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Abstract—This work aims to improve the forecast of surface
currents in the entrance of the Santos estuary in Brazil by
applying Quantile Regression Forests (QRF) to estimate the error
of the Santos Operational Forecasting System (SOFS), a physics-
based numerical model for the region. This was achieved by
using in-situ data, measured between 2019 and 2021, associated
with historical forecasted data from the SOFS. The use of QRF
to correct the SOFS forecasts led to a increase in skill of 0.332
in Mean Absolute Error (MAE) and almost eliminated the bias
error of the predicted currents.

Index Terms—Physics-Informed Machine Learning, Current
Forecasting, Quantile Regression Forest, Santos Estuary

I. INTRODUCTION

Numerical simulation of physical models is an important
tool in predicting properties of water bodies such as estuaries
and basins, where economic activities require precise forecasts
for planning purposes. Numerical simulations solve partial dif-
ferential equations of inertia and transport of water properties,
and are notoriously sensitive to uncertainties in the boundary
conditions, often relying on parameters that cannot be easily
measured directly.

One alternative to forecasting by physical models is to
resort to machine learning techniques, where a computer
automatically finds patterns in past data and uses those patterns
to generate forecasts. Because this process does not inherently
take into account physical constraints of the domain, it can
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output unrealistic patterns when faced with conditions never
or rarely seem during the training phase.

There has been interest in merging machine learning algo-
rithms with physical models in order to combine the power
of machine learning with the already known physics of the
domain under study. This combination, often referred to as
Model Based Machine Learning or Physics Informed Machine
Learning [1], [2], can be used to improve the accuracy of
physical models, by learning and correcting the physical model
biases and non-modelled dynamics, or to sped up numerical
simulations by partially or totally substituting the numerical
solution of differential equations while maintaining physical
coherency.

This work aims to improve the forecast of currents in the
entrance of the Santos estuary in Brazil, by applying machine
learning to estimate the residue of a physical model already
developed for this region. After a short literature review in
Section II, we describe our problem and data in Sections III
and IV, and present our solution in Section V. Results and
conclusion are presented in Sections VI and VII respectively.

II. LITERATURE REVIEW

Physics-Informed Machine Learning is an emerging field of
study that combines machine learning with physical models
aiming to extract better results than the ones achievable by
using only physical models or machine learning. The use of
machine learning algorithms to estimate or correct the error
of physical models has successfully been applied in the field
of forecasting environmental conditions, as exemplified in the
next paragraphs.

Several proposals employ Artificial Neural Networks
(ANN) to correct or estimate model errors; some examples
are: to estimate global model errors of temperature, pressure,



wind, and humidity [3], and to reduce temperature forecast
errors of physics-based models [4]–[7].

When dealing with forecasts provided in a grid, some
approaches resort to Convolutional Neural Networks (CNN),
a type of ANN widely used in image recognition tasks, by
taking advantage of the CNN capacity of learning spatial
patterns. CNNs have been used to improve the forecasted
temperatures in the Scandinavian Peninsula using physics-
based model forecasts as input, which obtained typical forecast
error reduction betwen 20% and 70% [8], CNNs have also
been used to estimate forecast error in wind and 500hPa
geopotentital height over Europe [9], and to improve forecast
of water transport in the atmosphere by post-processing a
numerical model [10].

Other machine learning algorithms have been used in the
same manner as post-processors for physics-based numerical
models. Quantile Regression Forests (QRF) and Support Vec-
tor Machines (SVM) have been used to correct the model
error for groundwater baseflow in the Republican River in the
United States [11]. Random Forests, SVM and Multi-Model
Emsemble were used to improve maximum and minimum
temperature forecasts in the city of Seoul (South Korea) [7],
and Random Forests have been used to improve temperature
forecasts in Alpine regions in northern Italy [6].

III. OVERVIEW

This work aims to improve the forecasting of superficial
water currents in a channel, by applying the architecture in
Figure 1, where the machine learning algorithm works as a
post-processor block that will learn the error of the physical
model output, and when in operation this estimation of the
error provided by the post-processor will be added to the
physical model output in order to correct it.

The ideas is based in the fact that the physical model does
not account for some effects that are difficult to model or
are not being measured (such as the river discharge variation
due to rain), while a machine learning algorithm may identify
patterns in the data and indirectly consider those non modelled
effects. The machine learning algorithm we employed is the
Quantile Regression Forest (QRF), an algorithm that outputs a
prediction and quantile intervals, that can be used to estimate
the uncertainty of the prediction.

Our architecture, depicted in Figure 1, is divided in two
phases. The first one is the training phase, when the post-
processor is trained to predict the physical model error by
using historical data accumulated between the years of 2019
and 2021. The second phase is the operational phase, when the
post-processor is integrated in the physical model forecasting
pipeline and can be used to effectively improve forecasting.

The area of study chosen to apply that architecture is the
entrance of the Santos estuary (P1 in Figure 2) in Brazil. The
Santos port, located in the estuary, is the busiest port in Brazil;
it sees a huge traffic of vessels that will be benefited by better
forecasts of the currents in the estuary. It is also a region with
ongoing projects that systematically measure and forecast its

metocean conditions, providing us with the data needed for
the proposed architecture.

The architecture was developed using Python programming
language with the Pandas library for data manipulation. Fig-
ures were made using MatPlotLib, Sailborn and Windrose
libraries. The QRF algorithm used is available in the scikit-
garden library. The Wilcoxon test used is available in the scipy
library. All code was written in Python notebooks using the
Google Colaboratory.

IV. DATA AND PHYSICAL MODEL

This section describes the physical model used and how the
model and measured data were combined in order to obtain a
dataset suitable for the training of the post-processor.

A. Physical Model

A physical model in oceanography usually consists of
partial differential equations based on the Navier-Stokes equa-
tions, with relevant effects added, such as advection (transport
of properties by the movement of water), diffusion, friction in
the bottom and others. These models are solved numerically,
and it is possible to integrate the differential equations in
time in order to obtain a forecast. Since the uncertainties in
model parameters and boundary conditions are propagated, the
forecast accuracy tends to decrease as the forecast horizon is
increased.

The equation 1 exemplifies the continuity and Navier-Stokes
equations for water velocities V⃗ = [u, v, w] in a coordinate
system where x and y are horizontal coordinates and z is
the vertical coordinate, considering Boussinesq approximation
hydrostatic pressure and an incompressible fluid. The param-
eters are the total water column depth H , surface elevation
η, Coriolis acceleration f , water density ρ, water reference
density ρ0, gravitational acceleration g, pressure p and stresses
τi = [τix, τiy, τiz] in the direction i due to both shear (such
as viscosity and wind stress) and Reynolds stress. The first
equation is the continuity equation, and it denotes that the
volumetric difference between the water that enters and exits
the water column in a point is reflected in a change in surface
elevation in that point. The three remaining equations are the
Navier-Stokes momentum balance in the three directions, con-
sidering advection and Coriolis accelerations in the left side
of the equation and pressure gradient, stresses and buoyancy
forces in the z direction in the right side.
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The specific physical Model used for this paper is the Santos
Operational Forecasting System (SOFS) [12], an automatic
forecasting system that solves the hydrodynamic equations



Fig. 1. Proposed architecture for training and for operation of the model.

Fig. 2. Santos Estuary with emphasis on the point of interest for this work
(24° 59.608’S,46° 18.006’W). Source: Google Earth.

for the Santos-São Vicente-Bertioga Estuarine System for
currents, sea surface height, salinity and temperature. This
system is based on the Princeton Ocean Model [13], version
POM-rain, and forecasts up to 3 days ahead. The system has
two nested grids (Figure 3), for this work we use forecast data
from the inner grid.

This model uses atmospheric boundary conditions provided
by the Center for Weather Forecasts and Climate Studies
(CPTEC, Portuguese acronym) and for tidal boundary con-
ditions they use the seven major astronomical components for
the region. Currents in the open boundary are obtained by the
Copernicus Marine Environment Monitoring Service Mercator
(CMEMS) operated by Mercator Ocean.

The system uses the module POM-rain, which numerically
solves the differential equations of the fluid, considering a
three-dimensional grid, with sigma vertical coordinates and a
curvilinear Arakawa C-grid. Mixing processes are parameter-
ized, and the model is split into an external mode, a faster
mode where the 2D equations for entire water column are
used, and an internal mode where the 3D equations are used.
The internal mode is calculated with a time-step of 4s and the
external mode with a time-step of 0.8s.

B. Physical Model Data

The model data that was used to train our machine learning
system spawns the period between January 2019 and March
2021, and it contains daily surface current forecasts. The
starting time of each forecast is 00:07:30 GMT and it goes
up to 21:07:30 GMT of the same day, in steps of 3 hours,
adding to 8 steps per daily forecast.

The data was provided originally as NetCDF4 formated
files, so the data is converted to the CSV format before
being imported to Pandas dataframes for further treatment and

Fig. 3. Coarse (on the top) and fine grids (on the center) of the physical
model used, and a detail of the finer grid in Santos Channel (on the bottom)
with the point of interest P1 (”Praticagem” in the figure), with bathymetry
and scale for reference. Source: Costa et. Al [12]

analysis. Since the data is from a model, there are no gaps or
missing data. The currents in the region for the period are
shown in Figure 4, it is noticeable that they assume two main
directions, one during the flood period and the other during
the ebb period.



Fig. 4. Directions of the currents in the P1 obtained from the SOFS model
(the current direction is the direction where it goes).

The two main directions that the current assumes was used
to assign a signal for the current velocity, depending to which
main direction the current direction is closest. Negative values
mean water is entering the channel, and positive values mean
water is being discharged into the estuary by the channel. We
also have divided each daily forecast into 8 rows in the dataset,
each one containing the date and time of the initial step of the
forecast, the current forecast step, and the current predicted
by the model. The structure of the dataset is exemplified in
Table I.

TABLE I
EXCERPT FROM THE DATASET OF FORECASTS MADE BY THE SOFS.

Forecast Initial Forecast Current Forecast SOFS
Time Time Step Current

2019-01-01 00:07:30 2019-01-01 00:07:30 0 0.000
2019-01-01 00:07:30 2019-01-01 03:07:30 1 -0.006
2019-01-01 00:07:30 2019-01-01 06:07:30 2 -0.003
2019-01-01 00:07:30 2019-01-01 09:07:30 3 -0.012

...
...

...
...

C. Measurement Data

For the specified point P1 (Figure 2), there are time-
series of historical direct measurements (produced by the
Santos Marine Pilots) spawning between 2017-2021. These
measurements have a periodicity of 5 minutes, consisting of
currents in the surface, rainfall, water elevation, waves, winds,
and temperature among others. The Santos Marine Pilots also
provide in those files a prediction of the water elevation due
to astronomical tides. The measurements of currents were 5
minutes averages taken using an Acoustic Doppler current
profiler (ADCP) Sontek SL. The currents in the point assume
two main directions, entering and exiting the channel (Figure
5). A signal has been attributed to these measured currents in
the same manner as in the currents from the SOFS model.

Fig. 5. Directions of the measured currents in the P1. The current direction
is the direction where it goes.

The dataset was provided raw, as text tables in different
files for each month, so the data is treated using the Pandas
library in Python, where the time-series for each attribute is
linearly interpolated in order to obtain the values for the times
of forecast in the physical model. Furthermore if there is a
gap longer than 180 minutes between the measurements in
any of the time-series, the point is not used. All the attributes
available have been used, and two derived attributes have been
created as well.

The first derived attribute added to the dataset is the hourly
rate of change in the measured water level in the point P1,
and the second attribute created is the hourly rate of change
in the water level, considering astronomical tide forecasting.
These two attributes might be important, since the gradient of
water level is a primary driver of currents in a channel.

D. Combined Data

By the combination of the model’s and measurement’s data,
we assembled a dataset that contains all the variables needed
to run the machine learning algorithm. Each row in that
dataset contain a step of forecasting from the SOFS model,
as well as the respective measurements taken from the region.
The measurements available in each row are from the initial
time of the daily forecast (00:07:30 GMT), since we will
only have past measurements at the start of the forecast. We
obtained 6078 complete rows after removing missing values.
An overview of the structure of the main variables of the
combined data with its main variables is provided in table
II.

V. APPLICATION OF PHYSICS-INFORMED MACHINE
LEARNING

The algorithm selected for the post processor is the Quantile
Regression Forests (QRF). This method is a variant of Random
Forests, which are an ensemble of regression trees. Each re-
gression tree by itself is a weak regressor, but when combined



TABLE II
EXCERPT FROM THE DATASET OF COMBINED DATA SHOWING THE MAIN VARIABLES. MEASURED DATA IS FROM THE START OF THE DAILY FORECAST
(FORECAST STEP = 0) WHILE MODEL DATA ARE THE FORECASTED VALUES FOR THE TIME OF THE FORECAST STEP. THE TARGET VARIABLE IS THE

ERROR OF THE SOFS MODEL WHEN COMPARED TO REAL MEASURED DATA. SOME MEASURED VARIABLES SUCH AS MAXIMUM AND MINIMUM
TEMPERATURE, MAXIMUM AND MINIMUM WIND VELOCITY, WIND DIRECTION, MAXIMUM AND MINIMUM RELATIVE HUMIDITY HAVE BEEN OMITTED

FROM THE TABLE DUE TO SIZE CONSTRAINTS.

Measured Data Model Data Target
Temper- Relative Atm. Wind Precip- Meas. Tide Current For. Forecasted tide Forecast SOFS SOFS

ature Humidity Press. Speed itation Tide Variation Vel Tide Hourly Change Step Current Error
C° % hPa m/s mm m m/hour m/s m m/hour m/s m/s

26.78 86.25 1008 7.58 0 0.78 0.24 0.25 0.84 0.18 0 0.09 -0.156
26.78 86.25 1008 7.58 0 0.78 0.24 0.25 1.16 -0.04 1 0.08 -0.154
26.78 86.25 1008 7.58 0 0.78 0.24 0.25 0.83 -0.18 2 -0.08 0.255
26.78 86.25 1008 7.58 0 0.78 0.24 0.25 0.55 0.04 3 -0.05 -0.058

...
...

...
...

...
...

...
...

...
...

...
...

...

Fig. 6. Example of quantile regression tree with 2 levels. The predicted value
is the mean of the target variable of the data that satisfies the split criteria
that lead to the end node (leaf node). The distribution of the target values in
the leaf node give a percentile interval.

they generate a stronger regressor with better accuracy. A
regression tree is a simple regressor that recursively splits
the data using one variable at a time as the criterion of the
split (Figure 6), until a stop criterion is satisfied. In a random
forest the predictions and quantiles of each tree are averaged
to generate the QRF prediction.

One of the criteria that lead to the use of regression forests is
that it does not generate predictions with values outside of the
range of the training set, so when faced with unseen conditions
it will not predict unreasonably large values. The selection
of QRF is justified because along with the prediction it also
provides an estimation of the distribution of the prediction in
the form of quantiles, thus allowing the selection of a interval
where most likely the prediction lies.

In order to train and test the QRF algorithm, the dataset
was randomly divided into two datasets: one is the training
dataset, that contains around 75% of the data (4558 rows) and
the second is the test dataset containing the remaining rows
(1520 rows). Also for the training the Forecast Step column
of the dataset was encoded by one-hot-encoding.

To extract the maximum of the algorithm, its hyperparam-
eters must be tuned. The main hyperparameters for the QRF

are the number of trees, their depth, the minimum number of
elements in a leaf node, the minimum number of elements
needed for a split, the maximum number of variables that
can be used in one tree, and the loss function. To find the
best values for those hyperparameters we employed 5-fold
cross-validation over the training dataset. We run a random
search with 20 sampled hyperparameters; the hyperparameters
that gave the best accuracy were chosen for the training. The
selected hyperparameters are shown in Table III.

TABLE III
HYPERPARAMETERS USED TO TRAIN THE QUANTILE REGRESSION

FOREST POST-PROCESSOR.

Hyperparameter Value
Maximum tree depth 40

Number of trees 1010
Max. variables per tree 16

Min. no of elements in a leaf node 6
Min. no of elements for split 10

Loss function Mean Squared Error (MSE)

VI. RESULTS

The performance of the post-processor was evaluated in the
holdout dataset containing 25% of the data. The performance
of the SOFS is also evaluated in the same dataset and it is
used as a baseline. A comparison between the ground truth and
the SOFS predictions with, and without the post-processor is
provided in Figure 7. In the figure it is possible to notice that
the SOFS+QRF is closer or roughly at the same distance to the
measured values in most of the cases, but despite this, there are
some cases where the SOFS predicted currents are closer to the
measured values and the post-processor actually worsens the
prediction. In entire test dataset, the post-processor worsens
the SOFS prediction in about 30.9% of cases.

To have a wider view of how both prediction methods
perform, current histograms were made for both the SOFS and
the combination of SOFS+QRF, as provided in Figure 8. When
comparing the forecasts provided by the SOFS with the ground
truth, it is noticeable that the physical model underestimates
the surface current velocity, and underestimates the number
of cases where the current is close to zero in the channel.



Fig. 7. Time-series of currents forecasted by the SOFS and the SOFS+QRF
compared to measured currents for the first 24 rows of the dataset.

The SOFS+QRF generates a histogram much closer to the
ground truth, the overall error reduction, when using the post-
processor is of 33.2%, the performance for every step of the
forecast is shown in Table IV.

Fig. 8. Histogram of the current predictions for the SOFS and for the
combination of SOFS and the QRF post-processor for the holdout dataset
versus the measured values. Vertical axis is the number occurrences, horizontal
axis is the current velocity.

There is also a remarkable reduction in bias achieved by
the use of the post-processor. The distribution of the error is
shown in Figure 9, where the difference between the error
distributions are evident. The combination of the SOFS+QRF
generates an error distribution centered in the zero with
narrower spread when compared to the error distribution of
the SOFS alone. The bias (mean error) of the SOFS is -0.0565
m/s, while the SOFS+QRF have -0.0018 m/s.

To verify if the error curves are statistically different, a
Wilcoxon test is used. The Wilcoxon is a non-parametric

TABLE IV
ABSOLUTE MEAN AND STANDARD DEVIATION ERROR FOR THE SOFS AND

THE COMBINATION OF SOFS AND THE QRF PROST-PROCESSOR.

Forecast Current Mean Absolute Velocity Error (Std. Deviation)
Step SOFS SOFS+QRF Skill Score (MAE)
+0h 0.148 (0.114) 0.081 (0.0824) 0.455
+3h 0.160 (0.131) 0.119 (0.104) 0.259
+6h 0.188 (0.142) 0.137 (0.106) 0.272
+9h 0.187 (0.138) 0.125 (0.104) 0.331

+12h 0.207 (0.148) 0.135 (0.103) 0.351
+15h 0.142 (0.112) 0.113 (0.0902) 0.203
+18h 0.208 (0.145) 0.135 (0.120) 0.350
+21h 0.203 (0.134) 0.118 (0.103) 0.421

test that is used to reject the null hypothesis that two paired
samples have been sampled from the same distribution. The
test obtained a p-value of p = 4 x10−12, thus indicating that
the reduction in error is not likely due to random chance.

Fig. 9. Histogram of the errors for the SOFS and for the combination of
SOFS and the QRF post-processor for the holdout dataset. Vertical axis is the
number occurrences, horizontal is error when compared to measured values.

There is also an improvement for cases where the forecast
error is large. When using only the SOFS, it is expected that
5% of forecasts will have an error larger than 0.44m/s, and
1% will have an error larger than 0.59m/s, while when using
SOFS+QRF 5% of forecasts will have an error larger than
0.32m/s and 1% will have more than 0.47m/s. The maximum
forecast error in the dataset is almost the same for both cases,
the maximum error in the SOFS forecast was 0.92m/s, and in
the SOFS+QRF was 0.80m/s. The quantile interval provided
by the QRF is relatively large. When selecting an upper
quantile of 97.5% and a lower quantile of 2.5% (thus obtaining
a confidence interval where we expect the real error to be
contained in 95% of the cases) the average interval obtained
is 0.69m/s.

VII. CONCLUSION

In this work we developed and applied an architecture
to reduce surface current forecasting errors in the Santos
Channel, Brazil, by using Quantile Random Forests (QRF) to
estimate and correct the error of a physics-based numerical
model (SOFS). The machine learning successfully reduced



bias and increased forecast skill by about 0.332. The use of
QRF allowed us to obtain a confidence interval for the forecast,
but it was found that this interval is quite large (on average
0,69m/s, for a confidence interval of 95%), which limits its
practical use.

As this work is part of an ongoing project in the Santos
estuary, the results in this paper provide a comparison baseline
for future architectures that are still under development for
that region. As future work in the same region, the use of
Graph Neural Networks, associated with more data obtained
from other measurement stations in the region and numerical
models is under study.
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