimal way of integrating LES model-
ing with this type of PINN remains an open question. The
solution to this issue will require understanding what are the
smallest movement scales that each particular neural network
can learn. This is the PINN equivalent to the sub-grid scales
of a traditional LES model.

One possibility is that the key to modeling the equivalent of
a sub-grid resolution of a PINN lies in the eigenspectrum in-
trinsic to a neural network, as studied by [Wang et al., 2021].
This eigenspectrum indicates the affinity of a neural network
with different spatial and temporal wave numbers in the so-
lution space. Another possibility is to use machine learning
models to compute the effect of sub-grid scales [Duraisamy,



nf Memory (MB) Time per GPU usage No resampling With resampling
iteration (s) RMS ABS RMS ABS

300 15 0.11 26% 2.5E-4 1.3E-4 1.2E-4 9.7E-5
1000 38 0.11 26% 1.7E-4 1.1E-4 1.1E-4 9.2E-5
3000 102 0.12 29% 1.1E-4 9.2E-5 9.4E-5 8.8E-5

10000 330 0.12 33% 9.5E-5 9.5E-5 8.8E-5 8.9E-5
30000 982 0.13 41% 8.6E-5 9.2E-5 8.8E-5 9.1E-5

100000 3276 0.13 88% 8.5E-5 8.7E-5 8.3E-5 8.7E-5

Table 1: Summary of results for various values of nf .
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Figure 6: Velocity profiles of the solution for nf = 10000 and nf = 100000, with resampling. At t = 0h (top) and t = 6h (bottom).

2021] – these models are trained with high-resolution solu-
tions from Direct Numerical Simulations (DNS), that are able
to capture the effects of small-scale movements without the
help of turbulence modeling due to their very refined grids.
[Eivazi et al., 2021] faced a similar issue when implementing
a PINN to solve the Reynolds-Averaged Navier-Stokes equa-
tions (RANS). RANS models do not directly solve any eddies
in the flow, as opposed to LES which does not solve only the
smaller eddies; by doing so, the equations are further simpli-
fied and the dependence on modeling the sub-grid dissipation
is removed, as is the time-dependence. The solution they have
found involves adding extra outputs to the neural network to
estimate the magnitude of mean velocity fluctuations, which
directly relate to the Reynolds stress, which, in turn, is added
to the viscous dissipation. Searching for similar solutions for
LES models is left as a suggestion for future works.

Finally, we have performed the same training with several
batch sizes for the evaluation of the governing equations in
the domain and compared models that trained with a fixed
batch to those that resampled the training batch after each it-
eration. For the models that were trained with small batch
sizes, resampling the points has considerably increased the
model accuracy with little to no added computational cost.
This technique may be useful when modeling more complex
situations, such as a real channel, with a more intricate geom-
etry, which may require larger batch sizes, or when adding the

vertical direction to the governing equations, as this adds a
new input dimension and a new output variable to the model.

Ethical Statement
There are no ethical issues.

Acknowledgments
This work was carried out at the Center for Artificial Intelli-
gence (C4AI-USP), with support by the São Paulo Research
Foundation (FAPESP) under grant number 2019/07665-4,
and by the IBM Corporation. This work is also supported
in part by FAPESP under grant number 2020/16746-5, the
Brazilian National Council for Scientific and Technological
Development (CNPq) under grant numbers 310085/2020-9,
310127/2020-3, 312180/2018-7, Coordination for the Im-
provement of Higher Education Personnel (CAPES, Finance
Code 001), and by Itaú Unibanco S.A. through the Programa
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