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Abstract
We study the computational complexity of finding
maximum a posteriori configurations in Bayesian
networks whose probabilities are specified by logi-
cal formulas. This approach leads to a fine grained
study in which local information such as context-
sensitive independence and determinism can be con-
sidered. It also allows us to characterize more pre-
cisely the jump from tractability to NP-hardness and
beyond, and to consider the complexity introduced
by evidence alone.

1 Introduction
What is the complexity of finding most probable explanations
in Bayesian networks? Conventional wisdom says that such a
search is an NP-complete problem; if the network has polytree
structure, matters improve as the problem then lies in P. But
suppose the network is specified so that every probability dis-
tribution is a deterministic function, except for a few selected
marginal probabilities. Complexity should clearly depend on
which deterministic functions can be used when specifying
probabilities. So, the question is: what is the complexity of
finding most probable explanations (MPE) and maximum a
posteriori (MAP) configurations, as parameterized by the lan-
guage that is allowed in specifying the deterministic functions?
This is the question we explore in this paper. More precisely,
we look at deterministic functions that are specified through
logical formulas. In doing so, we are inspired by previous
work that focused solely on inference problems [Cozman and
Mauá, 2015].

It is surprising that even for propositional languages we find
our question to produce a nuanced set of results. We spend
most of this paper considering combinations of conjunction,
disjunction, and negation, and we are able to pinpoint the
crucial role of disjunction in complexity jumps.

Even though most existing results on complexity of
Bayesian networks assume that probability distributions are
given as tables of rational numbers [de Campos, 2011;
Kwisthout, 2014; Kwisthout et al., 2010; Pearl, 1988; Shimony
and Domshlak, 2003], in practical situations the specification
language does matter. For instance, one may have algorithmic
gains by employing Noisy-OR gates and the like [Heckerman,
1989; Pearl, 1988], by resorting to supermodular functions

[Nemhauser et al., 1978; Greig et al., 1989] or to relational
languages that make symmetries explicit [Getoor et al., 2007;
Poole, 2003], or even by considering regular structures [Weller
and Jebara, 2013]. By parameterizing the complexity of find-
ing MPE and MAP by specification language, we seek to un-
derstand this interplay between expressivity and computational
cost. We show that restrictions on language can sometimes
bypass the effect of graph topology and can lead to tractable
inferences even in networks of high treewidth. On the other
hand, we show that MAP inference is intractable even for
some very simple (sub Boolean) languages.

We start with some necessary background in Section 2, and
then examine the complexity of MPE and MAP inferences
in propositional languages (Section 3). Section 4 examines
template (relational) languages. Section 5 concludes the paper.

2 MPE and MAP, parameterized by language
A Bayesian network consists of a directed acyclic graph whose
nodes are random variables X1, . . . , Xn and a collection of
conditional probability distributions P(Xi|pa(Xi)), one distri-
bution for each variable/node in the graph. Roughly speaking,
the treewidth of a graph measures its tree-likeness, with a
minimum treewidth of one characterizing trees. The inferen-
tial complexity of Bayesian networks has been shown to be
strongly tied to the treewidth when the probability distribu-
tions are specified using tables of rationals [Kwisthout, 2014;
Kwisthout et al., 2010]. On the other hand, there is an exten-
sive literature on exploiting local structure such as determin-
ism, symmetry and parameter sharing to speed up inference
[Nemhauser et al., 1978; Heckerman, 1989; Greig et al., 1989;
Poole, 2003; Weller and Jebara, 2013].

In order to circumvent the treewidth barrier, and formalize
the inferential complexity in terms of local structure, Coz-
man and Mauá [Cozman and Mauá, 2015] recently proposed
using Bayesian networks over Boolean variables (i.e., tak-
ing values {0, 1}) whose conditional probability distributions
P(Xi|pa(Xi)) are deterministic functions specified as logical
equivalencesXi ⇔ φi(X1, . . . , Xi−1, Xi+1, . . . , Xn), where
φi is a well-formed formula in some (fixed) language L.1 They
showed that such networks can represent any network (by aug-
menting the model), and that new classes of Bayesian networks

1Following [Cozman and Mauá, 2015], we use variables and their
corresponding propositions interchangeably.
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with tractable marginal inference can be found by restricting
the language in which conditional probabilities are specified.

Given a Bayesian network over variables X1, . . . , Xn, a
set of so-called MAP variables M ⊆ {X1, . . . , Xn} and an
event E formed by a conjunction of assignments Xe = xe,
where Xe is a variable not in M, the maximum a posteriori
configuration problem is to compute

max
m

P(M = m,E) . (1)

The decision variant of the problem (denoted by MAP) is to
decide whether (1) exceeds a given rational number. When M
and E span all variables, the problem is known as the most
probable explanation problem (denoted by MPE). We refer
to E as the evidence. When variables are Boolean, we call an
assignment Xe = 1 a positive evidence, and an assignment
Xe = 0 a negative evidence.

The aim of this work is to investigate the complexity of
MAP and MPE inferences parameterized by the language in
which conditional probabilities are specified. We denote by
Prop(O1, O2, . . . ) the set of propositional well-formed for-
mulas with propositions and Boolean operators O1, O2, . . . .
For instance, Prop(∧,¬) is the set propositional sentences
with conjunction and negation (hence all propositional sen-
tences). We denote by (¬) the negation operator that can only
be applied to root variables (i.e., variables with no parents).

For instance, consider the celebrated QMR-DT network
(meaning “Quick Medical Reference, Decision-Theoretic” net-
work) [Shwe et al., 1991]. This is a large network with a
bipartite graph where root nodes are “diseases” and non-root
nodes are “findings”, all of them represented by Boolean vari-
ables. There are about 600 diseases in QMR-DT, each one
of them associated with a marginal probability assessment,
and about 4000 findings, each one of them associated with a
Noisy-OR gate. That is, QMR-DT is clearly a network spec-
ified within the framework described, using Prop(∧,∨) as
specification language. In fact, QMR-DT is a perfect example
of a network that has very large treewidth (there are cliques
with more than 150 variables in efficient triangulations), and
that can be handled by smart exploitation of the specification
language [Heckerman, 1989].

Now consider another example, where the point is to men-
tion fact that any Bayesian network can be specified with
Prop(∧,¬). Figure 1 shows a small fragment of the popular
Asia network [Lauritzen and Spiegelhalter, 1988], entirely
encoded with Prop(∧,¬) plus some auxiliary variables Yi.

Given a class B of Bayesian networks specified with a lan-
guage L, we denote by MAPd(L) the set of all MAP deci-
sion problems whose inputs are networks in B. We denote
by MAP+

d (L) the subclass of problems in MAPd(L) with
positive evidence (i.e., assignments Xe = 1); similarly, we
denote by MAP0

d(B) the subclass of MAP problems with no
evidence (i.e., E = ∅). Clearly, MAPd(L) is at least as hard
as MAP+

d (L), which is at least as hard as MAP0
d(L).

We adopt analogous definitions for MPE: MPEd(L),
MPE+

d (L) and MPE0
d(L) are the class of MPE problems with

Bayesian network specified with L and arbitrary, positive and
no evidence, respectively. Because MPE is a subcase of MAP,
computing a MAP problem in a specific language is at least
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Figure 1: A fragment of the Asia network; numbers by root
nodes convey the probability that the variable in the node is
true; logical equivalences refer to abbreviated names.

as hard as computing the MPE restricted to that language. In-
tractability of MPE implies intractability of MAP; tractability
of MAP implies tractability of MPE.

3 Complexity Results
This section contains complexity results of MAP and MPE
inference parameterized by some propositional languages. We
assume familiarity with NP-completeness theory. A proba-
bilistic Turing machine is a nondeterministic Turing machine
that accepts a string iff the majority of the paths accepts. The
class PP contains languages that can be decided by a proba-
bilistic Turing machine in polynomial time. The class NPPP

contains languages that can be decided in polynomial time by
a nondeterministic Turing machine with an oracle PP.

We focus on MPE problems in Section 3.2, then move to
MAP problems in Section 3.3. Before we walk into a maze
of theorems about complexity, let us pause and overview our
main results.

3.1 Overview
Shimony [1994] was the first to show that MPE is NP-
complete for table-based Bayesian networks even when there
is no evidence [Shimony, 1994], and therefore NP-complete
for Prop(∧,¬) (without evidence). Shimony’s proof can be
easily adapted to show that MPE0

d(Prop(∧,∨)) is also NP-
complete by noting that conditional probabilities can be speci-
fied using only conjunctions and disjunctions.2 We prove in
Theorem 1 that NP-completeness also obtains for the very sim-
ple language Prop(∧). The idea of the proof is to use negative
evidence to obtain disjunction from conjunction. If we only
consider positive evidence, then MPE becomes polynomial,
even if we allow negation of root nodes (Theorem 2). But
if we allow disjunction with positive evidence (Theorem 3)
or conjunction with negative evidence, then MPE is already
NP-complete, because we can use the evidence to obtain the
other operator. That is: either conjunction or disjunction is
fine, but both they take us to NP-completeness. Finally, we

2Shimony uses “probability drain nodes” to virtually set an ev-
idence into the network by assigning a very small probability to
disagreeing assignments. Drain nodes can be specified as the dis-
junction of their parents and “fresh” auxiliary nodes with uniform
probability.
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show, by a different technique, that exclusive-OR ⊕ also leads
to tractability (Theorem 4).

We then move to MAP. Because MAP is generally much
harder than MPE, finding a language for which MAP prob-
lems are as hard as MPE problems can be seen as a positive
result. Here proofs are more involved, as there are few NPPP-
complete problems in the literature.

Park and Darwiche were the first to examine the complex-
ity of MAP inference in Bayesian networks, and concluded
that the problem is NPPP-complete for table-based specifi-
cations [Park and Darwiche, 2004]. A corollary of their
result is that MAPd(Prop(∧,¬)) is NPPP-complete. Their
proof can be modified to show that the more restricted variant
MAP+

d (Prop(∧,∨, (¬))) is already NPPP-complete.
In Theorem 5 we prove our most challenging result, namely,

that MAP+
d (Prop(∨)) is already an NPPP-complete problem.

We then show that a language with only conjunction also
produces a MAP problem that is NPPP-complete if we allow
negated evidence (Theorem 6). These results suggest again
that allowing conjunction and disjunction adds considerable
difficulty to inference, even we if need to use evidence to build
the other operator.

We then move to Prop(∧) with positive evidence. The com-
plexity of MAP is generally understood as the complexity of
an MPE problem where each evaluation requires the complex-
ity of marginal inference. This intuition has been corroborated
by some complexity results. For example, for networks spec-
ified through Prop(∧,¬), the decision version of marginal
inference is PP-complete, MPE is NP-complete and MAP is
NPPP-complete. Following the same intuition, we expect the
complexity of MAP0

d(Prop(∧)) to be the complexity of MPE
with an oracle for inference in Prop(∧). This MPE problem is
in P; also, the inference problem is in P [Cozman and Mauá,
2015]; hence we expect MAP0

d(Prop(∧)) to be in P. However,
we have the surprising result that MAP in such networks is
PP-hard (Theorem 7). Note that we only prove hardness;
perhaps MAP0

d(Prop(∧)) is NPPP-complete, or PP-complete.
We leave the question open.

3.2 MPE
Theorem 1. MPEd(Prop(∧)) is NP-complete.

Proof. Pertinence is immediate (it follows for any MPE prob-
lem). To prove hardness, we use a reduction from VERTEX
COVER:

Input: A graph G = (V,E) and an integer k.
Question: Is there a set C ⊆ V of cardinality at
most k such that each edge in E is incident to at
least one node in C?

Given an instance of VERTEX COVER, construct a Bayesian
network as follows. For each node v in V , add a variable
Xv with P(Xv = 1) = 3/4. For each edge e = (u, v) in E,
add a node Xe whose parents are Xu and Xv, and specify
Xe ⇔ Xu ∧Xv. Intuitively, the nodes Xv = 0 if node v is
in a vertex cover and Xv = 1 otherwise, whereas Xe = 0
if the edge e is covered by some of its endpoints, otherwise
Xe = 1. The Bayesian network on the right in Figure 2 is
obtained from a VERTEX COVER problem with the graph on

a

b

c

d

Xd Xa Xb Xc

Xac

Xad Xab Xbc

Figure 2: A Bayesian network (on the right) that solves VER-
TEX COVER with the graph on the left.

the left. Consider an assignment v to the node variables {Xv :
v ∈ V }, and denote by v(Xv) the assignment of variable
Xv, v ∈ V . Let C(v) = {v : v(Xv) = 0} be the node set
represented by v. By construction, if C(v) is not a vertex
cover (i.e., if there isXe such that both its parents are assigned
the value one in v), then P(V = v, {Xe = 0, e ∈ E}) = 0,
since P(Xe = 0|Xu = v(Xu), Xv = v(Xv)) = 0 for some
e = (u, v) ∈ E. On the other hand, if C(v) is a vertex
cover then P(V = v, {Xe = 0, e ∈ E}) =

∏
v∈C(v)(1 −

P(Xv = 1))
∏

v 6∈C(v) P(Xv = 1) = 3n−|C|/4n, where n =

|V |. Hence, there is an edge cover C of size |C| ≤ k if and
only if maxv P(V = v, {Xe = 0, e ∈ E}) ≥ 3n−k/4n.

Theorem 2. MPE+
d (Prop(∧, (¬)) and MPE0

d(Prop(∨)) are
in P.

Proof. For solving MPE+
d (Prop(∧, (¬)), propagate the ev-

idence by making all ancestors of evidence nodes take on
value one (true), which is the only configuration assigning
positive probability. Now, for both MPE+

d (Prop(∧, (¬)) and
MPE0

d(Prop(∨)), the procedure is as follows. Assign values
of the remaining root nodes as to maximize their marginal
probability independently (i.e., for every non-determined root
nodeX selectX = 1 if and only if P(X = 1) ≥ 1/2). Assign
the remaining internal nodes the single value which makes
their probability non-zero. This can be done in polynomial
time and achieves the maximum probability.

Theorem 3. MPE+
d (Prop(∨)) is NP-complete.

Proof. The proof is similar to the proof of Theorem 1. Given
an instance of VERTEX COVER with graph G = (V,E) and
integer k, construct a Bayesian network containing nodes
Xv, v ∈ V , associated with the probabilistic assessment
P(Xv = 1) = 1/4 and nodes Xe, e = (u, v) ∈ E, asso-
ciated with the logical equivalence Xe ⇔ Xu ∨ Xv. Let
C(v) = {v : v(Xv) = 1. Then P(V = v, {Xe = 1, e ∈
E}) =

∏
v∈C(v) P(Xv = 1)

∏
v 6∈C(v)(1 − P(Xv = 1)) =

3n−|C|/4n ≥ 3n−k/4n if and only if C(v) is s vertex cover
of cardinality at most k.

Theorem 4. MPE+
d (Prop(⊕)) is in P.

Proof. The operation ⊕ is supermodular, hence the logarithm
of the joint probability is also supermodular and the MPE
problem can be solved efficiently [Nemhauser et al., 1978].
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Li,a
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Li,c

Li′,a′

Li′,b′

Li′,c′

Li,a

Li,b

Li,c

Li′,a′

Li′,b′

Li′,c′

Figure 3: Two examples of gadgets used in the proof of Theo-
rem 5. The graph on the left represents two clauses that share
a Boolean variable in the literals Li,a = ¬Li′,a′ . On the right,
a similar construct but where the literals have the same sign
Li,a = Li′,a′ . Each connection means that the endpoint nodes
cannot both assume the state 0.

3.3 MAP
Theorem 5. MAP+

d (Prop(∨)) is NPPP-complete.

Proof. Consider the following NPPP-complete problem,
known as EMAJ(3)SAT [Littman et al., 1998; Park and Dar-
wiche, 2004]:

Input: A 3-CNF formula ψ(X1, . . . , Xn) and an
integer k.
Question: Is there an assignment to X1, . . . , Xk

such that the majority (that is, at least 1/2 · 2n−k)
of the assignments to Xk+1, . . . , Xn satisfies ψ?

To prove the desired result, we first prove NPPP-hardness of
an intermediate problem, which is a variant of EMAJ(3)SAT.
Given a formula in CNF over X1, . . . , Xk, we say that an
assignment respects the 1-in-3 rule if at most one literal in
each a clause takes on true (and to satisfy the formula, at least
one needs to be true). The E(1-in-3)SAT problem is:

Input: Given a 3-CNF formula φ(X1, . . . , Xn)
with m clauses and integer k.
Question: Is there an assignment to X1, . . . , Xk

such that at least 1/21+m of the assignments to
Xk+1, . . . , Xn respect the 1-in-3 rule and satisfies
φ?

We will derive a parsimonious reduction from EMAJ(3)SAT
to E(1-in-3)SAT. Let m′ be the number of clauses of a
EMAJ(3)SAT instance with formula ψ over n variables, and
denote by R(l1, l2, l3) the relation that is true if and only if
exactly one of its literals l1, l2, l3 is true. Clauses of E(1-
in-3)SAT will be represented by such relation as follows:
each clause li,1 ∨ li,2 ∨ li,3 of EMAJ(3)SAT can be written
as the set R(¬li,1, ai, bi) ∧ R(li,2, bi, ci) ∧ R(¬li,3, ci, di) ∧
R(ai, ci, ei) ∧ R(ai, ci, ei) of clauses of the E(1-in-3)SAT
problem, where ai, bi, ci, di, ei are new Boolean variables only
appearing in these relations. The number of satisfying assign-
ments to the latter expression equals the number of satisfying
assignments to li,1∨li,2∨li,3. Consider the formula φ obtained

by replacing each of the m′ clauses in ψ by such correspond-
ing expression. The E(1-in-3)SAT problem is that of deciding
whether there is an assignment toX1, . . . , Xk such that at least
1/21+m of the 2m+n−k assignments to Xk+1, . . . , Xn and
to (Ai, Bi, Ci, Di, Ei)i=1,...,m′ (where m = 5m′) respect the
1-in-3 rule and satisfy φ. Since there is a one-to-one correspon-
dence between satisfying solutions of both problems, and the
E(1-in-3)SAT instance contains 5m′ more variables than the
EMAJ(3)SAT instance such that 1/21+m = 1/2·2n−k

25m′+n−k , where
the numerator is 1/2 of the assignments of the EMAJ(3)SAT
instance and the denominator is the number of assignments of
the E(1-in-3)SAT instance, we obtain that E(1-in-3)SAT is
NPPP-hard.

We now prove the desired result (i.e., hardness of
MAP+

d (Prop(∨))) by a reduction from E(1-in-3)SAT. Let
R(li,1, li,2, li,3) represent the clause i of the E(1-in-3)SAT
formula φ (i ∈ {1, . . . ,m}) and let Xj ∈ {0, 1} be the j-th
Boolean variable (j ∈ {1, . . . , n}). Let Xi,r be the variable
appearing in the literal li,r. For each literal li,r appearing in φ,
create a root node Li,r in the network (there might be multiple
root nodes corresponding to the same Boolean variable; nodes
will be denoted with uppercase L and literals of the formula
with lowercase l). Define P(Li,r = 1) = ε and interpret
the state 0 of the node Li,r to mean that the literal li,r is set
to true as for the satisfiability of the formula φ. Now, for
each pair of literals (li,r, li′,r′) such that Xi,r = Xi′,r′ and
li,r = ¬li′,r′ , include a disjunction evidence node Ei,r,i′,r′

with positive observation on it (that is, observe state 1). This
will eventually force the values of nodes Li,r and Li′,r′ not
to be 0 (that is, true) at the same time, as desired. We use
the notation Ei,r,i′,r′ to indicate the logical relation implicitly,
that is, Ei,r,i′,r′ ⇔ Li,r ∨Li′,r′ . Now, for each clause i, build
three disjunction evidence nodes Ei,1,i,2, Ei,1,i,3, Ei,2,i,3 and
set the observation to be positive on them (state 1), so no two
literal nodes in a clause can be 0 at the same time (this implies
each clause will have at most one literal node with state 0,
enforcing the 1-in-3 rule). Examples of this “clause gadget”
can be seen inside the dashed rectangles in Figure 3.

With the transformation so far, we already know that every
configuration for the root nodes that does not respect the 1-in-3
rule will lead to a joint probability of zero, so we conclude that
there are at most 4m configurations with non-zero probability.
We can also state that an arbitrary assignment x1, . . . , xn of
the Boolean variables in the E(1-in-3)SAT problem satisfying
φ and respecting the 1-in-3 rule will have a corresponding con-
figuration for all root nodes in the network by setting the literal
nodes according to the literals in the formula (and by using the
satisfying assignment x1, . . . , xn). Such configuration of the
root nodes will have probability α = (1− ε)m · ε2m, because
exactly one literal node per clause will be set to state 0 and
two nodes to state 1. Recall that we interpret the state zero 0
of a literal node in the network as defining such literal as true
(thus state 1 means to assign false to the literal). Now take a
configuration of the root nodes in the network corresponding
to a situation where at least one clause of φ is not satisfied,
that is, where all literal nodes corresponding to a clause in φ
are set to state 1. This configuration will have probability at
most β = (1− ε)m−1 · ε2m+1.
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The issue still to be addressed in this reduction is that there
are many configurations for the root nodes that are logically in-
compatible but may reach probability α (for example, take two
clauses R(l1,x, l1,y, l1,z) and R(l2,t, l2,w, l2,z) where X1,z =
X2,z and l1,z = l2,z and set the nodes L1,x = 0 and L2,z = 0,
while leaving L1,y = L1,z = L2,t = L2,w = 1; this is possi-
ble according to the transformation but does not correspond to
a valid assignment of the original Boolean variables because
L1,z should be equal to L2,z). To avoid such scenarios (as
well as scenarios with other incompatible literal nodes about
the same Boolean variable), we define additional disjunction
nodes in the network. For each two clauses i and i′ sharing
a variable Xi,a = Xi′,a′ such that li,a = ¬li′,a′ , create dis-
junction evidence nodes Ei,b,i′,b′ , Ei,b,i′,c′ , Ei,c,i′,b′ , Ei,c,i′,c′

which will guarantee that if Li,b = 0 or Li,c = 0 then
Li′,a′ = 0 and Li,a = 1 in any satisfying assignment, and
analogously we have that if Li′,b′ = 0 or Li′,c′ = 0 then
Li,a = 0 and Li′,a′ = 1 in any satisfying assignment (we do
not care about configurations related to non-satisfying assign-
ments because they have very low probability, as we will see).
This is illustrated on the left side of Figure 3. For each two
clauses i and i′ sharing a variable Xj = Xi,a = Xi′,a′ appear-
ing in the literals li,a = li′,a′ , include disjunction evidence
nodes Ei,a,i′,b′ , Ei,a,i′,c′ , Ei,b,i′,a′ , Ei,c,i′,a′ , which will force
literals Li,a and Li′,a′ to be compatible in both clauses in any
satisfying assignment. This is illustrated on the right side of
Figure 3. With such additional constraints, configurations of
the root nodes that are incompatible get zero probability.

Because at most 4m configurations can have non-zero prob-
ability (in fact, because of the compatibility constraints we
have included, possibly less than 4m root node configura-
tions can have non-zero probability), the sum of all con-
figurations that correspond to assignments not satisfying φ
is at most 4m · β. By choosing a value of ε such that
4m ·β = 4m · (1− ε)m−1 · ε2m+1 < 2−m−1α = 2−m−1(1−
ε)m · ε2m ⇐⇒ 23m+1 < 1

ε − 1 ⇐⇒ ε < 1
23m+1+1 ,

we can tell exactly the number of satisfying assignments of
φ as a multiple of α with a error less than 2−m−1 (all non
satisfying assignments summed together will not change this
value enough to reach the next multiple of 2−m−1α).

Now we choose as MAP variables all of those related
to literals that contain variables X1, . . . , Xk, that is, M =
{Li,a | Xi,a ∈ {X1, . . . , Xk}, i ∈ {1, . . . ,m}}. We pose
the query to the MAP problem of whether there is a con-
figuration m for the MAP variables such that P(m) ≥
2−m−1+n−kα, which happens if and only if given Boolean
variables X1, . . . , Xk fixed according to m (which represents
a valid assignment otherwise P(m) = 0), at least 2−m−1
assignments to Xk+1, . . . , Xn, satisfy φ. The answer is af-
firmative if and only if E(1-in-3)SAT answer is affirmative,
hence MAP+

d (Prop(∨)) is NPPP-hard (pertinence in NPPP

is immediate as it is contained in the class of MAPd prob-
lems).

Theorem 6. MAPd(Prop(∧)) is NPPP-complete.

Proof. MAP+
d (Prop(∨)), which is NPPP-complete by The-

orem 5, can be reduced to MAPd(Prop(∧)) by inverting
the meaning of all nodes’ states and by applying de Mor-

gan’s law to the network. Hence, all disjunctions become
conjunctions and evidence nodes become all negated, hence
MAPd(Prop(∧)) is NPPP-hard. As MAPd is itself a problem
in NPPP, completeness follows trivially.

Theorem 7. MAP0
d(Prop(∧)) and MAP0

d(Prop(∨)) are PP-
hard.

Proof. We reduce MAJ-2MONSAT to MAP0
d(Prop(∧)),

which is PP-complete [Roth, 1996]:

Input: A 2-CNF formula φ(X1, . . . , Xn) with m
clauses where all literals are positive.
Question: Does the majority of the assignments to
X1, . . . , Xn satisfy φ?

The transformation is as follows. For each Boolean variable
Xi, build a root node such that P(Xi = 1) = 1/2. For each
clause Cj with literals xi and xk (note that literals are always
positive), build a conjunction node Ej with parents Xi and
Xk, that is, Ej ⇔ Xi ∧Xk. Now set all non-root nodes to be
MAP nodes, that is, M = {E1, . . . , Em}.

Suppose that variables in M are chosen to be m where
at least one of them is set to state 1. This implies that both
parents of this conjunction node must be set to state 1 too,
and thus the joint probability P(m) ≤ 1

2 ·
1
2 = 1

4 (as there
are two root nodes with their states fixed to 1). So any MAP
configuration m where not all nodes are set to state 0 will
have probability inferior to 1

4 <
1
2 . On the other hand, take

the MAP configuration m = 0 (vector equality). In this case,
by construction, P(m) is exactly the number of satisfying
assignments of φ: just interpret each configuration of the root
nodes such that Xi = 0 means that the Boolean variable Xi

is set to true, while node Xi = 1 means false. Because the
MAP nodes are set to 0, at least one of its parents need to be
set to state 0, which means that the configuration satisfies the
formula φ. As the MAP value is computed as a sum over all
possible satisfying assignments, the obtained probability is
exactly the percentage of satisfying assignments of φ. Hence
it is enough to check whether exists m with P(m) > 1

2 . There
is such a MAP configuration (which can only happen when
all MAP nodes are set to state 0) if and only if the majority
of the assignments satisfies φ. In order to prove the result for
MAP0

d(Prop(∨)), we just use the very same reasoning with ∨
in E nodes (MAP variables will be set to 1).

4 Going relational
In our quest for increased expressivity, we can imagine mov-
ing from random variables to parameterized random variables;
that is, instead of just considering e.g. proposition Rich rep-
resenting whether a particular individual is rich, we might
consider e.g. relation Rich(x) with x ranging over a domain of
individuals, and expressing the wealth condition of each indi-
vidual. The idea is that we now have parameterized random
variables [Poole, 2003], and our models are templates that get
instantiated by specific sets of individuals. This allows us to in-
vestigate the complexity of networks where many nodes share
the same conditional probabilities. There are indeed many
such relational extensions of Bayesian networks [Jaeger, 1997;
Getoor et al., 2007]. Suppose that we allow each node of our
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networks to be associated with a relation; given a domain, we
can produce all possible groundings, and build a grounded
Bayesian network by connecting groundings if their corre-
sponding relations are connected. In this paper a domain is
always a finite set, so we always produce a finite Bayesian
network through grounding.

The models discussed in the previous paragraph are es-
sentially identical to relational Bayesian networks [Jaeger,
1997], in that each node is associated with a relation, and
the semantics is given by grounding into Bayesian networks.
The reader can find more details about the specific features
of relational Bayesian networks, and their semantics, in the
literature [Jaeger, 1997]. Our only change with respect to
Jaeger’s original relational Bayesian networks is that we adopt
again Cozman and Mauá’s scheme for probability specification
[Cozman and Mauá, 2015]. That is, we let each root node be
associated with a probability P(r) = α, where α is a rational
number in [0, 1], and each non-root node be associated with
a logical equivalence r(x1, . . . , xk) ⇔ φ(x1, . . . , xk), where
φ(x1, . . . , xk) is a well-formed formula in some fragment of
first-order logic, with the restriction that all and only logical
variables associated with r are free variables in φ. See Figure 4
for an example.

Suppose we have as input a directed acyclic graph and asso-
ciated probabilities and equivalences, plus a domain (a finite
list of individuals), and evidence (a conjunction of assessments
for groundings). By MPE we now mean the same MPE prob-
lem as before, but applied to the grounded network, with the
given evidence. And similarly for the MAP problem.

However, when we focus on relational languages we can
consider additional questions. For instance, in practice it
may be that the size of the relational model is small, whereas
the size of the evidence, or the size of the domain, is large.
So we may ask: what is the complexity of MPE when the
relational model is fixed, but the evidence or domain grow?
We denote by DMPE the MPE problem where the size of the
relational model is bounded (and assumed constant), and only
evidence and domain size may change. This sort of analysis
concentrates on the so-called data complexity [Cozman and
Mauá, 2015].

We start with a very simple relational language [Cozman
and Mauá, 2015], obtained by restricting the popular descrip-
tion logic DL-Lite [Calvanese et al., 2005]. Denote by DLDiet
the language consisting of the set of formulas recursively de-
fined so that any unary relation is a formula, ¬r(x) is a formula
for any unary relation r, φ∧ϕ is a formula when both φ and ϕ
are formulas, and ∃y r(x, y) is a formula for a binary relation r.
Note that because this language contains Prop(∧), it follows
that MPEd(DLDiet) is NP-complete. However, by fixing the
size of the relation model, we obtain:
Theorem 8. DMPEd(DLDiet) is in P.

Proof. The proof is rather similar to the proof of polynomial-
time inference by Cozman and Mauá [Cozman and Mauá,
2015]. By construction the grounded Bayesian network con-
sists of disconnected slices, whose variables can be selected
independently. Each slice can be solved by brute force con-
ditional on the values of the existential relations; this takes
time exponential in the size of the relational network that is

considered bounded (hence constant time). For each assign-
ment of values to existential relations, the values of the binary
relations can be decided greedily by inspecting the marginal
probability (e.g., if the existential is set to true and the prob-
ability of the corresponding relation is less than 1/2, assign
an arbitrary parent relation to true and the remaining to false).
The whole process takes polynomial time.

Consider now the language EL [Cozman and Mauá, 2015],
inspired by the homonymous popular description logic
[Baader, 2003] as defined as follows. Any unary relation
is a formula in EL, φ ∧ ϕ is a formula when both φ and ϕ
are formulas, and ∃y r(x, y) ∧ s(y) is a formula when r is a
binary relation and s is a unary relation. For this language, a
fixed bound on the size of the relational model does not reduce
complexity.
Theorem 9. DMPEd(EL) is NP-complete.

Proof. Pertinence can be shown by solving the MPE in the
grounded network, an MPE problem. To show hardness, con-
sider a VERTEX COVER problem in a graph with nodes
V = {v1, . . . , vn} and edges E = {e1, . . . , em} given by
its incidence matrix C: C is an n-by-m matrix such that
Aij = 1 if node i is incident upon edge j and zero other-
wise. Note that

∑
iAij = 2 for any j. Obtain a square

matrix A′ by augmenting A with zeros (i.e., if n > m add
n−m zero-filled columns; if n < m add m− n zero-filled
rows). Construct the relational Bayesian network specified by
P(r(x, y)) = 1/2, P(s(y)) = 1/4, t(x) ⇔ ∃y r(x, y) ∧ s(y).
Let N = max{n,m}, D = {1, . . . , N}. A grounding r(j, i)
represents the incidence of node vi upon an edge ej . A ground-
ing s(i) indicates whether node vi is selected in an vertex
cover, while a grounding t(j) indicates whether edge ej is
covered by the vertex cover. Set E = {r(i, j) = 1 : A′ij =
1}∪{r(i, j) = 0 : A′ij = 0}∪{t(j) :

∑
iA
′
ij/2 = 1}. Hence,

the evidence ensures that t(j) = 1 if and only if s(i1) = 1
or s(i2) = 1, where vi1 and vi2 are the nodes incident upon
ej with j ≤ m; for j > m any assignment to s(i) satisfies
the evidence t(j) = 0. The joint probability of the Bayesian
network is P(s(1), . . . , s(N),E) =

∏
(vi1

,vi2 )∈E
I(s(i1) ∨

s(i2))
∏N

i=1 P(s(i)) , where I is the indicator function which
returns one if its argument evaluates to true and zero other-
wise. Consider an assignment s1, . . . , sN to s(1), . . . , s(N)
and let C = {vi : i ≤ n, si = 1}. If C is a vertex cover then
P(s(1) = s1, . . . , s(N) = sN ,E) = 3N−|C|/4N ; if C is not
an vertex cover then P(s(1) = s1, . . . , s(N) = sN ,E) = 0.
Hence maxs1,...,sN P(s(1) = s1, . . . , s(N) = sN ,E) ≥
3N−k/4N if and only if there is a vertex cover of cardinality
at most k.

The proof above makes use of negated evidence on binary
relations; the complexity of the problem with positive evidence
(that is, DMPE+

d (EL)) remains open.

5 Conclusion
In this paper we have presented complexity results for MPE
and MAP problems in Bayesian networks, as parameterized by
the language in which probabilities are specified. Complexity
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male

mother son

parentOf

P(male) = 0.5

P(parentOf) = 0.01

mother(x)⇔ ¬male(x) ∧ ∃y parentOf(x, y)
son(x)⇔ male(x) ∧ ∃y parentOf(y, x)

ma(a)

mo(a) so(a)

ma(b)

mo(b)so(b)

pa(a, a) pa(a, b) pa(b, a) pa(b, b)

Figure 4: Example of relational Bayesian network and its grounding with D = {a, b}.

results for these problems have focused on graph topology,
but it has been long known that restrictions on parameter
specification lead to distinct computational behavior. Our anal-
ysis offers an initial formalization of this perception. Overall
we find that disjunction is the key source of computational
intractability; as long as disjunction can be represented, com-
plexity jumps considerably.

There are many possible extensions of this work. We only
barely touched relational models; there are many languages
that deserve attention. Issues such as separating the effect of
data size and domain size from network size are important and
should also be examined.
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