
A Tractable Class of Model Counting Problems

Denis Deratani Mauá
Instituto de Matemática e Estatı́stica

Universidade de São Paulo
São Paulo, Brazil

Email: denis.maua@usp.br

Fabio Gagliardi Cozman
Escola Politécnica

Universidade de São Paulo
São Paulo, Brazil

Email: fgcozman@usp.br

Abstract—We develop a polynomial-time algorithm for model
counting of formulas in monotone conjunctive normal form
where the clauses can be partitioned in two sets: any two
clauses in different sets share exactly one variable; any two
clauses in the same set have the same number of variables
and share no variables. Our algorithm reduces the problem to
edge cover counting problems that can be solved by dynamic
programming efficiently. We also comment on extensions and
applications of these results, such as solving weighted model
counting with uniform weights and computing the number of
satisfying interpretations of DL-Lite sentences.

I. INTRODUCTION

“Model counting” usually refers to the problem of counting
the number of satisfying truth-value assignments of a given
Boolean formula. Many problems in artificial intelligence and
combinatorial optimization can be either specialized to or
generalized from model counting. For instance, propositional
satisfiability (i.e., the problem of deciding whether a satisfying
truth-value assignment exists) is a special case of model
counting; probabilistic reasoning in graphical models such as
Bayesian networks can be reduced to a weighted variant of
model counting [1], [2]; validity of conformal plans can be
formulated as model counting [3]. Thus, characterizing the
theoretical complexity of the problem is both of practical and
theoretical interest.

In unrestricted form, the problem is complete for the class
#P, which contains the integer-valued functions that can be
computed by counting the number of accepting paths in a non-
deterministic Turing machine running in polynomial time [4].
Even very restrictive versions of the problem are complete for
#P. For example, the problem is #P-complete even when the
formulas are in conjunctive normal form with two variables
per clause, there is no negation, and the variables can be
partitioned into two sets such that no clause contains two
variables in the same block [5]. The problem is also #P-
complete when the formula is monotone and each variable
appears at most twice, or when the formula is monotone, the
clauses contain two variables and each variables appears at
most k times for any k ≥ 5 [6]. A few tractable classes have
been found: for example, Roth [7] developed an algorithm for
counting the number of satisfying assignments of formulas
in conjunctive normal form with two variables per clause,
each variable appearing in at most two clauses. Relaxing the
constraint on the number of variables per clauses takes us
back to intractability: model counting restricted to formulas in
conjunctive normal form with variables appearing in at most
two clauses is #P-complete [8].

Researchers have also investigated the complexity with
respect to the graphical representation of formulas. Computing
the number of satisfying assingments for monotone formulas in
conjunctive normal form, with at most two variables per clause,
with each variable appearing at most four times is #P-complete
even when the primal graph (where nodes are variables and
an edge connects variables that coappear in a clause) is
bipartite and planar [6]. The problem is also #P-complete
for monotone conjunctive normal form formulas whose primal
graph is 3-regular, bipartite and planar. In fact, even deciding
whether the number of satisfying assignments is even (i.e.,
counting modulo two) in conjunctive normal form formulas
where each variable appears at most twice, each clause has at
most three variables, and the incidence graph (where nodes are
variables and clauses, and edges connect variables appearing
in clauses) of the formula is planar is known to be NP-hard by
a randomized reduction [9]. Interestingly, counting the number
of satisfying assignments modulo seven (!) of that same class
of formulas is polynomial-time computable [10].

In this paper, we present another class of tractable model
counting problems defined by its graphical representation.
In particular, we develop a polynomial-time algorithm for
formulas in monotone conjunctive normal form whose clauses
can be partitioned into two sets such that (i) any two clauses in
the same set have the same number of variables which are not
shared between them, and (ii) any two clauses in different sets
share exactly one variable. These formulas lead to intersection
graphs (where nodes are clauses, and edges connect clauses
which share variables) which are bipartite complete. We state
our result in the language of edge coverings; the use of a
graph problem makes communication easier with no loss of
generality. Even though the class of formulas we consider is
somewhat narrow, we expect that future work can build on the
results presented here and relax some of the assumptions.

The rest of the paper is organized as follows. Section II
presents the basics of model counting and the particular class
of problems we consider. Section III introduces the problem
of counting edge covers in black-and-white graphs, and estab-
lishes its correspondence with model counting problems. Our
main result, a polynomial-time algorithm for counting edge
covers of a certain class of black-and-white graphs, is shown in
Section IV under the assumption that graphs contain dangling
edges (which is explained in Section III). This restriction
is lifted in Section V, where we develop an algorithm for
graphs with no dangling edges. We then comment on possible
extensions of the algorithms in Section VI, and its equiva-
lence with the problem of counting the number of satisfying
interpretations in DL-Lite formulas in Section VII. Our final

remarks are given in Section VIII.

II. MODEL COUNTING

A propositional (or Boolean) variable Xi represents a
statement that can be either true (Xi = 1) or false (Xi = 0). A
literal is either a single variable (Xi) or its negation (¬Xi). A
clause is a disjunction of literals, for example, X2∨¬X4∨X5.
We say that two clauses do not intersect if the variables in one
clause do not appear in the other. If X is the largest set of
variables that appear in two clauses, we say that the clauses
intersect (at X). For instance, the clauses X1 ∨X2 ∨X3 and
¬X2∨¬X4 intersect at {X2}. A clause containing k variables
is called a k-clause, and k is called the size of the clause. A
formula in conjunctive normal form (CNF) is a conjunction of
clauses, for instance, (X1 ∨ X2) ∧ (¬X1 ∨ ¬X3). A k-CNF
formula contains only j-clauses, with j ≤ k. The degree of a
variable in a CNF formula is the number of clauses in which
either the variable or its negation appears. A CNF formula
where every variable has degree at most two is said read-
twice. If any two clauses intersect in at most one variable, the
formula is said linear. The formula (X1∨X2)∧ (¬X1∨¬X3)
is a linear read-twice 2-CNF containing two 2-clauses that
intersect at X1. The degree of X1 is two, while the degree of
either X2 or X3 is one. A formula is monotone if no variable
appears negated, such as in X1 ∨X2.

We can graphically represent the dependencies between
variables and clauses in a CNF formula in many ways. The
incidence graph of a CNF formula is the bipartite graph
with variable-nodes and clause-nodes. The variable-nodes cor-
respond to variables of the formula, while the clause-nodes
correspond to clauses. An edge is drawn between a variable-
node and a clause-node if and only if the respective variable
appears in the respective clause. The primal graph of a CNF
formula is a graph whose nodes are variables and edges
connect variables that co-appear in some clause. The primal
graph can be obtained from the incidence graph by deleting
clause-nodes (along with their edges) and pairwise connecting
their neighbors. The intersection graph of a CNF formula is
the graph whose nodes correspond to clauses, and an edge
connects two nodes if and only if the corresponding clauses
intersect. The intersection graph can be obtained from the
incidence graph by deleting variable-nodes and pairwise con-
necting their neighbors. Figure 1 shows examples of graphical
illustrations of a Boolean formula. We represent clauses as
rectangles and variables as circles.

A truth-value assignment (or simply assignment) is a
function σ : {X1, . . . , Xn} → {0, 1} mapping each variable
Xi to a true or false value σ(Xi). A CNF formula φ is satisfied
by an assignment σ (written σ |= φ) if each clause contains
either a nonnegated variable Xi such that σ(Xi) = 1 or a
negated variable Xj such that σ(Xj) = 0. In this case, we
say that σ is a model of φ. For monotone CNF formulas,
this condition simplifies to the existence of a variable Xi in
each clause for which σ(Xi) = 1. Hence, monotone formulas
are always satisfiable (by the trivial model that assigns every
variable the value one). The model count of a formula φ is the
number Z(φ) = |{σ : σ � φ}| of models of the formula. The
model counting problem is to compute the model count of a
given CNF formula φ.

φ1 = X1 ∨ ¬X2

φ2 = ¬X1 ∨X2 φ3 = X2 ∨ ¬X3

φ4 = ¬X2 ∨X3

X1 X2 X3

X1 X2 X3

φ1 = X1 ∨ ¬X2

φ2 = ¬X1 ∨X2 φ3 = X2 ∨ ¬X3

φ4 = ¬X2 ∨X3

Fig. 1. Graphical illustrations of the formula (X1 ∨¬X2)∧ (¬X1 ∨X2)∧
(X2 ∨ ¬X3) ∧ (¬X2 ∨ X3). Top: incidence graph. Middle: primal graph.
Bottom: intersection graph.

In this work, we consider linear monotone CNF formulas
whose intersection graph is bipartite complete, and such that all
clauses in the same part have the same size. These assumptions
imply that each variable appears in at most two clauses (hence
the formula is read-twice). We call CNF formulas satisfying
all of these assumptions linear monotone clause-bipartite com-
plete (LinMonCBPC) formulas. Under these assumptions, we
show that model counting can be performed in quadratic time
in the size of the input. It is our hope that in future work
some of these assumptions can be relaxed. However, due to
the results mentioned in the introduction, we do not expect
that much can be relaxed without moving to #P-completeness.

The set of model counting problems generated by LinMon-
CBPC formulas is equivalent to the following problem. Take
integers m,n,M,N such that N > n > 0 and M > m > 0,
and compute how many {0, 1}-valued matrices of size M -by-
N exist such that (i) each of the first m rows has at least
one cell with value one, and (ii) each of the first n columns
has at least one cell with value one. Call Aij the value of the
ith row, jth column. The problem is equivalent to computing
the number of matrices AM×N with

∑N
j=1Aij > 0, for

i = 1, . . . ,m, and
∑M

i=1Aij > 0, for j = 1, . . . , n. This
problem can be encoded as the model count of the CNF
formula whose clauses are

A11 ∨A12 ∨ · · · ∨A1n ∨ · · · ∨A1N ,

A21 ∨A22 ∨ · · · ∨A2n ∨ · · · ∨A2N ,

...
Am1 ∨An2 ∨ · · · ∨Amn ∨ · · · ∨A1N ,

A11 ∨A21 ∨ · · · ∨Am1 ∨ · · · ∨AM1,

...
A1n ∨A2n ∨ · · · ∨Amn ∨ · · · ∨AMN .

The first m clauses are the row constraints, while the last

φ1

φ2

φ3

φ4

φ5

Fig. 2. Intersection graph for the LinMonCBPC formula described in the
text.

n clauses are the columns constraints. The row constraints
have size n, and the column constraints have size m. The ith
row constraint intersects with the jth column constraint at the
variable Aij . For example, given integers m = 3, n = 2,M =
5, N = 6, the equivalent model counting problem has clauses

φ1 : A11 ∨A12 ∨A13 ∨A14 ∨A15 ∨A16,

φ2 : A21 ∨A22 ∨A23 ∨A24 ∨A25 ∨A26,

φ3 : A31 ∨A32 ∨A33 ∨A34 ∨A35 ∨A36,

φ4 : A11 ∨A21 ∨A31 ∨A41 ∨A51,

φ5 : A12 ∨A22 ∨A32 ∨A42 ∨A52.

The intersection graph of that formula is show in Figure 2.
Note that for the complexity of both problems be equivalent
we must have the integers in the matrix problem be given in
unary notation (otherwise building the equivalent formula takes
time exponential in the input).

III. COUNTING EDGE COVERS AND ITS CONNECTION TO
MODEL COUNTING

A black-and-white graph (bw-graph) is a triple G =
(V,E, χ) where (V,E) is a simple undirected graph and χ :
V → {0, 1} is binary valued function on the node set (assume
0 means white and 1 means black).1 We denote by EG(u)
the set of edges incident in a node u, and NG(u) the open
neighborhood of u (i.e., not including u). Let G = (V,E, χ)
be a bw-graph. An edge e = (u, v) ∈ E can be classified into
one of three categories:2

• free edge: if χ(u) = χ(v) = 0;

• dangling edge: if χ(u) 6= χ(v); or

• regular edge: if χ(u) = χ(v) = 1.

In the graph in Figure 3(b), the edge (f, g) is a dangling edge
while the edge (g, j) is a free edge. The edge (f, g) in the
graph in Figure 3(a) is a regular edge.

An edge cover of a bw-graph G is a set C ⊆ E such that
for each node v ∈ V with χ(v) = 1 there is at least one edge
e ∈ C incident in it. An edge cover for the graph in Figure 3(a)
is {(a, d), (d, g), (e, g), (f, g), (h, j)}. We denote by Z(G) the
number of edge covers of a bw-color graph G. Computing
Z(G) is #P-complete [13], and admits an FPTAS [11], [12].

1In [11] and [12], graphs are uncolored, but edges might contain empty
endpoints. These are analogous to white node endpoints in our terminology.
We prefer defining coloured graphs and allow only simple edges to make our
framework close to standard graph theory terminology.

2The classifications of edges given here are analogous to those defined in
[11], [12], but not fully equivalent. Regular edges are analogous to the normal
edges defined in [11], [12].

Consider a LinMonCBPC formula and let (L,R,ELR) be
its intersection graph, where L and R are the two partitions.
Call sL and sR the sizes of a clause in L and R, respectively
(by construction, all clauses in the same part have the same
size), and let kL = sL− |R| and kR = sR− |L|. The value of
kL + kR is the number of variables that appear in a single
clause. Since the graph is bipartite complete, kL, kR ≥ 0.
Obtain a bw-graph G = (V1 ∪ V2 ∪ V3 ∪ V4, E, χ) such that

1) V1 = {1, . . . , kL}, V2 = L, V3 = R and V4 =
{1, . . . , kR};

2) All nodes in V1∪V4 are white, and all nodes in V2∪V3
are black;

3) There is an edge connecting (u, v) in E for every
u ∈ V1 and v ∈ V2, for every (u, v) ∈ ELR, and for
every u ∈ V3 and v ∈ V4.

We call B the family of graphs that can obtained by the
procedure above. Figure 3(a) depicts an example of a graph
in B obtained by applying the procedure to the formula
represented in the Figure 2. By construction, for any two nodes
u, v ∈ Vi, i = 1, . . . , 4, it follows that NG(u) = NG(v)
and (u, v) 6∈ E. The following result shows the equivalence
between edge covers and model counting.

Proposition 1. Consider a LinMonCBPC formula φ and G =
(V1, V2, V3, V4, E, χ) be a corresponding bw-graph in B. Then
number of edge covers of G equals the model counting of φ,
that is, Z(G) = Z(φ).

Proof: Let ui denote the node in G corresponding to a
clause φi in φ. Label each edge (ui, vj) for φi ∈ L and φj ∈ R
with the variable corresponding to the intersection of the two
clauses. For each φi ∈ L, label each dangling edge (u, ui)
incident in ui with a different variable that appears only at
φi. Similarly, label each dangling edge (uj , u) with a different
variable that appears only at φj ∈ R. Note that the labeling
function is bijective, as every variable in φ labels exactly one
edge of G.

Now consider a satisfying assignment σ of φ and let C be
set of edges labeled with the variables Xi such that σ(Xi) =
1. Then C is an edge cover since every clause (node in G)
has at least one variable (incident edge) with σ(Xi) = 1 and
the corresponding edge is in C. To show the converse holds,
consider an edge cover C for G, and construct an assignment
such that σ(Xi) = 1 if the edge labeled by Xi is in C and
σ(Xi) = 0 otherwise. Then σ satisfies φ, since for every clause
φi (node ui) there is a variable in φi with σ(Xi) (incident edge
in ui in C). Since there are as many edges as variables, the
correspondence between edge covers and satisfying assignment
is one-to-one.

IV. A DYNAMIC PROGRAMMING APPROACH TO
COUNTING EDGE COVERS

In this section we derive an algorithm for computing the
number of edge covers of a graph in B. Let e be an edge
and u be a node in G = (V,E, χ). We define the following
operations and notation:

• edge removal: G− e = (V,E \ {e}, χ).

• node whitening: G−u = (V,E, χ′), where χ′(u) = 0
and χ′(v) = χ(v) for v 6= u.

a

b

c

d

e

f

g

h

i

j
(a)

a

b

c

d

e

f

g

h

i

j
(b)

a

b

c

d

e

f

g

h

i

j
(c)

Fig. 3. (a) A graph G in B. (b) The graph G − EG(h) − (i, g) − h − g.
(c) The graph G− EG(g)− (i, h)− g − h.

Note that these operations do not alter the node set, and that
they are associative (e.g., G − e − f = G − f − e, G − u −
v = G − v − u, and G − e − u = G − u − e). Hence, if
E = {e1, · · · , ed} is a set of edges, we can write G − E to
denote G−e1−· · ·−ed applied in any arbitrary order. The same
is true for node whitening and for any combination of node
whitening and edge removal. These operations are illustrated
in the examples in Figure 3.

The following result shows that the number of edge covers
can be computed recursively on smaller graphs:

Proposition 2. Let e = (u, v) be a dangling edge with u
colored black. Then:

Z(G) = 2Z(G− e− u)− Z(G− EG(u)− u) .

Proof: There are Z(G − e − u) edge covers of G that
contain e and Z(G − e) edge covers that do not contain e.
Hence, Z(G) = Z(G − e − u) + Z(G − e). Now, consider
the graph G′ = G − e − u. There are Z(G − e) edge covers
of G′ that contain at least one edge of EG′(u) and Z(G −
EG(u)−u) edge covers that contain no edge of EG′(u). Thus
Z(G− e− u) = Z(G− e) +Z(G−EG(u)− u). Substituting
Z(G− e) in the first identity gives us the desired result.

Free edges and isolated white nodes can be removed by
adjusting the edge count correspondingly:

Proposition 3. We have:

1) Let e = (u, v) be a free edge of G. Then Z(G) =
2Z(G− e).

2) If u is an isolated white node (i.e., NG(u) = ∅) then
Z(G) = Z(G− u).

Proof: (1) If C is an edge cover of G − e then both C
and C ∪{e} are edge covers of G. Hence, the number of edge
covers containing e equals the number Z(G−e) of edge covers
not containing e. (2) Every edge cover of G is also an edge
cover of G− u and vice-versa.

We can use the formulas in Propositions 2 and 3 to compute
the edge cover count of a graph recursively. Each recursion
computes the count as a function of the counts of two graphs
obtained by the removal of edges and whitening of nodes.
Such a naive approach requires an exponential number of
recursions (in the number of edges or nodes of the initial graph)
and finishes after exponential time. We can transform such an
approach into a polynomial-time algorithm by exploiting the
symmetries of the graphs produced during the recursions. In
particular, we take advantage of the invariance of edge cover
count to isomorphisms of a graph, as we discuss next.

We say that two bw-graphs G = (V,E, χ) and G′ =
(V ′, E′, χ′) are isomorphic if there is a bijection γ from V
to V ′ (or vice-versa) such that (i) χ(v) = χ′(γ(v)) for all
v ∈ V , and (ii) (u, v) ∈ E if and only if (γ(u), γ(v)) ∈ E′. In
other words, two bw-graphs are isomorphic if there is a color-
preserving renaming of nodes that preserves the binary relation
induced by E. The function γ is called an isomorphism from
V to V ′. The graphs in Figures 3(b) and 3(c) are isomorphic
by an isomorphism that maps g in h and maps any other node
into itself. If C is an edge cover of G and γ is an isomorphism
between G and G′, then C ′ = {(γ(u), γ(v)) : (u, v) ∈ C} is
an edge cover for G′ and vice-versa. Hence, Z(G) = Z(G′).
The following result shows how to obtain isomorphic graphs
with a combination of node whitenings and edge removals.

Proposition 4. Consider a bw-graph G with nodes v1, . . . , vn
such that NG(v1) = · · · = NG(vn) 6= ∅ and χG(v1) =
· · · = χG(vn). For any node w ∈ NG(v1), mapping γ :
{v1, . . . , vn} → {v1, . . . , vn}, and nonnegative integers k1 and
k2 such that k1 +k2 ≤ n the graphs G′ = G−EG(v1)−· · ·−
EG(vk1)−(w, vk1+1)−· · ·−(w, vk1+k2)−v1−· · ·−vk1+k2 and
G′′ = G−EG(γ(v1))− · · · −EG(γ(vk1))− (w, γ(vk1+1))−
· · ·−(w, γ(vk1+k2))−γ(v1)−· · ·−γ(vk1+k2) are isomorphic.

Proof: Let γ′ be the bijection on the nodes of G that
extends γ, that is, γ′(u) = u for u 6∈ {v1, . . . , vn} and
γ′(u) = γ(vi), for i = 1, . . . , n. We will show that γ′ is
an isomorphism from G′ to G′′. First note that χG(u) =
χG(γ(u)) for every node u. The only nodes that have their
color (possibly) changed in G′ with respect to G are the nodes
v1, . . . , vk1+k+2, and these are white nodes in G′. Likewise,
the only nodes that would (possibly) changed color in G′′

were γ(v1), . . . , γ(vk1+k2) and these are white in G′′. Hence,
χG′(u) = χG′′(γ(u)) for every node u.

Now let us look at the edges. First note that since NG(vi)
is constant through i = 1, . . . , n, G′ and G′′ have the same
number of edges. Hence, it suffices to show that for each
edge (u, v) in G′ the edge (γ′(u), γ′(v)) is in G′′. The only
edges modified in obtaining G′ and G′′ are, respectively,
those incident in v1, . . . , vk1+k2

and in γ(v1), . . . , γ(vk1+k2
).

Consider an edge (u, v) where u, v 6∈ {v1, . . . , vn} (hence not
in EG(vi) for any i). If (u, v) = (γ′(u), γ′(v)) is in G′ then

it is also in G′′. Now consider an edge (u, vi) in G where
u 6∈ {w, vk1+1, . . . , vn} and k1 < i ≤ k1 + k2. Then (u, vi)
is in G′ and (γ′(u), γ′(vi)) is in G′′. Note that u could be in
NG(vi) for k1 + k2 < i ≤ n.

According to the proposition above, the graphs in Fig-
ures 3(b) and 3(c) are isomorphic by a mapping from g to
h (and with w = i). Hence, the number of edge covers in
either graph is the same.

The algorithms RightRecursion and LeftRecursion de-
scribed in Figures 4 and 5, respectively, exploit the iso-
morphisms described in Proposition 4 in order to achieve
polynomial-time behavior when using the recursions in Propo-
sitions 2 and 3. Either algorithm requires a base white node w
and integers k1 and k2 specifying the recursion level (with the
same meaning as in Proposition 4). Unless k1 + k2 equals the
number of neighbors of w in the original graph, a call to either
algorithm generates two more calls to the same algorithm:
one with the graph obtained by removing edge (w, vh) and
whitening vh, and another by removing edges E(vh) and
whitening vh. Assume that |V2| ≥ |V3| (if |V3| > |V2| we can
simply manipulate node sets to obtain an isomorphic graph
satisfying the assumption). The RightRecursion algorithm first
checks whether the value for the current recursion level has
been already computed; if yes, then it simply returns the
cached value; otherwise it uses the formula in Proposition 2
(and possibly the isomorphism in Proposition 4) and generates
two calls of the same algorithm on smaller graphs (i.e. with
fewer edges) to compute the edge cover counting for the
current graph and stores the result in memory. The recursion
continues until the recursion levels equates with the number
of nodes in V3, in which case it checks for free edges and
isolated nodes, removes them and computes the correction
factor 2k, where k is the number of free edges, and calls
the algorithm LeftRecursion to start a new recursion. At this
point the graph in the input is bipartite complete and contains
only nodes in V1 and V2. The latter algorithm behaves very
similarly to the former except at the termination step. When
all neighbors vh of w have been whitened the graph no longer
contains black nodes, and the corresponding edge cover count
can be directly computed using the formulas in Proposition 3.
Note that a different cache function must be used when we
call LeftRecursion from RightRecursion (this can be done by
instantiating an object at that point and passing it as argument;
we avoid stating the algorithm is this way to avoid cluttering).

Note that the algorithms do not use the color of nodes,
which hence does not need to be stored or manipulated. In
fact the node whitening operations (−vh or −uh) performed
when calling the recursion are redundant and can be neglected
without altering the soundness of the procedure (we decided
to leave these operations as they make the connection with
Proposition 2 more clear).

Figure 6 shows the recursion diagram of a run of
RightRecursion. Each box in the figure represents a call of the
algorithm with the graph drawn as input. The left child of each
box is the call RightRecursion(G−(vh, w)−vh, w, k1, k2+1),
and the right child is the call RightRecursion(G− EG(vh)−
vh, w, k1 + 1, k2). For instance, the topmost box represents
RightRecursion(G0, w, 0, 0), which computes Z(G0) as the
sum of 2Z(G1) and −Z(G24), which are obtained, respec-
tively, from the calls corresponding to its left and right

1: if Cache(w, k1, k2) > 0 then
2: return Cache(w, k1, k2)
3: else
4: if k1 + k2 < m then
5: Let h← k1 + k2 + 1
6: Cache(w, k1, k2) ← 2 × RightRecursion(G −

(vh, w)−vh, w, k1, k2+1)−RightRecursion(G−
EG(vh)− vh, w, k1 + 1, k2)

7: return Cache(w, k1, k2)
8: else
9: Let k = |{(u, v) : u ∈ V4}| be the number of

free edges
10: Remove any edges with an endpoint in V4 and

all the resulting isolated nodes
11: Set V1 ← V1 ∪ V3, V3 ← ∅
12: if V1 is empty then
13: return 0
14: end if
15: Select an arbitrary w′ ∈ V1
16: return 2k × LeftRecursion(G,w′, 0, 0)
17: end if
18: end if

Fig. 4. Algorithm RightRecursion: Takes a graph G = (V1, V2, V3, V4, E)
with V3 = {v1, . . . , vm}, m > 0, a node w ∈ V4, and nonnegative integers
k1 and k2; outputs Z(G).

1: if Cache(w, k1, k2) is undefined then
2: if k1 + k2 < n then
3: Let h← k1 + k2 + 1
4: Cache(w, k1, k2) ← 2 × LeftRecursion(G −

(uh, w) − uh, k1, k2 + 1) − LeftRecursion(G −
EG(uh)− uh, k1 + 1, k2)

5: else
6: Cache(w, k1, k2)← 2|E|

7: end if
8: end if
9: return Cache(w, k1, k2)

Fig. 5. Algorithm LeftRecursion: Takes a bipartite graph G = (V1, V2, E)
with V2 = {u1, . . . , un}, n > 0, a node w ∈ V1, nonnegative integers k1
and k2; outputs Z(G).

children. The number of the graph in each box corresponds to
the order in which each call was generated. Solid arcs represent
non cached calls, while dotted arcs indicate cached calls. For
instance, by the time RightRecursion(G24, w, 1, 0) is called,
RightRecursion(G13, w, 0, 0) has already been computed so
the value of Z(G13) is simply read from memory and returned.
When called in the graph in the top, with to rightmost node w,
and integers k1 = k2 = 0, the algorithm computes the partition
function Z(G0) as the sum of 2Z(G1) and −Z(G24), where
G1 is obtained from the removal of edge (v1, w) and whitening
of v1, while G24 is obtained by removing edges EG1(v1) and
whitening of v1. The recursion continues until all incident
edges on w have been removed, at which point it removes
free edges and isolated nodes and calls LeftRecursion. The
recursion diagram for the call of LeftRecursion(G4, w, 0, 0)
where w is the top leftmost node of G4 in the figure is shown
in Figure 7. The semantics of the diagram is analogous. Note

v1

v2

w

RightRecursion(G0, w, 0, 0)

Z(G0)

w

RightRecursion(G1, w, 0, 1)

Z(G1)

w

RightRecursion(G24, w, 1, 0)

Z(G24)

w

RightRecursion(G2, w, 0, 2)

Z(G2)

w

LeftRecursion(G3, w, 0, 0)

Z(G3)

w

RightRecursion(G13, w, 1, 1)

Z(G13)

w

RightRecursion(G25, w, 2, 0)

Z(G25)

w

LeftRecursion(G14, w, 0, 0)

Z(G14)

w

LeftRecursion(G26, w, 0, 0)

Z(G26)

Fig. 6. Simulation of RightRecursion(G0, w, 0, 0).

that the recursion of LeftRecursion eventually reaches a graph
with no black nodes, for which the edge cover count can be
directly computed (in closed-form).

In these diagrams, it is possible to see how the isomor-
phisms stated in Proposition 4 are used by the algorithms
and lead to polynomial-time behavior. For instance, in the run
in Figure 6, the graph G13 is not the graph obtained from
G24 by removing edge (v2, w) and whitening v2 but instead
is isomorphic to it. Note that both G13 and its isomorphic
graph obtained as the left child of G24 were obtained by
one operation of edge removal −(w, vi) and one operation
of neighborhood removal −E(vi), plus node whitenings of v1
and v2. Hence, Proposition 4 guarantees their isomorphism.

The polynomial-time behavior of the algorithms strongly
depends on caching the calls (dotted arcs) and exploiting
known isomorphisms. For instance, in the run in Figure 6, the
graph G13 is not the graph obtained from G24 by removing
edge (v2, w) and whitening v2 but instead is isomorphic to
it. Note that both G13 and its isomorphic graph obtained as
the left child of G24 were obtained by one operation of edge
removal (w, vi) and one operation of neighborhood removal
E(vi), plus node whitenings of v1 and v2. Hence, Proposition 4
guarantees their isomorphism.

Without the caching of computations, the algorithm would
perform exponentially many recursive calls (and its corre-
sponding diagram would be a binary tree with exponentially
many nodes). The use of caching allows us to compute only
one call of RightRecursion for each configuration of k1, k2
such that k1 + k2 ≤ n, resulting in at most

∑n
i=0(i + 1) =

(n + 1)(n + 2)/2 = O(n2) calls for RightRecursion, where
n = |V3|. Similarly, each call of LeftRecursion requires at most∑m

i=0(i+1) = (m+1)(m+2)/2 = O(m2) recursive calls for
LeftRecursion, where m = |V2|. Each call to RightRecursion
with k1 + k2 = n generates a call to LeftRecursion (there
are n + 1 such configurations). Hence, the overall number of
recursions (i.e., call to either function) is

(n+ 1)(n+ 2)

2
+(n+1)

(m+ 1)(m+ 2)

2
= O(n2 +n ·m2) .

This leads us to the following result.

Theorem 1. Let G be a graph in B with w ∈ V4 6= ∅. Then
RightRecursion(G,w, 0, 0) outputs Z(G) in time and memory
at most cubic in the number of nodes of G.

Proof: Except when k1 + k2 = n, RightRecursion calls
the recursion given in Proposition 2 with the isomorphisms in
Proposition 4 (any graph obtained from G by k1 operations
−EG(vi) and k2 operations −(w, vi) are isomorpohic). For
k1+k2, any edge left connecting a node in V3 and a node in V4
must be a free edge (since all nodes in V4 have been whitened),
hence they can be removed according to Proposition 3 with
the appropriate correction of the count. By the same result,
any isolated node can be removed. When the remaining nodes
in V3 are transfered to V1, the resulting graph is bipartite
complete (with white nodes in one part and black nodes in the
other). Hence, we can call LeftRecursion, which is guaranteed
to compute the correct count by the same arguments.

The cubic time and space behavior is due to
RightRecursion and LeftRecursion being called at most
O(n2) and O(nm2), respectively, and by the fact that each
call consists of local operations (edge removals and node
whitenings) which take at most linear time in the number of
nodes and edges of the graph.

V. GRAPHS WITH NO DANGLING EDGES

The algorithm RightRecursion requires the existence of a
dangling edge. Now it might be that the graph contains no
white nodes (hence no dangling edges), that is, that G is
bipartite complete graph for V2 ∪ V3. The next result shows
how to decompose the problem of counting edge covers in
smaller graphs that either contain dangling edges, or are also
bipartite complete.

Proposition 5. Let G be a bipartite complete bw-graph with
all nodes colored black and e = (u, v) be some edge. Then
Z(G) = 2Z(G − e − u − v) − Z(G − EG(v) − v) − Z(G −
EG(u)− u)− Z(G− EG(u)− EG(v)− u− v).

Proof: The edge covers of G can be partitioned according
to whether they contain the edge e. The number of edge covers
that contain e is not altered if we color both u and v white.
Thus, Z(G) = Z(G− e− u− v) + Z(G− e). Let e1, . . . , en
be the edges incident in u other than e, and f1, . . . , fm be the
edges incident in v other than v. We have that Z(G− e−u−
v) = Z(G− e− u− v) + Z(G−EG(u)− u) + Z(G− e) +
Z(G−EG(u)−EG(v)− u− v). Substituting Z(G− e) into
the first equation obtains the result.

In the result above, the graphs G−e−u−v, G−EG(v)−v
and G − EG(u) − u are in B and contain dangling edges,

LeftRecursion(G3, w, 0, 0)

Z(G3)

LeftRecursion(G4, w, 0, 1)

Z(G4)

LeftRecursion(G5, w, 0, 2)

Z(G5)

LeftRecursion(G6, w, 0, 3)

Z(G6)=212

LeftRecursion(G7, w, 1, 2)

Z(G7)=28

LeftRecursion(G8, w, 1, 1)

Z(G8)

LeftRecursion(G9, w, 2, 1)

Z(G9)=23

LeftRecursion(G10, w, 1, 0)

Z(G10)

LeftRecursion(G11, w, 2, 0)

Z(G11)

LeftRecursion(G12, w, 3, 0)

Z(G12)=0

Fig. 7. Simulation of LeftRecursion(G3, w, 0, 0).

while the graph G − EG(u) − EG(v) − u − v is bipartite
complete. Note that Proposition 4 can be applied to show that
altering the edges on which the operations are applied lead to
isomorphic graphs. A very similar algorithm to LeftRecursion,
implementing the recursion in the result above in polynomial-
time can be easily derived.

VI. EXTENSIONS

Previous results can be used beyond the class of graphs
B. For instance, the algorithms can compute the edge cover
count for any graph that can be obtained from a graph G in B
by certain sequences of edge removals and node whitenings,
which includes graphs not in B. Graphs that satisfy the
properties of the class B except that every node in V2 (or
V4 or both) are pairwise connected can also have their edge
cover count computed by the algorithm (as this satisfies the
conditions in Proposition 4). Another possibility is to consider
graphs which can be decomposed in graphs B by polynomially
many applications of Proposition 2.

We can also consider more general forms of counting
problems. A simple mechanism for randomly generating edge
covers is to implement a Markov Chain with starts with some
trivial edge cover (e.g. one containing all edges) and moves
from an edge cover Xt to an edge cover Xt+1 by the following
Glauber Dynamics-type move: (1) Select an edge e uniformly
at random; (2a) if e 6∈ Xt, make Xt+1 = Xt ∪ {e} with
probability λ/(1 + λ); (2b) if e ∈ Xt and if Xt \ {e} is an
edge cover, make Xt+1 = Xt\{e} with probability 1/(1+λ);
(2c) else make Xt+1 = Xt. The above Markov chain can be
shown to be ergodic and to converge to a stationary distribution

which samples an edge cover C with probability λ|C| [14],
[15]. When λ = 1, the algorithm performs uniform sampling
of edge covers. A related problem is to compute the total
probability mass that such an algorithm will assign to sets
of edge covers given a bw-graph G, the so-called partition
function: Z(G,λ) =

∑
C∈EC(G) λ

|C|, defined for any real
λ > 0, where EC(G) is the set of edge covers of G. For λ = 1
the problem is equivalent to counting edge covers. This is
also equivalent to weighted model counting of LinMonCBPC
formulas with uniform weight λ.

The following results are analogous to Propositions 2 and
3 for computing the partition function:

Proposition 6. The following assertions are true:

1) Let e = (u, v) be a free edge of G. Then Z(G) =
(1 + λ)Z(G− e).

2) If u is an isolated white node (i.e., NG(u) = ∅) then
Z(G) = Z(G− u).

3) Let e = (u, v) be a dangling edge with u colored
black. Then Z(G) = (1 + λ)Z(G− e− u)−Z(G−
EG(u)− u).

Hence, a straightforward modification of algorithms
RightRecursion and LeftRecursion (modifying the weights
by which the the recursive calls are multiplied) enables the
algorithms to compute the partition function of graphs in B (or
equivalently, the partition function of LinMonCBPC formulas).

VII. MODEL COUNTING OF DL-LITE FORMULAS

The original motivation for us studying the problem of
model counting of LinMonCBPC formulas was to count sat-
isfying interpretations of DL-Lite sentences, which is a class
of description logics which efficient reasoning services [16],
[17]. We now summarize some points about this problem, as
it is an example of application for our results.

Descriptions Logics are usually decidable fragments of
first-order logic that can be used to specify and reason
about ontologies. Indeed, the OWL language, which has been
adopted as the standard for the semantic web, is largely
based on description logics. The DL-Lite logic is a simple
description logic developed to enable efficient reasoning with
large amounts of linked and knowledge-enriched data. As with
all description languages, the basic components of DL-Lite
are sets of symbols for concepts, roles and constants, and set
operations such as intersection (u), complementation (¬) and
existential quantification (∃). Concepts represent properties of
individuals, while roles represent relationships between two in-
dividuals. Mathematically, concepts and roles are, respectively,
unary and binary relations. As an example, the definition of a
father as man who is a parent of someone can be expressed
in DL-Lite as Man u ∃parentOf. DL-Lite also adopts inverse
roles: if r is a role then its inverse r−1 is a binary relation such
that (y, x) ∈ r−1 if and only if (x, y) ∈ r. For example, the
definition of a son can be expressed as Man u ∃parentOf−1.
A DL-Lite sentence is inductively defined such that a concept
name and its complement is a sentence, ∃r and ∃r−1 are
sentences for every role r, and if φ and ψ are sentences then
φ u ψ are also sentences.

The semantics of a DL-Lite sentence is given by a domain
∆, which contains a number of individuals, and an inter-
pretation I, which maps each constant to an individual in
the domain, each concept to a set of individuals, and each
role to a set of pairs of individuals. The interpretation thus
assigns which individuals have certain properties (and which
do not), and which relationships hold (and which do not). An
interpretation is extended to a formula inductively: a ∈ I(¬C)
if a 6∈ I(C), a ∈ I(C u D) if a ∈ I(C) ∩ I(D), a ∈ I(∃r) if
there is b ∈ ∆ such that (a, b) ∈ I(r) and a ∈ I(∃r−1) if there
is b ∈ ∆ such that (b, a) ∈ I(r−1). A sentence DL-Lite φ is
satisfied by an interpretation if I(φ) 6= ∅. In a recent paper, we
showed that counting the number of satisfying interpretations
of a DL-Lite sentence can be reduced to model counting of
LinMonCBPC formulas [18].

VIII. CONCLUSION

Model counting is the problem of computing the number of
satisfying assignments of Boolean formulas, with applications
in several fields. The problem cannot be solved in polynomial
time (unless #P collapses to P); even though tractable sub-
classes of the problem have been found, finding restrictions
that make the problem tractable and yet interesting is difficult.

In this work, we developed a polynomial-time algorithm
for solving the problem in the restrictive class of monotone
conjunctive normal formulas where the clauses can be par-
titioned in two sets such that the clauses in each set have
the same number of variables, no two clauses in the same set
share a variable, and every clause in one set shares exactly one

variable with every clause in the other set. We showed that such
problem can be efficiently reduced to counting edge covers in
a specific type of graphs, which can then be solved by dynamic
programming in quadratic time. The formulas we consider can
be used to compute the number of satisfying interpretations in
knowledge expressed in DL-Lite, a popular description logic.

It would be interesting to investigate whether it is possible
to relax any of the assumptions without leading into #P-
complete problems. This is left to future work.

ACKNOWLEDGMENT

The second author is partially supported by CNPq.

REFERENCES

[1] F. Bacchus, S. Dalmao, and T. Pitassi, “Solving #SAT and Bayesian
inference with backtracking search,” Journal of Artificial Intelligence
Research, vol. 34, pp. 391–442, 2009.

[2] A. Darwiche, Modeling and reasoning with Bayesian networks. Cam-
bridge University Press, 2009.

[3] H. Palacios, B. Bonet, A. Darwhice, and H. Geffner, “Pruning confor-
mant plans by counting models on compiled d-DNNF representations,”
in Proc. of the 15th International Conference on Automated Planning
and Scheduling (ICAPS), 2005, pp. 141–150.

[4] L. Valiant, “The complexity of enumeration and reliability problems,”
SIAM Journal of Computing, vol. 8, pp. 410–421, 1979.

[5] J. Provan and M. Ball, “The complexity of counting cuts and of
computing the probability that a graph is connected,” SIAM Journal
of Computing, vol. 12, pp. 777–788, 1983.

[6] S. P. Vadhan, “The complexity of counting in sparse, regular and planar
graphs,” SIAM Journal of Computing, vol. 31, no. 2, pp. 398–427, 2001.

[7] D. Roth, “On the hardness of approximate reasoning,” Artificial Intel-
ligence, vol. 82, pp. 273–302, 1996.

[8] R. Bubley and M. Dyer, “Graph orientations with no sink and an
approximation for a hard case of #SAT,” in Proc. of the 8th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), 1997, pp. 248–
257.

[9] M. Xia and W. Zhao, “#3-regular bipartite planar vertex cover is #P-
complete,” in Theory and Applications of Models of Computation, ser.
Lecture Notes in Computer Science, 2006, vol. 3959, pp. 356–364.

[10] L. Valiant, “Accidental algorithms,” in Proc. of the 47th Annual IEEE
Symposium on Foundations of Computer Science (FOCS), 2006, pp.
509–517.

[11] C. Lin, J. Liu, and P. Lu, “A simple FPTAS for counting edge covers.” in
Proc. of 25th ACM-SIAM Symposium on Discrete Algorithms (SODA),
2014, pp. 341–348.

[12] J. Liu, P. Lu, and C. Zhang, “FPTAS for counting weighted edge cov-
ers,” in Proc. of the 22nd Annual European Symposium on Algorithms
(ESA), 2014, pp. 654–665.

[13] J.-Y. Cai, P. Lu, and M. Xia, “Holographic reduction, interpolation
and hardness,” Computational Complexity, vol. 21, no. 4, pp. 573–604,
2012.

[14] M. Bordewich, M. Dyer, and M. Karpinski, “Path coupling using stop-
ping times,” in Proc. of the 15th International Symposium Fundamentals
of Computation Theory (FCT), 2005, pp. 19–31.

[15] I. Bezáková and W. Rummler, “Sampling edge covers in 3-regular
graphs,” in Proc. of the 34th International Symposium on Mathematical
Foundations of Computer Science (MFCS), 2009, pp. 137–148.

[16] D. Calvanese, G. De Giacomo, M. Lembo, D. abd Lenzerini, and
R. Rosati, “DL-lite: Tractable description logics for ontologies,” in Proc.
of the AAAI Conference (AAAI), 2005, pp. 602–607.

[17] A. Artale, D. Calvanese, R. Kontchakov, and M. Zakharyashev, “The
DL-lite family and relations,” Journal of Artificial Intelligence Research,
vol. 36, pp. 1–69, 2009.

[18] D. Mauá and F. Cozman, “DL-lite Bayesian networks: A tractable prob-
abilistic graphical model,” in Proc. of the 9th International Conference
on Scalable Uncertainty Models (SUM), 2015, (accepted).

