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Abstract
We study the complexity of marginal inference with Relational Bayesian Networks as param-

eterized by their probability formulas. We show that without combination functions, inference is
#P-equivalent, displaying the same complexity as standard Bayesian networks (this is so even when
relations have unbounded arity and when the domain is succinctly specified in binary notation). By
allowing increasingly more expressive probability formulas using only maximization as combi-
nation, we obtain inferential complexity that ranges from #P-equivalent to FPSPACE-complete to
EXP-hard. In fact, by suitable restrictions to the number of nestings of combination functions, we
obtain complexity classes in all levels of the counting hierarchy. Finally, we investigate the use of
arbitrary combination functions and obtain that inference is FEXP-complete even under a seemingly
strong restriction.
Keywords: Relational Bayesian networks; complexity theory; probabilistic inference.

1. Introduction

Bayesian networks provide a compact and intuitive probabilistic description of a concrete domain
(Koller and Friedman, 2009). Jaeger’s Relational Bayesian Networks, here referred to as RBNs,
extend Bayesian networks to allow the modeling of relational, context-specific, deterministic and
temporal knowledge (Jaeger, 1997, 2001). These networks are based on a small number of con-
structs: probability formulas, combination functions, and equality constraints. There are other
languages that extend Bayesian networks into relational representations (Poole, 1993; Koller and
Pfeffer, 1997, 1998; Getoor and Taskar, 2007; de Raedt, 2008; de Raedt et al., 2008); RBNs offer a
particularly general and solid formalism.

In this paper, we examine the complexity of computing marginal inferences with RBNs. We first
argue that, without combination functions, RBNs simply offer a language for plate models (Gilks
et al., 1993; Lunn et al., 2012). Hence, recent results on plate models extend to RBNs (Cozman
and Mauá, 2015b); in essence, marginal inference without combination functions is #P-equivalent,
and thus matches the complexity of standard (propositional) Bayesian networks.1 When we allow
combination functions and the associated equality constraints into the language, matters complicate
considerably. Without additional assumptions, inference is #EXP-equivalent even when the only
combination function is maximization. We argue that most of this complexity originates from the
use of relations of arbitrary arity. We show that when the arity of relations is bounded, and max-
imization is the only combination function used, inference is FPSPACE-complete. We prove that
by restricting the number of nestings of combination functions, we obtain complexity classes in

1. Technical reasons discussed in Section 3 do not allow us to establish #P-completeness of inference.
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MAUÁ AND COZMAN

all levels of the counting hierarchy, under the previous assumptions. To conclude, we look at the
complexity of RBNs with arbitrary combination functions given as part of the input. The challenge
here is to constrain language so as to obtain non-trivial complexity results. We show that requir-
ing polynomial combination functions is too weak a condition in that it leads to FEXP-complete
inference. On the other hand, requiring polynomial probability formulas brings inference down to
#P-equivalence.

The paper begins with a brief review of RBNs (Section 2), and key concepts from complexity
theory (Section 3). Our contributions regarding inferential complexity appear in Section 4. A
summary of our contributions and open questions are presented in Section 5.

2. Relational Bayesian Networks

A Bayesian network is a compact description of a probabilistic model over a propositional language
(Koller and Friedman, 2009; Cozman and Mauá, 2015a). It consists of two parts: an acyclic directed
graph G = (V,A) over a finite set of (categorical) random variables X1, . . . , Xn, and a set of
conditional probability tables {P(X|pa(X)}X∈V , where pa(X) denotes the parents of X in G.
The semantics of the model is obtained by the directed Markov property, which states that every
variable is conditionally independent of its non-descendants given its parents. This induces a single
joint probability distribution by

P(X1 = x1, . . . , Xn = xn) =
n∏
i=1

P(Xi = xi|pa(Xi) = πi) ,

where πi is the vector of values for pa(Xi) induced by assignments {X1 = x1, . . . , Xn = xn}.
Bayesian networks can represent complex propositional domains, but lack the ability to represent
relational knowledge.

We use standard relational (function-, constant- and quantifier-free) predicate logic with equality
to describe relational knowledge (Enderton, 1972). LetR and X be disjoint sets of relation symbols
and logical variables, respectively. We denote logical variables by capital letters (e.g., X,Y, Z),
predicates by lowercase Latin letters (e.g., r, s, t), and formulas by Greek letters (e.g., α, β). Each
relation symbol r is associated with a nonnegative integer |r| describing its arity. An atom has the
form r(X1, . . . , X|r|), where r ∈ R, and each Xi ∈ X . An (atomic) equality is a expression X =
Y , whereX,Y ∈ X . An equality constraint is any well-formed expression containing disjunctions,
conjunctions and negations of equalities. For example, ((X = Y ) ∧ ¬(X = Z)) ∨ (Y = Z). A
probability formula is either a rational number q ∈ [0, 1]; or an atom r(X1, . . . , X|r|); or a convex
combination F1 · F2 + (1 − F1) · F3, where each Fi is a probability formula; or a combination
expression.

A combination expression has the form comb{F1, . . . , Fk|Y1, . . . , Ym;α}, where comb is
a word from a fixed vocabulary of combination functions, F1, . . . , Fk are probability formulas,
Y1, . . . , Ym is a (possibly empty) list of logical variables, and α is an equality constraint containing
only these variables and the variables appearing in the subformulas. The variables Y1, . . . , Ym in a
combination expression are said to be bound by that expression; there might be no variables bound
by a particular combination expression, in which case we write comb{F1, . . . , Fk|∅;α}. A logical
variable is free if it appears in a relation. A variable can be both free and bound in a formula. In this
case, we take free to mean its condition in the outermost expression. An example of a probability
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formula is

mean{0.6 · r(X) + 0.7 ·max{1− s(X,Y )|X;X = X}|Y,Z;Y 6= X ∧ Z 6= X} .

In this formulaX is free, and Y and Z are bound (even thoughX is bound by the inner combination
expression involving max). We often write F (X1, . . . , Xn) to denote that X1, . . . , Xn are the free
variables in F .

An RBN is an acyclic directed graph where each node is a relation symbol annotated with a
probability formula. The probability formula Fr associated with a relation symbol r contains exactly
|r| free variables and mentions only the relation symbols s ∈ pa(r) that are parents of r in the graph.

To define the semantics of RBNs we need to introduce a few additional concepts.
An interpretation is a pair (D, µ) such thatD is a set of constants called the domain, and µmaps

each relation symbol r ∈ R into a relation rµ ⊆ D|r|, and each equality constraint into its standard
meaning. We assume here that domains are always finite.

A combination function is any function that maps a multiset of finitely many numbers in [0, 1]
into a single rational number in [0, 1]. In this paper we focus on the combination function max
encoding maximization:

max{q1, . . . , qk} = qi, where i is the smallest integer such that qi ≥ qj for j =
1, . . . , k, and max{} = 0.

Other examples are: minimization, defined as min{q1, . . . , qk} = 1 − max{1 − q1, . . . , 1 − qk},
and arithmetic mean, defined as mean{q1, . . . , qk} =

∑k
i=1 qi/k. Yet another example is Noisy-or:

noisy-or{q1, . . . , qk} = 1−
∏k
i=1(1− qi), and noisy-or{} = 0.

An interpretation maps a probability formula F with n free variables into a function fromDn to
[0, 1] as follows. If F = q, then F is the constant function q. If F = r(X1, . . . , Xn), then F (a) = 1
if a ∈ rµ and F (a) = 0 otherwise. If F = F1 · F2 + (1 − F1) · F3 then F (a) = F1(a)F2(a) +
(1 − F1(a))F3(a). Finally, if F = comb{F1, . . . , Fk|Y1, . . . , Ym;α}, then F (a) = comb(Q),
where this latter comb is the corresponding combination function and Q is the multiset containing
a number Fi(a, b) for every (a, b) ∈ αµ (even if Fi does not depend on every coordinate). For
example, max{1, 2, 3|Y ;Y = Y } is interpreted as max{1, 2, 3, 1, 2, 3} if |D| = 2. As another
example, consider D = {1, 2}; then F (X,Y ) = max{q1, q2|∅;¬(X = Y )} is interpreted as
F (1, 1) = F (2, 2) = max{} = 0, and F (1, 2) = F (2, 1) = max{q1, q2}.

Finally: Given a domain D, an RBN with graph G = (V,A) induces a probability distribution
over interpretations (D, µ) by

P(µ|D) =
∏
r∈V

∏
a∈rµ

Fr(a)
∏
a6∈rµ

(1− Fr(a))︸ ︷︷ ︸
P(rµ|{sµ:s∈pa(r)},D)

,

where occurrences of s ∈ pa(r) in probability formula Fr(a) are interpreted according to sµ.
In essence, an RBN is a template model that for each domain D generates a Bayesian network

where each node r is a multidimensional random variable taking values rµ in the set of 2N
|r|

possible
interpretations rµ, where N = |D|. Alternatively, we can associate for every relation symbol r ∈ R
and tuple a ∈ D|r| a binary random variable r(a) that takes value 1 when a ∈ rµ and 0 otherwise.
An RBN also induces a joint distribution P({r(a) = αr(a)}) = P(µ) over the associated random
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variables, where a ∈ rµ if αr(a) = 1 and a 6∈ rµ if αr(a) = 0. Hence, we can refer to probabilities
such as P(r(a) = 1|s(b) = 0, t(a, c) = 1).

Our main focus in this paper is the following (unconditional) marginal inference problem:
Given an RBN with graph (V,A), a domain D specified as a list of elements, and a variable
r(a) (with r ∈ V and a ∈ D|r|), compute P(r(a) = 1). Note that a joint probability such
as P(r1(a1) = α1, . . . , rn(an) = αn) can be computed as P(r(a) = 1) by defining Fr =
[1−]r1(X1) · · · · [1−]rn(n); and conditional probabilities can be obtained as the division of two
such probabilities.

3. Computational Complexity Theory

We assume familiarity with complexity classes NP, PSPACE, EXP and related ones, and with the
concept of oracle Turing machines (Papadimitriou, 1994).

The polynomial hierarchy PH is the class of decision problems
⋃
k ΣP

k (over all integers k),
where ΣP

k = NPΣP
k−1 , ΣP

1 = NP and ΣP
0 = P. The complexity class #P contains the integer-valued

functions computed by a counting Turing machine in polynomial time; a counting Turing machine
is a standard non-deterministic Turing machine that prints in binary notation, on a separate tape, the
number of accepting computations induced by the input (Valiant, 1979). The class #ΣP

k contains
the integer-valued functions computed by a counting Turing machine with access to a ΣP

k oracle.
In particular, #ΣP

0 = #P. The counting hierarchy #PH is the union of all #ΣP
k (over all integers

k). Toda and Watanabe (1992) have shown that a deterministic Turing machine equipped with a
single call to an oracle #P can solve any problem in the counting hierarchy (i.e., #PH ⊆ P#P).
The class FPSPACEP contains the integer-valued functions computed by a standard non-determin-
istic Turing machine within polynomial space, and with a polynomially long output (Ladner, 1989).
And #PPSPACE is the class of integer-valued functions computed in polynomial time by a counting
Turing machine with a PSPACE oracle. Ladner (1989) proved that FPSPACEP = #PPSPACE.

The marginal inference problem with which we are concerned involves the computation of
rational numbers in [0, 1], and does not precisely fit into the counting hierarchy. To work with
rational-valued functions, we resort to weighted reductions (Bulatov et al., 2012), which are par-
simonious reductions (Karp reductions that preserve the number of accepting paths) scaled by a
polynomial-time computable positive rational number. This accounts for the fact that (uncondi-
tional) probabilities are “normalized” integers. For k ≥ 0, we say that a problem X is #ΣP

k-hard
if any problem in #ΣP

k can be reduced to X by a weighted reduction. If a problem is #ΣP
k-hard

and can be solved with a polynomial number of pre-processing steps followed by one call to a #ΣP
k

oracle and a multiplication by a rational obtained with polynomial effort, then the problem is said
to be #ΣP

k-equivalent (as inspired by the work of de Campos et al. (2013)).
We also use the class #EXP, which contains functions computed by counting Turing machines

in exponential time (this is not equal to the homonymous class defined by Valiant (1979)). Hardness
and equivalence for this class are defined similarly to #P, with polynomial replaced by exponential.
And we use FEXP, the functional variant of EXP.

4. Inferential Complexity of Relational Bayesian Networks

If the domain is a singleton, then the RBN is actually a Bayesian network. And in this case we know
that inference is a #P-equivalent problem (Roth, 1996; de Campos et al., 2013).
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We assume the domain D is given as a list describing N elements c1, . . . , cN . An alternative
would be to assume that the domain is specified by a single integer N , with the understanding that
elements are {1, 2, . . . , N}. In the latter case one might specify N in binary notation, and then the
specification of the domain would contribute with O(logN) symbols to the input; hence we would
often need exponential effort to produce the output, as the output may needO(N) bits to be written.
To see this, consider an RBN with a single unary relation r such that Fr = noisy-or{1/2|X;X =
X}. Then P(r(1) = 0) = 1− [1−

∏N
i=1 1/2] = 2−N . To avoid such a blow-up (that is not in itself

related to RBNs), we prefer to assume an explicit specification of the domain.
The choice of the class of combination functions allowed in an RBN can significantly affect the

complexity of inference. For instance, if the combination function is an arbitrary Turing machine
(with no bounds on time and space) then inference becomes undecidable. So we need to constrain
combination functions to make the study of inferential complexity more interesting. We start with
the simplest case, where no combination function is available.

4.1 RBNs without combination functions: plate models

Consider the case where a probability formula can be either a rational number, or an atom, or a
convex combination of probability formulas. Then every logical variable in a probability formula is
free. Thus, in our acyclic directed graph of relations no node can have an arity larger than any of its
children.

As the domain is given as an explicit list of elements, we can always “ground” an RBN into a
Bayesian network, and run inference there. However, if we use relations of unbounded arity, we may
have to generate an exponentially large Bayesian network; hence one might suspect that inferences
would require exponential effort. However:

Theorem 1 Inference in RBNs without combination functions is #P-equivalent (even if the domain
is specified solely by its size in binary notation).

Proof Hardness follows from the fact that RBNs can represent any Bayesian network. Membership
is obtained by adapting results on plate models (Cozman and Mauá, 2015b). A plate model is essen-
tially an RBN with no combination function where logical variables are typed, and probabilities are
specified by template conditional probability tables (Koller and Friedman, 2009, Chapter 6.3). A
plate in a plate model groups all the relations that share a logical variable of a certain same type. An
example of a plate model describing student performance is depicted in Figure 1 (plates are depicted
as rectangles). In any plate model, the logical variables in a node are a subset of the logical variables
in its children. Now each plate can be associated with a different domain; in the context of RBNs,
all logical variables share the same domain. We can encode any RBN without combination function
as a plate model by “solving” the probability formula so as to obtain a template conditional proba-
bility table. Since there are no combination functions, every RBN can be augmented with auxiliary
relations so as to bound the number of relations in each formula (Jaeger, 2001). This augmented
network, which induces the same distribution over the original relations and is obtained efficiently,
can be reduced in polynomial time to a plate model by converting probability formulas into tem-
plate conditional probability distributions (this is polynomial since the number of relations are now
bounded). And inference in plate models is #P-equivalent (Cozman and Mauá, 2015b, Theorems 1
and 3).
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fails(X,Y )difficult(Y ) intelligent(X)

courses students

Figure 1: Plate model of student performance.

Theorem 1 can be understood as saying that inference in RBNs reduces to inference in Bayesian
networks. Thus, even though such an RBN can represent an exponentially large Bayesian network,
only a polynomial number of nodes is relevant for an inference.

4.2 RBNs with max combination functions

We now consider RBNs allowing only max combination functions. First, note that by combining
max and convex combination we also allow min combination functions. Second, by using max
(resp., min), we can encode existentially (resp., universally) quantified formulas such as ϕ(X) :=
∃Y [r(X,Y ) ∧ ¬(X = Y )] by F = max{r(X,Y )|Y ;¬(X = Y )} (resp. ϕ(X) := ∀Y [r(X,Y ) ∨
¬(X = Y )] by F = min{r(X,Y )|Y ;¬(X = Y )}). Thus, RBNs with max can encode enhanced
plates, that is, plate models where a node can have logical variables that do not appear in some of
its children (Cozman and Mauá, 2015b).

Enhanced plate models with binary variables and existential quantification as aggregation func-
tion have #EXP-equivalent inferential complexity, even if the domain is specified as an explicit list
(Cozman and Mauá, 2015b). We can adapt that result to show that:

Theorem 2 Inference is #EXP-equivalent when the only combination function is max.

Proof Recall that an RBN specifies a Bayesian network whose variables take values in a expo-
nentially large set. Membership follows since we can “guess” a configuration for every node and
then compute the corresponding probability in exponential time in the input (computing a proba-
bility formula built out of max combination function takes at most exponential time). Adding up
these probabilities and scaling them is then in #EXP. Hardness can be proved by showing that any
enhanced plate model can be reduced to an equivalent RBN with max combination functions; infer-
ence in enhanced plate models with probabilities specified by function-free first-order formulas was
shown to be #EXP-equivalent by Cozman and Mauá (2015b, Theorem 4).

As the previous result shows, unbounded arity of relations can introduce exponential complexity
in the presence of combination functions as simple as max. This motivate us to assume that:

Assumption 1 The arity of relations is bounded.

We then have that:

Theorem 3 Inference is FPSPACEP-complete, under Assumption 1, when the only combination func-
tion is max.
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Proof Membership: we devise a polynomial space algorithm for solving inference. Let k be a
bound on the arity of the relations (Assumption 1); then an interpretation assigns a relation con-
sisting of k values to each of the n = |V | relations. This takes polynomial space. We show that
probability formulas can be evaluated (for a fixed interpretation) in polynomial space by induction
in the number of nested subformulas. If a formula has no combination functions, then only con-
stant space is required to evaluate it; otherwise, assume that every subformula takes polynomial
space. Convex combinations of such subformulas again take only polynomial space. So consider a
probability formula F = max{F1, . . . , Fk|Y1, . . . , Ym;α}, where each Fi is by assumption com-
puted using polynomial space. Evaluating F takes at most O(m · k · |α| · f) space (required to
count the assignments of the logical variables and decide the maximum over F1, . . . , Fk for each
assignment), where |α| is the size of the constraint α, and f is an upper bound on space required to
compute a subformula Fi. Thus, evaluating any probability formula (for a fixed interpretation) takes
polynomial space. The probability of an interpretation can be computed in polynomial space by a
multiplication of all the terms involved (we only need an accumulator to store intermediate values
of the product computation and a counter over the relations r ∈ V and the tuples a ∈ D|r|, all of
which can be implemented in spaceO(|V | · |r| lg |D|), which is a polynomial in the input size). The
desired marginal probability can be computed in polynomial space by enumerating every possible
interpretation and adding up the relevant parts (possibly followed by normalization).

Hardness: By reduction from #QBF, which is FPSPACEP-complete (Bauland et al., 2010):
Input: A formula ϕ(X1, . . . , Xn) = Q1 Y1Q2 Y2 . . . Qm Ymψ(X1, . . . , Xn, Y1, . . . , Ym), where
each Qi is either ∃ or ∀, and ψ is a 3-CNF formula over variables X1, . . . , Xn, Y1, . . . , Ym.
Output: The number of assignments to the variables X1, . . . , Xn that satisfy ϕ.

Consider such a formula ϕ with k clauses. We denote by Yi1, . . . , Yir the quantified vari-
ables appearing in the ith clause (r ≤ 3 is a function of i). We will show how to solve this
instance with a single inference to an RBN constructed in polynomial time (in the size of that
instance), followed by a polynomial-time scaling. So, for each counted variable Xj , introduce a
zero-arity relation xj with no parents and with probability formula Fxj = 1/2. For each clause,
i = 1, . . . , k, introduce a relation ci(Yi1, . . . , Yir, Z), and set the parents of ci to be the cor-
responding relations xj such that Xj appears in the ith clause. The variable Z is used to rep-
resent a true value (Z = 1). The corresponding probability formula encodes the ith clause:
Fci(Yi1, . . . , Yir, Z) = max{max{1|∅;α},max{[1−]xi1, . . . , [1−]xis|∅;¬α}}, where we use 1−
xij iffXij appears negated in the clause. The constraintα is satisfied iff the assignment of Yi1, . . . , Yir
satisfies the clause. For example, for the clause (¬X1∨X2∨Y2) we introduce a relation c(Y,Z) and
a corresponding probability formulaFc(Y2, Z) = max{max{1|∅;Y2 = Z},max{1−x1, x2|∅;¬(Y2 =
Z)}}. Finally, introduce a relation w(Z) whose probability formula is

Fw(Z) = opt1{· · · optm{c1(Y11, . . . , Y1r, Z)× · · · × ck(Yk1, . . . , Ykr, Z)|Ym} · · · |Y1} ,

where optj is max if Qj = ∃ and optj is min if Qj = ∀, and Yi1, . . . , Yir, Z is the set of logical
variables in atom ci. Then, the probability of {w(1) = 1} equals the number of assignments to
X1, . . . , Xn for which all clauses are satisfied for every assignment of the quantified variables. That
is, P(w(1) = 1) =

∑
x1,...,xn

(1/2)noptY1 · · · optYm
∏k
i=1 Fci(Yi1, . . . , Yir, 1), where the first sum

is over the assignments xi ∈ {0, 1}, and each Fci is evaluate under those assignments. To answer
the #QBF problem, return 2nP(w(1) = 1).

We define the nesting level of a probability formula as follows:
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Definition 4 A probability formula F = q or F = r(X1, . . . , Xn) has nesting level zero. A proba-
bility formula F = F1F2 +(1−F2)F3 has nesting level equal to the highest nesting level of F1, F2,
F3. Finally, a probability formula F = comb{F1, . . . , Fk|Y1, . . . , YM ;α} has nesting level equal
to the highest nesting level over all probability formulas Fi in it, plus one.

Nesting combination functions can provide additional computational power, but an unbounded
number of nestings does not seem necessary for modeling realistic domains. Thus, one might
assume that:

Assumption 2 The nesting level of any probability formula is bounded by a constant k ≥ 0.

Limiting the nesting level brings inference to the counting hierarchy:

Theorem 5 Inference is #ΣP
k-equivalent, under Assumptions 1 and 2, when the only combination

function is max.

Proof Membership: we can solve inference by a non-deterministic Turing machine that “guesses”
an interpretation µ and performs binary search to find the value of each Fr(a) with polynomially
many calls to oracles ΣP

k. To see this, consider the computation of F (a) where F is a formula with
nesting level 1, that is, F is a polynomial on the value of combination expressions (of nesting level
0). Each combination expression can be evaluated (at a) by a binary search that calls an NP oracle
to decide whether the maximum value exceeds a certain threshold. By induction hypothesis, we
can use the same argument to solve a formula Fr(a) of nesting level ` < k; this is a polynomial on
combination expressions of nesting level < `, each being solved with polynomially many calls to
a ΣP

`−1 oracle. Finally, the probability P(µ) is computed polynomially as the product of Fr(a) or
1− Fr(a).

Hardness: By reduction from #ΠkSAT, which is complete for #ΣP
k (Durand et al., 2005):

Input: A formula ϕ(X1, . . . , Xn) = ∀Y1∃Y2 . . . Ykψ(X1, . . . , Xn, Y1, . . . , Yk), where each Yi is a
tuple of variables, and ψ is a 3-CNF formula over variables X1, . . . , Xn, Y1, . . . , Yk.
Output: The number of assignments to the variables X1, . . . , Xn that satisfy ϕ.

The reduction is very similar to the one used to prove Theorem 3, except that we have to be
careful not to include unnecessary nestings of combination formulas. So consider a formula ϕ with
m clauses. For each variable Xj , introduce a zero-arity relation xj with no parents and with prob-
ability formula Fxj = 1/2. As before, we denote by Yi1, . . . , Yir the quantified variables in the
ith clause. For each clause, i = 1, . . . ,m, introduce relations ci(Yi1, . . . , Yir, Z), di(Yi1, . . . , Yir)
and ei(Yi1, . . . , Yir, Z). The parents of ci are di and ei; di has no parents; the parents of ei are the
relations xj corresponding to counted variables in the ith clause. Each relation di encodes whether
the assignment of Yi1, . . . , Yir satisfies the respective clause, while the relation ei encodes whether
the clause is satisfied by some assignment of the counted variables (and setting the quantified vari-
ables so that their values do not affect satisfiability). Let Xi1, . . . , Xis be the counted variables in
the ith clause. Specify the corresponding probability formulas: Fdi(Yi1, . . . , Yir, Z) = max{1|α},
Fei(Yi1, . . . , Yir, Z) = {[1−]xi1, . . . , [1−]xis} andFci(Yi1, . . . , Yir, Z) = max{di(Yi1, . . . , Yir, Z),
ei(Yi1, . . . , Yir, Z)|∅}, where we use 1−xij iff Xij appears negated in the clause. The constraint α
is satisfied iff the assignment of Yi1, . . . , Yir satisfies the clause. For example, for the clause (¬X1∨
X2 ∨ Y2) we introduce relations c(Y,Z), d(Y,Z), e(Y,Z), and specify Fd(Y,Z) = max{1|∅;Y =
Z}, Fe(Y,Z) = max{1 − x1, x2|∅;¬(Y = Z)}, Fc(Y,Z) = max{d(Y,Z), e(Y,Z)}. Finally, in-
troduce a relationw(Z) whose probability formula isFw(Z) = max1{· · · optk{c1(Y11, . . . , Y1r, Z)×
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· · · × cm(Ym1, . . . , Ymr, Z)|Yk} · · · |Y1}, where optj is max if j is odd and optj is min otherwise,
and Yj is the tuple variables referred to by the jth quantifier in the input. To solve #ΠkSAT return
2nP(w(1) = 1).

Note that for nesting level k = 0, the proof above reduces a #SAT problem (complete for
#P) and provides an alternative proof that inference is #P-equivalent in RBNs without combination
function. For a nesting level k = 1, Theorem 5 shows that inference is #Σ1-equivalent (that is,
#NP-equivalent), which suggests that the use of combination functions (even as simple as max)
adds computational power to the model.

4.3 RBNs with polynomial combinations functions

We now consider RBNs with arbitrary combination functions given as part of the input. First, note
that one might take an arbitrarily complex combination function to begin with, and then the com-
plexity of inference would be entirely washed over by the complexity of evaluating combination
functions (as already noted in Section 4). To prevent such situations, we might adopt:

Assumption 3 Any combination function comb{q1, . . . , qk} is polynomial-time computable in the
size of a reasonable encoding of its arguments q1, . . . , qk.

The max combination function clearly satisfies this assumption. Thus, given the previous re-
sults, inference under Assumption 3 can still produce problems with complexity ranging from #P

to FPSPACEp, depending on the maximum nesting level allowed. This assumption, however, is
not strong enough to prevent exponential behavior even under Assumptions 1 and 2, solely due to
idiosyncrasies of combination functions. To see this, consider the probability formula

F (X1, . . . , Xn, Z) = comb{G(X1, Z)+2−1G(X2, Z)+· · ·+2−nG(Xn, Z)|Y1, . . . , Yn} , (1)

where G(X,Z) = max{1|∅;X = Z}. To evaluate such a function, one may face an exponentially
large multiset {q1, . . . , q2n}; if it is indeed necessary to go through all these elements, then the
overall effort is exponential even if the function itself is polynomial on the size of the multiset. We
have that:

Theorem 6 Inference is FEXP-complete under Assumptions 1 and 3.

Proof Membership: There are polynomially many groundings for all relations in the RBN. Thus
there are exponentially many truth assignments for these groundings; go over each one of them,
computing (and adding) the probabilities produced by evaluating polynomially many combination
functions (each evaluation with effort at most exponential).

Hardness: Consider a combination function F (X1, . . . , Xn, Z) as in Expression (1). Select
some FEXP-complete problem, and assume that comb encodes this problem (that is, it gets a string
x1x2· · ·xn as input, and runs an unavoidably exponentially long computation and outputs an integer
z). Note that such a combination function is allowed by Assumption 3, because comb can select any
of the 2n replicas in its multiset, each encoding a binary number with n bits, and spend exponential
time O(2poly(n)), which is polynomial in the encoding of the multiset (that takes O(2n · n) bits).
Now specify the domain as D = {0, 1}, and consider the free variables X1, . . . , Xn of this formula
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as specifying the input to the FEXP-complete problem encoded by comb; the variable Z specifies
a bit set. Computing F (x1, . . . , xn, 1) then solves the FEXP-complete problem, and requires only
polynomial-sized input and output.

An alternative to Assumption 3 would be to adopt:

Assumption 4 Any probability formula comb{F1, . . . , Fk|Y1, . . . , Ym;α} is polynomial-time com-
putable in the size of a reasonable encoding of its description.

One way to satisfy this assumption is to adopt Assumption 1 and in addition to assume that the
number of bound logical variables is bounded; the latter is essentially the same as assuming a bound
on the quantifier depth as defined by Jaeger (2001). Indeed, if the bound on the number of bound
logical variables is say M , then there are at most |D|M tuples to test with the equality constraint;
for each one of them, recursively obtain the values to be used in the combination function, and then
compute the latter with polynomial effort.

In any case, if Assumption 4 is imposed, it severely limits the computational power to that of a
Bayesian network. Indeed, we obtain:

Theorem 7 Inference is #P-equivalent under Assumptions 1 and 4.

Proof Hardness: An RBN without combination functions and a domain with a single element suf-
fice to specify any Bayesian network, hence #P-hardness obtains. Membership: Given Assumption
1, there is a polynomial number of groundings; once a truth assignment is guessed nondeterministi-
cally for all these groundings, the computation of their joint probability can be done in polynomial
time given Assumption 4. Hence by adding up the result of all these truth assignments (in fact, a
suitably scaled result), we obtain the desired inference.

These results can be interpreted as follows. If we want to use arbitrary combination functions,
and we only accept polynomial-time functions, then the problem becomes exponentially hard and
fails to reveal many interesting cases. If on the other hand we take arbitrary functions but assume
their interpretations to be polynomial, then RBNs are essentially a syntactic sugar for representing
large Bayesian networks, with no additional power. It remains an open question to constrain RBNs
so that arbitrary combination functions can be used, while still leading to interesting complexity
results.

5. Conclusion

We have examined the complexity of inference in relational Bayesian networks. We argued that a
great deal of complexity is added by the combination functions alone, which led us to analyze the
complexity in terms of the type of combination functions allowed. We first considered networks
with no combination function, and showed that (from a complexity viewpoint) they are essentially
as powerful as Bayesian networks. We then analyzed the complexity when we only allow maximiza-
tion as combination function. In this case, complexity results were much more interesting, covering
the entire counting hierarchy up to FPSPACEP and to #EXP. The distinction of complexity classes
was produced by limiting the arity of relations and the nestings of combination functions. We then

342



THE EFFECT OF COMBINATION FUNCTIONS ON THE COMPLEXITY OF RELATIONAL BAYESIAN NETS

discussed the use of arbitrary combination functions. We showed that enforcing polynomial com-
bination functions can still lead to exponential inference problems. On the other hand, constraining
probability formulas to be polynomial in their encoding brings inference to the same complexity as
Bayesian networks, and simplifies the discussion. We left as future work the development of criteria
that allow arbitrary combination functions and yet enables interesting complexity results.

Another interesting avenue to pursue is the case of combination functions that can count. This
is the case, for example, of the arithmetic mean function. Such functions can in principle simulate
a counting Turing machine, so we expect inferential complexity to require a #P oracle. This seems
to be significantly different from the results we obtained.

Yet another possible direction for the future is to investigate the complexity with respect to
graphical features of the model. For instance, inference in bounded-treewidth Bayesian networks is
polynomial (Koller and Friedman, 2009). Our results suggest that even when the grounding of the
relational network produces a polynomial-sized graph, inference can still remain intractable.

Following Jaeger (2000) and Beame et al. (2015), one could entertain other dimensions of com-
plexity: for instance, one could analyze inference with respect to the query complexity (when the
relational model is fixed and query is a joint assignment to random variables that varies), or with
respect to the domain complexity (when model and query are fixed and the domain size varies).
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