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Abstract. While most statistical learning methods are designed to work with data stored in a single table, many large
datasets are stored in relational database systems. Probabilistic Relational Models (PRM) extend Bayesian networks by
introducing relations and individuals, thus making it possible to represent information in a relational database. However,
existing methods that learn PRMs from data face some nontrivial challenges in the way relations are extracted. We
propose a novel approach to learn the structure of a PRM. We also describe a package in the R language to support
our learning framework, and we apply it to a real, large scale scenario combining citizens, companies and location data.

Categories and Subject Descriptors: G.3 [Probability and Statistic|: Probabilistic algorithms; 1.2.6 [Artificial
Intelligence|: Learning
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1. INTRODUCTION

Most large data collections are stored in relational database systems consisting of multiple tables;
however, most data mining techniques are only applicable to a single table. Multi-relational data
mining (MRDM) focuses on the search for patterns across multiple tables (relations) of a database
[Dzeroski 2003], and many techniques have been proposed in that context. Indeed, relational models
lead to a deeper understanding of the relations held within domains, and can be used for exploratory
analysis, predictions and complex inferences.

Despite the success of Bayesian networks in a wide variety of real-world and research applications,
they cannot be used to model domains where we might encounter several entities in different configu-
rations [Koller 1999]. Probabilistic Relational Models (PRMs) are an extension of Bayesian Networks,
introducing the concepts of objects and its properties, and the relations held between them, specifying
a template for a probability distribution [Getoor and Taskar 2007]. Thus, PRMs offer a rich relational
structure, allowing a property of an object to depend probabilistically, not only on the properties of
that given object, but also on properties of other related objects [Getoor et al. 1999].

However, learning a PRM from relational data is a more complex task than learning a Bayesian
Network from “flat” data. There are three main difficulties that arises while learning a PRM. The
first one is establishing what are the legal dependency structures for a given domain: we must avoid
cycles in the structure. The second difficulty is how to score the possible legal structures. And the
third challenge is to search for possible structures [Friedman et al. 1999].

Given the complications often faced while learning a PRM, this paper aims to: (1) propose a new
method for learning probabilistic relational models; (2) apply it in a real large-scale problem; and (3)
report on a software package we have built to apply our method. Taken together, these contributions
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should be valuable to researchers and practitioners interested in dealing with large relational datasets.

Section 2 presents a quick summary on probabilistic relational models. Section 3 explains the novel
method for PRM learning. Section 4 reports on the case study and an R package produced by the
authors. And Section 5 briefly presents some conclusions.

2. THE RELATIONAL MODEL FRAMEWORK

This section offers a review of PRMs, their semantics and the challenges in learning them. We use,
as a running example, the case study we examine later.

A relational domain is usually represented by distinct tables in a database containing attributes
and entities. For instance, consider the city of Atibaia, a relatively small town in the state of Sao
Paulo, Brazil. Suppose we are interested in information about its citizens, its companies and its census
sectors (territorial units, in which the city is geographically divided), and that we have three different
tables, each representing one of the three different classes in our domain, Person, Company and
Census__Sector. As we indicate later, the goal of our case study is to learn a PRM structure and
parameters with classes in our domain, so as to predict the social class of people in Atibaia.

The vocabulary of a relational model consists of a set of classes X1, ..., X,, and a set of relations
Ry, ..., Ry,. Every class in the domain has a set of attributes A(X;), and every attribute 4; € A(X;)
has a space of possible values V(A;), being that this vocabulary defines a schema for the relational
model. One attribute A of a class X, is referred to as X.A. If X.A has a value that is fully determined,
such as a name or and identification number, it is labeled as a fixed attribute. The other attributes
are probabilistic ones [Friedman et al. 1999]. The logical description of the domain is called relational
schema, and it shows how different classes relate to each other, through what is called reference slots.
The set of reference slots of X is denoted R(X), while X.p is used to refer to the reference slot p
of X. A reference slot p in X can be interpreted as an attribute of X that is also a foreign key for
another class. And an instance I of a schema is an interpretation of the relations between the classes
in the domain, and it specifies, for a set of objects, a class, and a value for each of it’s attributes. To
continue our running example, Figure 1(a) shows the schema for our Atibaia domain.

A central concept in a relational model is the relational skeleton o, defined as a partial specification
of an instance of a schema [Friedman et al. 1999]. It specifies for a set of objects O7(X;), a class, the
value of the fixed attributes within this objects, and the relations held between them, leaving only
the probabilistic attributes unspecified. Figure 1(b) represents an example of a relational skeleton for
our Atibaia domain.

In our domain of study, the Person class has, among others, the attribute Social_class, and that the
value space for Person.Social_class is {A, B, C, D}. Also, the Person.Census_ Sector_ID attribute
is a reference slot of the Person class, with range type Census _Sector. The same applies for the
class Company. Every object in Census__Sector is associated with n objects in Person, that are
the citizens who live in the sector, and m objects in Company, that are the companies located inside
the area comprised by the census sector.

A PRM consists of a dependency structure S, and the conditional probability distribution fg as-
sociated with the dependency structure. Just like a Bayesian network, the dependency structure of a
PRM is defined by associating a set of parents Pa(X.A) with each attribute X.A. However, in a PRM,
an attribute X.A can have as parent, either an intra-class attribute, denoted X.B, or an inter-class
attribute, denoted as X.7.B, where 7 is a slot chain, representing the set of objects that are T-relatives
of an object x € X. When an object x relates with an object of another class through a slot chain,
unless the relation is guaranteed to be singled-valued, x.a depends on a set of objects X.7.B, and,
when that occurs, a method for representing these complex dependencies is necessary. This is attained
using an aggregation function. Some notable aggregation functions are the mode, if the attribute is
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Fig. 1. (a) The relational schema for the Atibaia domain. (b) The relational skeleton for the Atibaia domain.

categorical, the mean, if the attribute is continuous, the median, maximum or minimum, if the at-
tribute is ordered, or the cardinality. By using such functions, it is possible to return a summary of
a multiset of values [Getoor and Taskar 2007]. An aggregation function ~ takes a multiset of values,
and returns a summary of it, allowing X.A to have v(X.7.B) as a parent.

For our Atibaia city domain, a legal PRM structure, with the required aggregations indicated can
be seen in Figure 2. Note that, since objects from either class Company and Person can only be
associated with one object from the Census_sector class, no aggregations are required when an
attribute on Census_sector is the parent of an attribute from either Company or Person.

Learning a PRM from data can be quite difficult. The most imposing challenge is to learn the de-
pendency structure. First, making sure that all the dependencies established are acyclic is a nontrivial
task. The best scenario is when the skeleton o is acyclic. However, in some cases, if there is a cycle in
the skeleton o, one needs to guarantee that cycles do not happen at an object level. Also, evaluating
and scoring concurrent structures is also challenging; the usual approach it to adapt Bayesian model
selection. And finally, even after choosing a method to assure that a structure is legal and score it,
one must go over candidate models, comparing them. The number of possible structures may be quite
large, and the cost of the search operations is also high, making it necessary to associate the search
method with an heuristic approach, limiting the space of possible structures, usually by associating a
limited set o possible parents for each attribute.

3. THE PROPOSED METHOD

Our goal here is to search for a PRM, using some score typically used to learn Bayesian networks. As
noted already, the search space is too big, so the process is quite complex and costly in practice. We
propose an alternative approach to learning PRMs, by restricting the space of possible structures in
ways that make sense for practical problems.

First, we do not allow the dependency structure to have cycles, not only at the attribute level, but
at class level as well. For instance, structures such as X.A — Y.B — X.C are not allowed. A second
assumption is that we have attributes of interest that belong to a distinguished class, that we refer to
as the main class. Note that, whenever an object z € X is linked to a set of objects {y1,...,4;:} € Y
from another class, an attribute of the type X.A can only have as parent an attribute of the type Y.B
by using an aggregation function . The space of possible structures will be then further reduced by
not allowing any attributes from classes, other than the main class, to have inter-class attributes whose
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slot chain is not singled-valued as parents, since it would require an aggregation. That determines
that the only edges from aggregation functions will be directed to the main class.

Given a relational skeleton o, all the required aggregations for our restricted space of structures
will be computed in advance, and stored in a table denoted master table. At first, the master table
will be a copy of the main class table. Then, for every object x; in the main class X, the attributes of
its T-relative objects, whose links are given by the value of the reference slot X.p, will be aggregated
using a proper aggregation function «y, and the result, will be returned to it’s respective row in the
master table. However, if the slot chain is guaranteed to be singled-valued, that is, if every object x;
in the main class relates to only one object of another class, the use of an aggregation function - is
unnecessary.

For instance, in the Atibaia domain, the main class is Person, because Person.Social class is
the variable of interest. That means the attributes from objects in Company and Census_sector
that are 7-relatives to an object in Person will be aggregated. However, every object in the class
Person, is associated with one, and only one, object in the class Census__sector, meaning that the
slot chain that links them is singled-valued and the use a an aggregation function + is unnecessary in
that particular case. The values of attributes on Census_sector are simply replicated on the rows
where their corresponding keys appears in the master table.

Now that the data is “flattened” into a master table, the challenges of defining a proper structure
scoring function, choosing a search method for possible legal structures, and comparing them via score,
can be solved by traditional Bayesian network approaches, and there are several popular algorithms
that addresses these issues.

To make sure all adopted restrictions are enforced during learning, a black list of edges must be
assembled. That list will specify which arrows cannot exist in the model, maintaining a coherent
structure. Popular algorithms for Bayesian network learning typically allow for such lists of forbid-
den edges. For instance, in our Atibaia domain the restriction over the set of structures forbids
attributes from class Person to parent attributes from Census sector and Company, and also
forbids attributes from class Company to parent any attribute on Census_sector.

Then, a Bayesian network structure, whose representation is a directed acyclic graph (DAG) de-
scribing a set of independencies [Koller and Friedman 2009], can be learned with any package of choice.
For our domain of study, we used the bnlearn package; the search algorithm selected to complete this
task was the Hill Climbing, and the selected scoring function was the Dirichlet posterior density based
on Jeffrey’s prior, returning a DAG analogous to a legal PRM structure.

For instance, in the Atibaia domain it is possible to observe on the resulting dependency structure
that the only inter-class arrows respect those restrictions, thus generating a network isomorphic to a
legal PRM structure for the domain, as shown in Figure 2. It is worth noting that, in this example, on
the best structure learned by this method, all parents of our target variable are from foreign classes.

The PRM, just like a Bayesian network, is associated with a conditional probability distribution
(CPD) or local probabilistic model. The CPD for X;, given its parents Pa(X;) in the graph, is
P(X;|Pa(X;)), and it captures the conditional probability of the random variable, given its parents
in the graph [Koller et al. 2007].

As described by Getoor [2001], in the same way as with Bayesian networks, the joint distribution
over these assignments can be factored by taking the product, over all z.A, of the probability in the
CPD of the specific value assigned by the instance to the attribute given the values assigned to its
parents. The formal expression can written as follows:

P(I10,5,60) = [ Tl PTealpawa) =11 TI 11 PUza)lpPa@.a)):

€0 Ac A(x) X; AcA(z) z€0(X;)
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Fig. 2. The PRM structure, learned using the proposed method. The green arrows represent intra-class relations. The
yellow arrows represent inter-class relations where the slot chain is singled valued. And the orange arrows represents
the inter-class relations where an aggregation function was used (in our case, the mode).

4. A CASE STUDY, AND A PACKAGE FOR PRM LEARNING

In this section we apply our proposed method to a real large-scale problem. To do so, we have
implemented a package in the R language. After we present some details of our case study, we
describe our freely available package and apply it.

4.1 The case study

The domain of our case study is a small town named Atibaia, in the state of Sao Paulo, Brazil, and
data was gathered from different types of objects within the city. The first class of objects is Person,
and every object in that class, represents a citizen of Atibaia and its attributes. The second class in
our domain is Company, and the objects of that class, are the business located in Atibaia. And the
third class represents small territorial units that comprise the city of Atibaia, named Census_sector.
It can be noted that, every object in Census __ sector can have n people related to it, which are the
citizens who lives inside that sector, and m related companies, which are the business located inside
that sector. However, an object in Person and an object in Company can only be associated with
one, and only one, census sector. The goal is to explore the relations between those classes, so as to
create a model that uses their attributes and to infer the social class of objects in Person.

The data of the first two classes (Person and Company) was kindly provided by Serasa Ezperian.
All the entities on both classes are fully anonymised, and no personally identifiable attribute was
provided, only a hashed key, for every person or company on the tables. Another attribute, present
in both these classes, is the Census Sector where a person lives, or a company is situated. That
attribute is also a foreign key for the third class in our domain, the Census_Sector. The remaining
attributes will be probabilistic attributes, and express information about distinct aspects of a given
person or company. The data of the Census__Sector can be found at the IBGE (Brazilian Institute
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Fig. 3. All census sectors in Atibaia plotted in a map using the software QGIS 2.18.7 Las Palmas. The color of each
sector represents the range of residents inside the sector.

of Geography and Statistics) website (http://www.ibge.gov.br/home/). More than a thousand
different variables produced on the last census realized in Brazil, on year 2010, are available to the
general public. The Person class, originally contained 110816 observations and 27 variables. However,
a previous analysis detect that some of variables had high collinearity, so we discarded some of these
variables. Other variables were also dropped, for they had a very high incidence of missing values. In
the end, 10 variables of the class Person were selected for this study, and 8 of them were probabilistic
attributes. The Company class, originally had 20162 observations and 9 variables. For the same issue
of the Person class, only 6 variables were included in the analysis, and 4 of them were probabilistic
attributes.

The city of Atibaia contains 327 census sectors, and a dataset with 5 variables was assembled with
data available at the IBGE website. A map with the census sectors in Atibaia can be seen in Figure
3; the color of the layer represents the number of citizens living inside a given sector.

4.2 The package

Vanilla.prm is a package based on the above described method. The package supports domains with up
to three classes with categorical attributes, and it performs all required aggregations using the function
mode. The package is available in github, and install as any regular R package (using devtools).*

For processing, the user must ensure that all the variables on the tables are categorical, and that
all keys and foreign keys are named the same way on every table on which it appears. If any variable
does not fit this criteria, the R language provides tools to manipulate the data, in order to make it
compliant with the requirements of the package.

Once the criteria for using the package are attended, the user should store the column names of all
keys and foreign keys in a vector, which can be done, as an example, using the command:

R> key.names <- c("keyl", "key2", "key3")

The result will be stored in the object key.names, and will be used as an argument of the following

1Further information about the package is available with its documentation, which can be found at
https://github.com/mormille/vanilla.prm.

Symposium on Knowledge Discovery, Mining and Learning, KDMILE 2017.

134



5th KDMiLe — Proceedings October 02-04, 2017 — Uberlandia, MG, Brazil

Learning Probabilistic Relational Models . 7

two functions. The master table for our domain is given by applying the function relational.skeleton
on the three classes previously loaded, and the keys stored on the key.names vector. The first class to
be assigned as an argument on the function, is the main class, and all the aggregations will be done on
its direction. As result from running this function, the master table for our domain will be returned:

R> master_table <- relational.skeleton(main.class, class2, class3, key.names)

With the master table, resultant from the relational.skeleton function, the structure of a flat
Bayesian network can be learned. And, for it to be a network analogous to a PRM, the black-list of
arrows must also determined. The function structure.learn automatically generates the black-list
of arrows. Then, it applies a search algorithm (hill climbing as default) to find optimal structures
through a scoring function, and it can be run with the following command:

R> dag <- structure.learn(master_table, key.names, main.class, class2, class3)

The Bayesian information criterion (BIC) was set as the default scoring function, since it has
performed better than other scores. Learning a Bayesian network is known to be NP-hard, with
the number of possible structures growing exponentially with the number of variables, making it
advantageous to use BIC [Liu et al. 2012]. The user, however, may choose other search algorithms
and scoring functions, and transmit it as an argument of the structure.learn function.

By running the above function, a direct acyclic graph will be returned and plotted, respecting the
restrictions that will allow it to be isomorphic to a PRM. In practice, it is also possible for the user
of this method, to elicit a Bayesian network structure based on specialist knowledge over the domain
of study, as long as the edges in the black list are not used.

The parameters over the dependency structure can be learned by using the function parameters.learn.
It takes two arguments, the DAG, learned on the previous step, and the master table. It can be run
with the following command:

R> fit <- parameter.learn(dag, master_table)

After these steps, a Bayesian network isomorphic to a PRM structure for a relational domain is
completed, and can be used for inference on any attribute of the main class.

4.3 Applying the package to the case study

The performance of our approach in predicting the value of our target variable, Person.Social_class,
was tested by dividing the dataset in two parts. One part is the training set, used to fit the param-
eters of our model, and the remaining rows of the dataset are used for validation. To evaluate the
performance of our model, a Bayesian network was leaned, using only the attributes in the Person
class. To learn this Bayesian network, we also used Hill climbing as the search method and a Dirichlet
posterior density based on Jeffrey’s prior as the scoring function. The resulting dependency structure
can be seen in Figure 4(a).

The Bayesian network learned from the class Person was also tested by dividing the data in two
parts, one for training, and other for validation. The figure of merit used was the misclassification
rate; the results displayed in Figure 4(b) show that, on average, the model learned from our method,
correctly classifies 12% more cases than the Bayesian network from class Person.

5. CONCLUSIONS

Exploring the relational structure of databases allows a better understanding of the domain it repre-
sents. Reducing the attention to a subset of PRMs that are sensible in such a scenario could result
in the restriction of good candidates. However, even though this approach may not cover all possible
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Fig. 4. (a) The resulting Bayesian network learned with the attributes from class Person (b) Misclassification rate of
both models, given the size of the validation set.

cases, it will be useful whenever the variables of interest (for prediction) are in the same class of ob-
jects. In this work we have proposed a novel method for PRM learning, and we have applied it to a real
large-scale problem, using a freely available R package that we have developed. The relational schema
and skeleton for our case study are displayed in Fig. 1. The attribute of interest our model predicts
is the Person.Social_class, and the value space for Person.Social_class is {4, B, C, D}. Using
the proposed method, a PRM structure was learned (shown in Figure 2). The resulting relational
model was confronted with a Bayesian network learned using attributes from Person, outperforming
it, when comparing the misclassification rate of both models.
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