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Abstract. The construction of probabilistic models that can represent
large systems requires the ability to describe repetitive and hierarchical
structures. To do so, one can resort to constructs from description logics.
In this paper we present a class of relational Bayesian networks based on
the popular description logic DL-Lite. Our main result is that, for this
modeling language, marginal inference and most probable explanation
require polynomial effort. We show this by reductions to edge cover-
ing problems, and derive a result of independent interest; namely, that
counting edge covers in a particular class of graphs requires polynomial
effort.

1 Introduction

The search for an expressive and tractable formalism that can represent un-
certainty and repetitive structures or hierarchical terminologies, is not an easy
one. Most probabilistic models are propositional [14, 24], while combinations of
logic and probabilities are typically quite flexible but intractable [3, 18]. However,
there are proposals that try to balance expressivity and complexity by mixing
logical constructs with graphs and independence relations [33, 17, 32]; for in-
stance, probabilistic relational models [16] and relational Bayesian networks [21].
A few variants of these latter models even allow for polynomial time inferences
by significantly restricting the syntax [15, 29].

In this paper we investigate the computational complexity of a modeling lan-
guage that combines features of relational Bayesian networks with constructs of
the popular description logic DL-Lite [7, 1]. In essence, we consider Bayesian net-
works which can be concisely specified using terminological assertions expressed
in DL-Lite and marginal probability assertions on basic concepts and roles. For
instance, we obtain a Bayesian network through the assertions

Employee ≡ Person u ∃salary, P(Person) = 1/3, P(salary) = 1/4,

which encodes knowledge that an employee is defined as a person who receives a
salary, an object is a person with probability 1/3 and two objects are connected
through the relation salary with probability 1/4.
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Our main contribution here is to show that marginal inferences and most
probable explanations can be generated in polynomial time in our modeling
language. So, we identify an island of tractability with non-trivial expressivity,
offering a language that can be easily meshed with ontologies and relational
schema.

The paper is organized as follows. We with some necessary background in
Section 2. We then present DL-Lite Bayesian networks (Section 3) and their
complexity with respect to marginal inferences and most probable explanations
(Sections 4 and 5). Some of our results depend on a polynomial algorithm for
counting edge covers, a result of independent interest that is briefly presented in
Section 6. The connections with related work is discussed in Section 7. Section 8
comments on possible extensions and concludes the paper.

2 Bayesian networks, and DL-Lite

A Bayesian network consists of an acyclic directed graph whose nodes are random
variables X1, . . . , Xn, and a collection of conditional probability distributions,
one distribution for each random variable given its parents. In this work, we
consider only Boolean variables: we assume that each variable Xi takes on values
1 (“true”) and 0 (“false”). The product of all conditional probability distributions
determines a joint probability distribution over all variables, such that P(X1 =
x1, . . . , Xn = xn) =

∏n
i=1 P(Xi = xi|pa(Xi) = πi), where pa(Xi) denotes the

parents of Xi and πi is the projection of {x1, . . . , xn} onto pa(Xi). A Bayesian
network is extensively specified when its probability distributions are specified
through tables of rational numbers.

A marginal inference is the computation of the probability of a number of
assignments {Xi = xi} (query) given other assignments (evidence). This is a
#P-complete problem [36], and NP-hard even to approximate [11].1 Other com-
mon inference is most probable explanation (MPE), where one seeks an assign-
ment to all variables that maximizes their joint probability given some evidence.
Polynomial-time inference in extensively specified networks seems to require,
under widely accepted assumptions about complexity classes, a bound on graph
treewidth [26, 25], hence the interest in networks with restricted expressivity [9,
13, 15, 19, 31, 35].

To study the inferential complexity of various classes of Bayesian networks be-
yond the treewidth barrier, we have proposed a convenient framework in which
to specify networks with binary variables [10]. In this framework, a directed
acyclic graph is given where each node is a random variable; each root variable
X is associated with a marginal probability P(X = 1) = α, and each non-root
variable Y is associated with a formula Y ⇔ φ, where φ is a well-formed formula
on the parents of Y ; the latter is equivalent to specifying that P(Y = 1|φ) = 1

1 Recall that #P is the class of integer-valued functions computed by counting Turing
machines in polynomial time; a counting Turing machine is a standard nondetermin-
istic Turing machine that prints in binary notation, on a separate tape, the number
of accepting computations induced by the input.
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if φ is true and zero otherwise. By restricting the language from which φ can
be selected, one obtains a class of Bayesian networks (a language is simply a
set of well-formed formulas). For instance, if the language consists of all propo-
sitional sentences, we can represent any joint probability distribution (perhaps
introducing fresh variables). Or we may employ a sub-Boolean language with
only conjunction and disjunction, as in the next network:

X1 X2

X3 X4

P(X1) = 1/4, P(X2) = 1/2,

X3 ⇔ X1 ∧X2, X4 ⇔ X2 ∨X3.

A relational Bayesian network consists of a directed acyclic graph whose
nodes are relations r1, . . . , rn [21, 22], plus a set of real-valued functions soon
to be explained. To interpret a relational Bayesian network, first take a set of
individuals D, called a domain. A grounding of k-ary relation r is denoted by
r(a1, . . . , ak), where a1, . . . , ak ∈ D. Given a relational Bayesian network and a
domain, one can build a directed acyclic graph where each possible grounding
is a node, and where an arc is added between two groundings if there is an arc
between their corresponding relations in the network. The real-valued functions
we have mentioned specify the probability of each grounding given its parents’
grounding. In Jaeger’s original proposal [21], these real-valued functions are re-
stricted to a few basic forms. Here we focus on the restricted syntax proposed
in [10]: for each root relation r we have an assessment P(r) = α, where α is a
rational in [0, 1]. And for each non-root k-ary relation s we have an equivalence
s(x1, . . . , xk) ⇔ φ(x1, . . . , xk), where each xi denotes a logical variable and φ is
a well-formed formula in a first-order language. Our strategy in this paper is to
restrict φ to constructs from the DL-Lite description logic.

DL-Lite is particularly interesting because it captures a great deal of fea-
tures found in conceptual modeling by ER or UML diagrams, and yet common
inference services have polynomial complexity [7]. A whole family of variants
of DL-Lite has been developed [1], and in fact this family is the basis of one
of the OWL QL profile (http://www.w3.org/TR/owl2-profiles/). To recap, DL-
Lite is a description logic that deals with concepts, roles, and individuals; we
treat those as unary relations, binary relations, and constants. Some of the con-
cepts are marked as primitive ones. Given a primitive concept s, both s and ¬s
are formulas, to be interpreted respectively as s(x) and ¬s(x). Given a role r,
both ∃r and ∃r− are formulas, to be interpreted respectively as ∃y : r(x, y) and
∃y : r(y, x) (r− is an inverse role). Also, if φ and ϕ are formulas, then φ u ϕ is a
formula (interpreted as φ ∧ ϕ). Finally, a concept definition s ≡ φ is interpreted
as ∀x : s(x) ⇔ φ(x). Note that any formula φ can have only one free logical
variable. A primitive concept cannot appear in the left-hand side of a concept
definition (indeed this characterizes primitive concepts). Inverse roles are defined
as ∀x, y : r−(y, x) ⇔ r(x, y). The semantics of DL-Lite uses a domain D and an
interpretation I that maps each individual to an element of D, each concept to a
subset of D, and each role to a set of pairs in D×D. The semantics of a formula



4 Denis D. Mauá & Fabio G. Cozman

in essence reads the formula as a first-order formula and uses D and I in the
usual semantics of first-order logic [7].

Example 1. The following concept definitions express simple facts about fami-
lies: first, female ≡ ¬male; also, father ≡ male u ∃parentOf, mother ≡ female u
∃parentOf, son ≡ male u ∃parentOf−, daughter ≡ female u ∃parentOf−.

3 DL-Lite Bayesian networks

We now consider the class of relational Bayesian networks over binary variables
where each conditional probability is specified through a DL-Lite formula. A
DL-Lite Bayesian network is a relational Bayesian network that consists of a
directed acyclic graph where each node is a unary or binary relation, and such
that

– each root relation r is associated with an assessment P(r) = α, for a rational
α ∈ [0, 1], and

– each non-root relation r is either a unary relation associated with a concept
definition r ≡ φ, where φ is a formula in DL-Lite only mentioning parent
relations, or an inverse role s− with s as its single parent.

Example 2. The graph and assessments in Figure 1, plus the concept definitions
in Example 1, specify a DL-Lite Bayesian network.

The semantics of DL-Lite Bayesian networks is given by a simple combination
of semantics for relational Bayesian networks and for DL-Lite. That is, consider
a domain D containing individuals; in this paper we assume every domain to
be finite and given as a list of elements. We also assume, as most first-order
probabilistic logics do, that interpretations are rigid [3] in that an element cor-
responds to the same individual in every possible interpretation of relations. For
each concept s and individual a, produce the grounding s(a); likewise, for each
role r and each pair of individuals (a, b), produce the grounding r(a, b). A set
with all possible interpretations is obtained by considering all possible truth as-
signments for these groundings. We can associate each grounding with a random
variable that takes each possible interpretation either to 1 (the grounding is true
in that interpretation) or to 0 (otherwise). To simplify the notation, we use the
same symbol for a grounding and its associated random variable. Now construct
a grounded graph. First, each grounding is a node. Second, take each concept
definition s ≡ φ; for each grounding s(a), specify as its parents the groundings

P(male) = 1/2 P(parentOf) = 1/3male female

son father mother daughter

parentOf

parentOf−

Fig. 1. A DL-Lite Bayesian network.
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ma(a) fe(a)

fa(a) mo(a)so(a) da(a)

ma(b) fe(b)

fa(b) mo(b)so(b) da(b)

pa(a,a) pa(a,b) pa(b,a) pa(b,b)pa-(a,a) pa-(a,b) pa-(b,a) pa-(b,b)

Fig. 2. Grounded network, domain D = {a, b}.

that appear in φ(a). Third, associate with each root grounding the corresponding
grounded probabilistic assessment. For instance, suppose we have assessments
P(s) = α′ and P(r) = α′′ for concept s and role r; then, attach to grounding
s(a) the assessment P(s(a)) = α′, and similarly, attach to grounding r(a, b) the
assessment P(r(a, b)) = α′′.

Example 3. Take D = {a, b}. Then the relational Bayesian network in Example 2
induces the Bayesian network in Figure 2 (where names of relations have been
shortened, e.g. parentOf has become pa).

DL-Lite Bayesian networks can be argued for in two ways. First, they of-
fer an intuitive and disciplined language in which to express relational Bayesian
networks; in essence, DL-Lite is used to reduce the complexity of Jaeger’s combi-
nation functions [21, 22]. Second, they offer a simple way to create probabilistic
acyclic ontologies; this is particularly valuable as acyclic ontologies are common
in practice [2].

To these inviting features we add a third, most important one: useful infer-
ences in DL-Lite Bayesian networks require polynomial effort. The inferences of
interest are as follows. Suppose we have a DL-Lite Bayesian network B and a
domain D (as a list of individuals). To compute a marginal inference P(Q|E)
for sets of assignments Q and E, we calculate P(Q ∧ E)/P(E). So, our central
inference problem is to compute P(E) for a given set of assignments (the evi-
dence). That is, inference in DL-Lite Bayesian networks boils down to computing
marginals, as usual in Bayesian networks.

For reasons to be clear, we say that evidence is positive when all assign-
ments attach value 1 (true). For instance, {male(John) = 1, female(Mary) = 1}
is positive evidence. Similarly, {father(John) = 0,mother(Mary) = 0} is negative
evidence.

Another problem is to find a most probable explanation (MPE); that is, to
find an interpretation for all groundings of the DL-Lite Bayesian network B with
respect to domain D, that maximizes the probability and is consistent with a
given set of assignments (evidence) E.

As a digression, note that we argue in Section 8 that results in the next
section can be adapted to produce fully-polynomial time approximations in a
larger set of languages that can be directly useful in conceptual modeling.
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4 Marginal inferences

Our main result is that (marginal and MPE) inference in a DL-Lite Bayesian net-
work requires polynomial effort as long as evidence is positive. One consequence
of this result is that DL-Lite Bayesian networks are dqe-/domain-liftable for pos-
itive evidence [4, 23]. Another point is that our results offer explicit algorithms
for a class of two-variable logics [5].

The focus on positive assignments is justified, as conjuntion (a subset of
DL-Lite) leads to #P-hardness with arbitrary evidence [10]. Our first result is:

Theorem 1. With a DL-Lite Bayesian network, a domain, and positive evi-
dence as input, inference is polynomial-time computable in the size of the input.

We prove this theorem by a quadratic-time reduction to multiple indepen-
dent problems of counting weighted edge covers with uniform weights in a very
particular class of graphs. Then we show (in Section 6) that the latter problem
can be solved in quadratic time (hence the total time is quadratic).

We first transform the relational network into an equal-probability model.
Collapse each role r and its inverse r− into a single node r. For each (collapsed)
role r, insert variables er ≡ ∃r and e−r ≡ ∃r−; replace each appearance of the
formula ∃r by the variable er, and each appearance of ∃r− by e−r . This transfor-
mation does not change the probability of E, and it allows us to easily refer to
groundings of formulas ∃r and ∃r− as groundings of er and e−r , respectively.

Observe that only the nodes with assignments inE and their ancestors are rel-
evant for the computation of P(E), as every other node in the Bayesian network is
barren [14]. Hence, we can assume without loss of generality that E contains only
leaves of the network. If E contains only root nodes, then P(E) can be computed
trivially as the product of marginal probabilities which are readily available from
the specification. Thus assume that E assigns a positive value to at least one leaf
grounding s(a), where a is some individual in the domain. Then by construction
s(a) is associated with a logical sentence X1∧ · · ·∧Xk, where each Xi is either a
grounding of non-primitive unary relation in individual a, a grounding of a prim-
itive unary relation in a, or the negation of a grounding of a primitive unary rela-
tion in a. It follows that P(E) = P(s(a) = 1|X1 = 1, . . . , Xk = 1)P(E′) = P(E′),
where E′ is E after removing the assignment s(a) = 1 and adding the assignments
{X1 = 1, . . . , Xk = 1}. Now it might be that E′ contains both the assignments
{Xi = 1} and {Xi = 0}. Then P(E) = 0 (this can be verified efficiently). So
assume there are no such inconsistencies. The problem of computing P(E) boils
down to computing P(E′); in the latter problem the node s(a) is discarded for
being barren. Moreover, we can replace any assignment {¬r(a) = 1} in E′ for
some primitive concept r with the equivalent assignment {r(a) = 0}. By repeat-
ing this procedure for all internal nodes which are not groundings of er or e−r ,
we end up with a set A containing positive assignments of groundings of roles
and of concepts er and e−r , and (not necessarily positive) assignments of ground-
ings of primitive concepts. Each grounding of a primitive concept or role is (a
root node hence) marginally independent from all other groundings in A; hence
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P(A) = P(B|C)
∏

i P(Ai), where each Ai is an assignment to a root node, B
are (positive) assignments to groundings of concepts er and e−r for relations r,
and C ⊆ {A1, A2, . . . } are groundings of roles (if C is empty then assume it
expresses a tautology). Since the marginal probabilities P(Ai) are available from
the specification the joint

∏
i P(Ai) can be computed in linear time in the input.

We thus focus on computing P(B|C) as defined (if B is empty, we are done).
To recap, B is a set of assignments er(a) = 1 and e−r (b) = 1 and C is a set of
assignments r(c, d) = 1 for arbitrary roles r and individuals a, b, c and d.

For a role r, let Dr be the set of individuals a ∈ D such that er(a) = 1 is in
B, and let D−r be the set of individuals a ∈ D such that B contains e−r (a) = 1.
Let gr(r) be the set of all groundings of relation r, and let r1, . . . , rk be the roles
in the (relational) network. By the factorization property of Bayesian networks
it follows that

P(B|C) =
∑
gr(r1)

· · ·
∑
gr(rk)

k∏
i=1

∏
a∈Dri

P(eri(a) = 1|pa(eri(a)),C)×

∏
a∈D−

ri

P(e−ri (a) = 1|pa(e−ri (a)),C)P(gr(rk)|C) ,

which by distributing the products over sums is equal to
k∏

i=1

∑
gr(ri)

∏
a∈Dr

P(er(a)=1|pa(er(a)),C)
∏

a∈D−
r

P(e−r (a)=1|pa(e−r (a)),C)P(gr(rk)|C) .

Consider an assignment r(a, b) = 1 in C. By construction, the children of the
grounding r(a, b) are er(a) and e−r (b). Moreover, the assignment r(a, b) = 1 im-
plies that P(er(a) = 1|pa(er(a)),C) = 1 (for any assignment to the other parents)
and P(e−r (b) = 1|pa(er(a)),C) = 1 (for any assignment to the other parents).
This is equivalent in the factorization above to removing r(a, b) from C (as it is
independent of all other groundings), and removing individuals a from Dr and
b from D−r . So repeat this procedure for every grounding in C until this set is
empty (this can be done in polynomial time). The inference problem becomes
one of computing γ(r) =

∑
gr(ri)

∏
a∈Dr

P(er(a) = 1|pa(er(a)))
∏

a∈D−
r
P(e−r (a) =

1|pa(e−r (a)))P(gr(rk)) for every relation ri, i = 1, . . . , k. We will show that this
problem can be reduced to a tractable instance of counting weighted edge covers.

To this end, consider the graph G whose node set V can be partitioned into
sets V1 = {e−r (a) : a ∈ D \ D−r }, V2 = {er(a) : a ∈ Dr}, V3 = {e−r (a) : a ∈ D−r },
V4 = {er(a) : a ∈ D \ Dr}, and for i = 1, 2, 3 the graph obtained by considering
nodes Vi ∪ Vi+1 is bipartite complete. An edge with endpoints er(a) and e−r (b)
represents the grounding r(a, b); we identify every edge with its corresponding
grounding. We call this graph the intersection graph of B with respect to r and
D. The parents of a node in the graph correspond exactly to the parents of the
node in the Bayesian network. For example, the graph in Figure 3 represents
the assignments B = {er(a) = 1, er(b) = 1, er(d) = 1, e−r (b) = 1, e−r (c) = 1},
with respect to domain D = {a, b, c, d, e}. The black nodes (resp., white nodes)
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e−r (a)

e−r (d)

e−r (e)

er(a)

er(b)

er(d)

e−r (b)

e−r (c)

er(c)

er(e)

r(d, e) r(d, c
)

r(c, b)

Fig. 3. Representing assignments by graphs.

represent groundings in (resp., not in) B. For clarity’s sake, we label only a few
edges.

Before showing the equivalence between the inference problem and counting
edges covers, we need to introduce some graph-theoretic notions and notation.
Consider a (simple, undirected) graph G = (V,E). Denote by EG(u) the set of
edges incident on a node u ∈ V , and by NG(u) the open neighborhood of u. For
U ⊆ V , we say that C ⊆ E is a U -cover if for each node u ∈ U there is an edge
e ∈ C incident in u (i.e., e ∈ EG(u)). For any fixed real λ, we say that λ|C| is the
weight of cover C. The partition function of G is Z(G,U, λ) =

∑
C∈EC(G,U) λ

|C|,
where U ⊆ V , EC(G,U) is the set of U -covers of G and λ is a positive real.
If λ = 1 and U = V , the partition function is the number of edge covers. The
following result connects counting edge covers to marginal inference in DL-Lite
Bayesian networks.

Proposition 1. Let G = (V1, V2, V3, V4, E) be the intersection graph of B with
respect to a relation r and domain D. Then γ(r) = Z(G,V2∪V3, α/(1−α))/(1−
α)|E|, where α = P(r(x, y)).
Proof. Let B = V2 ∪ V3, and consider a B-cover C. The assignment that sets
to true all groundings r(a, b) corresponding to edges in C, and sets to false the re-
maining groundings of rmakes P(er(a) = 1|pa(er(a))) = P(e−r (b) = 1|pa(e−r (b))) =
1 for every a ∈ Dr and b ∈ D−r ; it makes P(gr(r)) = P(r)|C|(1 − P(r))|E|−|C| =
(1−α)|E|α|C|/(1−α)|C|, which is the weight of the cover C scaled by (1−α)|E|.
Now consider a set of edges C which is not a B-cover and obtains an assignment
to groundings gr(r) as before. There is at least one node in B that does not con-
tain any incident edges in C. Assume that node is e(a); then all parents of e(a)
are assigned false, which implies that P(er(a) = 1|pa(er(a))) = 0. The same is
true if the node not covered is a grounding e−(a). Hence, for each B-cover C the
probability of the corresponding assignment equals its weight up to the factor
(1 − α)|E|. And for each edge set C which is not a B-cover its corresponding
assignment has probability zero. �

We have thus established that, if a particular class of edge cover counting
problems is polynomial, then marginal inference in DL-Lite Bayesian networks is
also polynomial. Since the former is shown to be true in Section 6, this concludes
the proof of Theorem 1.
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5 Most probable explanations

Using previous techniques, we can also show the following result:

Theorem 2. With a DL-Lite Bayesian network, a domain, and positive ev-
idence as input, finding a most probable explanation is polynomial-time com-
putable in the size of the input.

In this theorem we are interested in finding an assignmentX to all groundings
that maximizes P(X∧E), where E is a set of positive assignments. Perform the
substitution of formulas ∃r and ∃r− by logically equivalent concepts er and e−r as
before. Consider a non-root grounding s(a) in E which is not the grounding of er
or e−r ; by construction, s(a) is logically equivalent to a conjunction X1∧· · ·∧Xk,
where X1, . . . , Xk are unary groundings. Because s(a) is assigned to true, any
assignment X with nonzero probability assigns X1, . . . , Xk to true. Moreover,
since s(a) is an internal node, its corresponding probability is one. Hence, if we
include all the assignments Xi = 1 to its parents in E, the MPE value does not
change. As in the computation of inference, we might generate an inconsistency
when setting the values of parents; in this case halt and return zero (and an
arbitrary assignment). So assume we repeated this procedure until E contains
all ancestors of the original groundings which are groundings of unary relations,
and that no inconsistency was found. Note that at this point we only need to
assign values to nodes which are either not ancestors of any node in the original
set E, and to groundings of (collapsed) roles r.

Consider the groundings of primitive concepts r which are not ancestors of
any grounding in E. Setting its value to maximize its marginal probability does
not introduce any inconsistency with respect to E. Moreover, for any assign-
ment to these groundings, we can find a consistent assignment to the remaining
groundings (which are internal nodes and not ancestors of E), that is, an assign-
ment which assigns positive probability. Since this is the maximum probability
we can obtain for these groundings, this is a partial optimum assignment.

We are thus only left with the problem of assigning values to the groundings
of relations r which are ancestors of E. Consider a relation r such that P(r) ≥ 1/2.
Then assigning all groundings of r to true maximizes their marginal probability
and satisfies the logical equivalences of all groundings in E. Hence, this is a
maximum assignment (and its value can be computed efficiently). So assume
there is a relation r with P(r) < 1/2 such that a grounding of er or e−r appear in
E. In this case, the greedy assignment sets every grounding of r; however, such an
assignment is inconsistent with the logical equivalence of er and e−r , hence obtains
probability zero. Now consider an assignment that assigns exactly one grounding
r(a, b) to true and all the other to false. This assignment is consistent with
er(a) and er(b), and maximizes the probability; any assignment that sets more
groundings to true has a lower probability since it replaces a term 1−P(r) ≥ 1/2
with a term P(r) < 1/2 in the joint probability. More generally, to maximize
the joint probability we need to assign to true as few groundings r(a, b) which
are ancestors of E as possible. This is equivalent to a minimum cardinality edge
covering problem as follows.
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For every relation r in the relational network, construct the bipartite complete
graph Gr = (V1, V2, E) such that V1 is the set of groundings er(a) that appears
and have no parent r(a, b) in E, and V2 is the set of groundings e−r (a) that appears
and have no parents in E. We identify an edge connecting er(a) and e−r (b) with
the grounding r(a, b). For any set C ⊆ E, construct an assignment by attaching
true to the groundings r(a, b) in C and false to every other grounding r(a, b).
This assignment is consistent with E if and only if C is an edge cover; hence the
minimum cardinality edge cover maximizes the joint probability (it is consistent
with E and attaches true to the least number of groundings of r). This concludes
the proof of Theorem 2.

6 Counting edge covers

In this section we discuss the fact that, for graphs such as those representing
formulas in DL-Lite, the partition function can be computed in polynomial time.
Specifically, we consider graphs G = (V,E) whose nodes can be partitioned into
four disjoint sets V1, V2, V3, V4 such that the subgraph obtained by considering
only edges Vi and Vi+1 is complete bipartite (i = 1, 2, 3). We call such graphs
stepwise bipartite complete. For lack of space, we only present the main ideas;
details and proofs can be found elsewhere [30].

We partition the nodes into white nodes W = V1 ∪ V4 and black nodes B =
V2∪V3. As we will be interested only in B-covers, we will refer to them simply as
covers. An edge e = (u, v) is classified into one of three categories with respect to
the partition W,B: it is a free edge if u, v ∈W ; a dangling edge if u ∈W, v ∈ B,
or a regular edge if u, v ∈ B. For convenience, we fix λ and write Z(G) to denote
Z(G,λ). Computing Z(G) for general graphs is #P-complete even for λ = 1
[6], and admits a FPTAS for bounded λ [27, 28]. We will show that for stepwise
bipartite complete graphs, the problem can be solved in polynomial time.

Let e be an edge and u be a vertex in G = (W,B,E). We define the following
operations and notation: G − e = (W,B,E \ {e}) and G − u = (W ∪ {u}, B \
{u}, E). These operations do not change the vertex set (only the partition), and
are associative (e.g., G − e − f = G − f − e, G − u − v = G − v − u, and
G− e−u = G−u− e). Hence, if E = {e1, · · · , ed} is a set of edges, we can write
G − E to denote G − e1 − · · · − ed applied in any arbitrary order. The same is
true for any combination of these operations.

The following results, easily derived from the work of Lin, Liu and Lu [27],
show that the partition function can be computed recursively on smaller graphs
and solved efficiently when no black nodes exist:

Proposition 2. Let e = (u, v) be an edge. 1) If e is dangling edge with u colored
black then Z(G) = (1 + λ)Z(G − e − u) − Z(G − EG(u) − u). 2) If e is a free
edge of G then Z(G) = (1 + λ)Z(G− e). 3) If u is an isolated white node (i.e.,
NG(u) = ∅) then Z(G) = Z(G− u).

The result above allows us to decompose the problem of computing Z(G) into
two smaller problems until the the problems are simple enough to be solved by
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procedure PF(G,w, k1, k2):
if (w ∈ V1 and k1 + k2 < n) or (w ∈ V4 and k1 + k2 < m):

if w ∈ V1 do v ← uk1+k2 else do v ← vk1+k2 ;
return (1+λ) ∗PF(G−(v, w)−v, w, k1, k2+1)−PF(G−EG(v)−v, w, k1+1, k2);

else:
remove free edges and isolate nodes; let k be the number of edges removed;
do w ← w ∈ V1; V1 ← V1 ∪ V3; V3 ← ∅;
return (1 + λ)k ∗ PF(G,w, 0, 0);

Fig. 4. Algorithm PF. Takes a graph G = (V1, V2, V3, V4, E) with V2 = {u1, . . . , un}
and V3 = {v1, . . . , vm}, a node w ∈ V1 ∪ V4, and nonnegative integers k1 and k2.

a simple count (of free edges). That approach however generates an exponential
number of recursions. A polynomial-time algorithm can be obtained by exploiting
the symmetries in the graphs, obtained through graph isomorphism.

Two graphs are isomorphic if there is an edge-preserving bijection between
the nodes of the two graphs that also preserves their color. Two isomorphic
graphs have the same value of the partition function. The next result shows
that the order in which operations of edge removal and and node whitening are
performed among isomorphic nodes does not affect the value of Z(G):

Proposition 3. Let u1, . . . , un be the nodes in V2 (V3) and w be a node in V1
(V4). Given any permutation σ on V2 (V3) and nonnegative integers k1+k2 ≤ n
the graphs G′ = G−EG(u1)− · · · −EG(uk1

)− (w, uk1+1)− · · · − (w, uk1+k2
)−

u1−· · ·−uk1+k2
and G′′ = G−EG(σ(u1))−· · ·−EG(σ(uk1

))− (w, σ(uk1+1))−
· · · − (w, σ(uk1+k2

))− σ(u1)− · · · − σ(uk1+k2
) are isomorphic.

Using these facts, Algorithm PF (Figure 4) produces Z(G).

Theorem 3. Let G be a stepwise bipartite complete graph. Then Algorithm PF
with an arbitrary node w in V4 and k1 = k2 = 0 outputs Z(G) in time and
memory polynomial in the number of nodes and edges of G if the calls are cached
(so that no two calls with same arguments are performed).

The algorithm PF requires the existence of dangling edges. Now it might
be that the graph contains no white nodes (hence no dangling edges), that is,
that G is complete bipartite graph. The next result shows how to decompose
the problem of computing the partition function into problems of computing the
partition function in smaller graphs.

Proposition 4. Let G be a bipartite complete graph and e = (u, v) be some
edge. Then Z(G) = (1+λ)Z(G−e−u−v)−Z(G−EG(v)−v)−Z(G−EG(u)−
u)−Z(G−EG(u)−EG(v)−u− v). The graphs in the right-hand side are either
bipartite complete or stepwise bipartite complete with a dangling edge.
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7 Related work

In previous work [10] we have shown that marginal inference can be computed
in polynomial-time in models described by a restricted version of the language
considered here, one that does not admit inverse roles. The absence of inverse
roles leads to Bayesian networks composed of disconnected components, where
each component contains all concepts related to an individual; the complexity
of inferences with “positive” evidence is then easily seem to be polynomial by
applying d-separation. The use of inverse roles connects components related to
different individuals, so the same argument cannot be used.

There have been many attempts at combining description logics with prob-
abilities. Heinsohn [20] was one of the first to propose modeling languages that
allow uncertainty into terminological descriptions. Much of the work in prob-
abilistic description logics is however hindered by intractability of inferences.
The DL-Lite language was conceived as a lightweight knowledge representation
scheme to represent large bases of relational data with very efficient reasoning
services. The simplicity and computational efficiency of the DL-Lite language
have led many researchers to use it as a building block of modeling languages
that combine description logics and Bayesian networks. For instance, D’Amato
et. al [12] propose a variant of DL-Lite where the interpretation of each sentence
is conditional on a context. The context is specified by a Bayesian network, and
is hence probabilistic. The probability of concepts can then be extended to de-
termine the probability of logical expressions. A similar approach was takes by
Ceylan and Peñalosa in their Bayesian Description Logic [8], with minor seman-
tic differences. A different approach is to extend the syntax of DL-Lite sentences
with probabilistic subsumption connectives, as in the Probabilistic DL-Lite [34].
Differently from our proposal here, none of those works use DL-Lite to specify
(large) Bayesian networks.

8 Extensions, and conclusion

The previous results can be directly extended in some important ways. For ex-
ample, if we allow negative groundings of roles in the evidence, then most of the
proof of Theorem 1 follows; the difference is that the intersection graphs obtained
do not satisfy the same symmetries. We can then resort to approximations for
weighted edge cover counting [28], so as to develop a fully polynomial-time ap-
proximation scheme (FPTAS) for inference. For most probable explanations, the
problem remains polynomial. Similarly, we could allow for different groundings
of the same relation to be associated with different probabilities; the proofs given
here can be modified to develop a FPTAS for inference. This implies that both
probabilistic relational models (PRMs) [17] and recursive relational Bayesian net-
works (RRBNs) [22], when appropriately restricted to DL-Lite constructs, allow
for inference through FPTAS. We intend to pursue details of such conceptual
modeling tools in the future.

Other possible extensions of our results merit attention. First, one might
investigate whether there are similar polynomial/FPTAS results not only for the
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many existing variants of DL-Lite [1], but also for networks specified through
other popular description logics such as EL and ALC [2], or even other languages
such as temporal logics.

To conclude, DL-Lite Bayesian networks offer a flexible and effective lan-
guage, that can be used to specify probabilistic acyclic ontologies or entity-
relationship diagrams. Usual services, such as inference and explanations, have
tractable algorithms that can be used directly or called during learning.
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