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Institute of Mathematics and Statistics - University of São Paulo
Rua do Matão, 1010 - São Paulo, Brazil

Abstract. We consider the problem of synthesizing policies, in domains where
actions have probabilistic effects, that are optimal in the expected-case among
the optimal worst-case strong policies. Thus we combine features from nonde-
terministic and probabilistic planning in a single framework. We present an al-
gorithm that combines dynamic programming and model checking techniques to
find plans satisfying the problem requirements: the strong preimage computation
from model checking is used to avoid actions that lead to cycles or dead ends,
reducing the model to a Markov Decision Process where all possible policies are
strong and worst-case optimal (i.e., successful and minimum length with prob-
ability 1). We show that backward induction can then be used to select a policy
in this reduced model. The resulting algorithm is presented in two versions (enu-
merative and symbolic); we show that the latter version allows planning with
extended reachability goals.

1 Introduction

Optimal behavior is a very desirable property of autonomous agents and has received
much attention in the automated planning community over the last years. Particularly,
when agent’s actions have probabilistic effects, Markov Decision Processes (MDPs)
provide a simple and elegant framework for synthesizing optimal expected-case poli-
cies [Puterman 1994]. In this framework, the execution of each action produces a re-
ward and the objective is to maximize the expected value of a sum of exponentially
discounted rewards received by the agent. The classical MDP formulation has some
important properties: it is subject to the principle of local optimality, according to
which the optimal action for a state is independent of the actions chosen for other
states, and optimal policies are stationary and deterministic. These properties trans-
late into very efficient dynamic-programming algorithms [Bellman 1957], e.g., value-
iteration [Puterman 1994]. However, as pointed in [Dolgov and Durfee 2005], there are
some situations where the classical MDP formulation proves inadequate, because it can
be very difficult (if not impossible) to fold all the relevant feedback from the planning
environment into a single reward function.

In this paper, we use strong probabilistic planning to refer to situations where one
wishes to produce a policy that guaranteedly reaches a goal state, with minimum num-
ber of steps in the worst-case and maximum reward in the expected-case. For instance,
such situation can happen in a domain where the agent should deliver a mail, mini-
mizing the time spent in the worst-case, while maximizing its expected reward. To get
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some intuition on the difficulty of combining these constraints in the classical MDP

framework, consider the situations depicted in Figure 1, where the agent’s goal is to
deliver a mail in room s2. For both situations, value-iteration synthesizes the optimal
expected-case policy π � ��s0, a��. However, by following π in the first one (Figure
1-a), the agent cannot guarantee that the mail will be delivered (since the execution of
action a in state s0 can lead to the dead-end s3); and, in the second situation (Figure
1-b), the agent cannot guarantee a minimum number of steps for delivering the mail
(since the execution of action a in state s0 can require an unbounded number of steps
before reaching the goal state s2). Thus, in the first case, the agent incurs the risk of
failing to deliver the mail; while in the second case, the agent incurs the risk of deliv-
ering the mail when it is no more useful. As we show in this paper, strong probabilistic
planning is a novel framework to implement risk-averse agents, by combining decision-
theoretic concepts [Boutilier, Dean, and Hanks 1999] with model checking (MC) tech-
niques [Muller-Olm, Schimidt, and Steffen 1999].

stairs0,1

0,9

s
0

s
1

s
2

s
3

a

b

c

0,1

0,9

s
0

s
1

s
2

automatic
 door         

a

b

c

(a) (b)

Fig. 1. A delivering agent domain

We should note that, at least in principle, we are dealing with constrained MDPs; that
is, MDPs with additional constraints on functionals over trajectories [Puterman 1994,
page 229]. However, there are two difficulties in directly resorting to the theory of
constrained MDPs [Altman]. First, it is not entirely obvious how to model the constraint
that the policy should be optimal in the worst-case. Second, general constrained MDPs
fail the dynamic programming principle and, therefore, cannot be solved by backward
induction [Altman]. On the other hand, as we show in this paper, strong probabilistic
planning admits a backward reasoning scheme and, thus, yields better results than a
general approach based on constrained MDPs.

The remainder of this paper is organized as follows. First, we present a review of
MC/MDP-based planning, that contributes with a unifying perspective that seeks to com-
pare its algorithms on a common ground. The insights produced by this comparison
steer us to our algorithm for strong probabilistic planning. We describe two versions of
this algorithm, one enumerative and one symbolic, and prove that they return a policy
that is expected-case optimal among the strong policies which are worst-case optimal.
Finally, we discuss our implementation and present our conclusions.
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2 Approaches for Planning under Uncertainty

In this section we give an unified perspective on planning under uncertainty as we
present the necessary background for the latter sections. We would like to stress that
a combined presentation of nondeterministic and probabilistic planning is rarely found
in the literature; thus, we devote considerable space to this issue. The approaches of
interest here are:

� Model Checking (MC), used for planning under nondeterministic uncertainty mod-
els; and

� Markov Decision Processes (MDP), used for planning under probabilistic uncer-
tainty models.

Both approaches are very attractive, but for different reasons: the main advantage of
MC-based approach is the possibility of exploiting the knowledge about the structure of
the planning domain (i.e., the state-transition graph induced by the actions); while the
main advantage of MDP-based approach is the possibility of exploiting the knowledge
about the probability of the actions’ effects.

2.1 Nondeterministic Planning Based on MC

The basic idea underlying nondeterministic planning based on MC is to solve problems
model-theoretically [Giunchiglia and Traverso 1999].

Definition 1. A nondeterministic planning domain is a tuple � � ��,�, � �, where:

� � is a finite nonempty set of states;
� � is a finite nonempty set of actions;
� � � � �� � � � �0, 1� is a state transition function. �

We assume that � contains a trivial action τ such that, for all σ � �, we have that
� �σ, τ, σ�� � 1 if and only if σ � σ�. So, when an agent executes action τ in a certain
state, it always remains in this same state. Intuitively, action τ represents the fact that
the agent can choose do nothing in any state. Given a state σ and an action α, the set of
α-successors of σ, denoted by � �σ, α�, is the set �σ� � � �σ, α, σ�� � 1�.

A policy in a nondeterministic planning domain � is a partial function π � � � �,
that maps states to actions. A nondeterministic policy is a partial function π � � �

2� � �, that maps states to sets of actions. The set �π of states reached by a policy
π is �σ � �σ, α� � π� � �σ� � �σ, α� � π and σ�

� � �σ, α��. Given a policy π, the
corresponding execution structure �π is the subgraph of � that has �π as set of states
and that contains all transitions induced by the actions in policy π.

Definition 2. A nondeterministic planning problem is a tuple � � ��, s0,��, where:

� � is a nondeterministic planning domain;
� s0 � � is the initial state;
� � � � is a set of goal states. �
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Given a nondeterministic planning problem, we distinguish three kinds of solutions:

� a weak solution is a policy that may achieve the goal, but due to nondeterminism, is
not guaranteed to do so. A policy π is a weak solution if some path in �π , starting
from s0, reaches a state in � [Cimatti et al. 1997].

� a strong-cyclic solution is a policy that always achieves the goal, under the fair-
ness assumption that execution will eventually exit from all cycles. A policy π
is a strong-cyclic solution if all paths in �π starting from s0 reach a state in
� [Daniele, Traverso, and Vardi 1999].

� a strong solution is a policy that always achieves the goal, in spite of nondeter-
minism. A policy π is a strong solution if the subgraph �π is acyclic and all paths
starting from s0 reach a state in � [Cimatti, Roveri, and Traverso 1998].

The strong nondeterministic planning algorithm. The strong nondeterministic plan-
ning algorithm, adapted from [Cimatti, Roveri, and Traverso 1998], allows us to syn-
thesize policies that are guaranteed to reach a goal state, regardless of nondeterminism.
This algorithm is correct, complete and returns an optimal worst-case strong policy π,
in the sense that the longest path in �π has minimal length.

STRONGNONDETERMINISTICPLANNING���

1 π � �

2 π�

� ��σ, τ� � σ � ��

3 while π � π� do
4 S � STATESCOVEREDBY�π��

5 if s0 � S then return π�

6 π � π�

7 π�
� π�

� PRUNE(STRONGPREIMAGE�S�,S�

8 return failure

The basic step in the nondeterministic planning algorithm is performed by the func-
tion STRONGPREIMAGE�S�, which returns the set of pairs �σ, α� such that the execution
of action α in state σ necessarily leads to a state inside S. This function is defined as
following:

STRONGPREIMAGE�S�

1 return ��σ, α� � σ � �, α � � and � � � �σ, α� � S�

By iterating the strong preimage function from the set of goal states �, the plan-
ning algorithm builds up a finite backward search tree (Figure 2). Because the set
of states � is finite and this function is monotonic w.r.t. set inclusion, i.e., � �

STRONGPREIMAGE1��� � STRONGPREIMAGE2��� � � � � � STRONGPREIMAGEn���, af-
ter a finite number of iterations, a fixpoint is obtained. During this iterative process, the
planning algorithm maps the states in the search tree to actions (or sets of actions) and,
therefore, a policy is synthesized as a side effect. Furthermore, at each iteration, the
set of states covered by the policy under construction π� is obtained by the following
function:

STATESCOVEREDBY�π��

1 return �σ � �σ, α� � π��
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Thus, if there exists a strong policy to reach a state in �, from the initial state s0, then
in one of these iterations, the condition s0 � STATESCOVEREDBY�π�� is satisfied and the
algorithm returns the policy π� as a solution to the planning problem. Finally, to avoid
the assignment of new actions to states already covered in previous iterations (i.e., to
avoid cycles and to guarantee optimal worst-case policies), the planning algorithm uses
the following pruning function:

PRUNE�R, S�

1 return ��σ, α� � R � σ � S�

As we can see, this function prunes from the set R (the strong preimage) every pair
�σ�, α� such that the state σ� is already in the set S (the covering of the current policy).

G

first iteration

second iteration

Fig. 2. A backward search tree built after two iterations of the strong preimage function

2.2 Probabilistic Planning Based on MDPs

The basic idea underlying probabilistic planning based on MDPs is to represent the
planning problem as an optimization problem [Boutilier, Dean, and Hanks 1999].

Definition 3. A probabilistic planning domain is a tuple � � ��,�, � �, where:

� � is a finite nonempty set of states;
� � is a finite nonempty set of actions;
� � � � �� � � � �0, 1� is a state transition function. �

Given two states σ, σ� and an action α, the probability of reaching σ� by executing α in
σ is � �σ, α, σ��. Furthermore, for each state σ � �, if there exists α and σ� such that
� �σ, α, σ�� � 0, then 	σ�

�� � �σ, α, σ�� � 1. Particularly, for the trivial action τ , we
must have:

� �σ, τ, σ�� � 	0 iff σ � σ�

1 iff σ � σ�

Given a state σ, the set of executable actions in σ, denoted by ��σ�, is the set �α �


σ�
� � such that � �σ, α, σ�� � 0�.

A policy in a probabilistic planning domain � is a total function π � � � �, that
maps states to actions. Given a policy π, the corresponding execution structure �π is
the subgraph of � that has � as set of states and that contains all transitions induced by
the actions in policy π.
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Definition 4. A probabilistic planning problem is a tuple � � ��,��, where:

� � is a probabilistic planning domain;
� � � � is a set of goal states. �

A reward function � � � � IR� is a function that maps states to rewards. Intuitively,
when the agent reaches a state σ it receives a reward ��σ�. In the case of probabilistic
planning for reachability goals, given a set of goal states �, a Boolean reward function
can be defined as following:

��σ� � 	0 iff σ � �

1 iff σ � �

A reward is an “incentive” that attracts the agent to goal states. Moreover, to force
the agent to prefer shortest paths to goal states, at each executed step, future rewards
are discounted by a factor 0 � γ � 1 (The use of such discount factor also guarantees
convergence of fixpoint computations [Puterman 1994].). Hence, if the agent reaches a
goal state by following a path with n steps, it receives a reward of γn. Since the agent
wants to maximize its reward, it should minimize the expected length of paths to goal
states.

The optimal expected-value of a state σ can be computed as the fixpoint of the fol-
lowing equation [Bellman 1957]:

vn�σ� �

�����

��σ� iff n � 0
max

α���σ�
� gn�σ, α� � iff n � 0,

where the expected gain in state σ when action α is executed, denoted by g�σ, α�, is
defined as:

gn�σ, α� � γ � 	
σ�

��

� �σ, α, σ�� � vn�1�σ��
By selecting an action α that produces the optimal value for a state σ, for each σ � �,

we can build an optimal policy:

π��σ� � arg max
α���σ�

�gn�σ, α��
A policy π is a solution for a probabilistic planning problem � if and only if π is an

optimal policy for � [Ghallab, Nau, and Traverso 2004]. According to this definition,
any probabilistic planning problem has a “solution”, since it is always possible to find
optimal policies for MDPs. Note, however, that this does not mean that such solution
allows the agent to reach a goal state: an optimal policy is independent of the initial
state of the agent.

The probabilistic planning algorithm. The probabilistic planning algorithm, based on
the value-iteration method [Bellman 1957], allows us to synthesize optimal expected-
case policies for probabilistic planning problems.

PROBABILISTICPLANNING(�)
1 foreach σ � � do v0�σ� � ��σ�

2 n � 0
3 loop
4 n � n � 1
5 foreach σ � � do
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6 foreach α � ��σ� do
7 gn�σ, α� � γ � �σ�

�� �� �σ, α, σ�� � vn�1�σ
���

8 vn�σ� � maxα���σ� �gn�σ, α��

9 πn�s� � arg maxα���σ� �gn�σ, α��

10 if max
σ��

�vn�σ� � vn�1�σ�� � ε then return πn

The probabilistic planning algorithm starts by assigning value ��σ� to each state
σ � �. Then, it iteratively refines these values by selecting actions that maximize the
expected gains. At each iteration n, and for each state σ, the value vn�σ� is computed
from the value vn�1�σ�, that was computed at the previous iteration. It can be shown
that there exists a maximum number of iterations needed to guarantee that this algorithm
returns an optimal policy [Ghallab, Nau, and Traverso 2004]. However, in practical ap-
plications, the condition used to stop iteration is the following:

max
σ��

�vn�σ� � vn�1�σ�� � ε

With this condition, the algorithm guarantees that the returned policy is an ε-optimal
policy, i.e., for each state σ � �, the expected value v�σ� does not differ from the
optimum value v��σ� by more than an arbitrarily small fixed error ε.

2.3 Comparison between the Approaches

In this section, we present a brief comparison between the algorithms for probabilistic
planning and for nondeterministic planning, by considering the planning domain de-
picted in Figure 3. By analyzing the solutions that these two algorithms find for similar
planning problems, we intend to indicate the advantages of each one and move toward
a third alternative, which combines both of them (the resulting algorithm is presented
in the next section).

The next example shows the frailties of probabilistic planning when strong policies
are required.
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Fig. 3. A domain where actions have uncertain effects
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Example 1. Consider the planning domain�, depicted in Figure 3, and let � � �s5� be
the set of goal states. For this problem, the algorithm PROBABILISTICPLANNING���,���
returns the following policy (with γ � 0.9):

π�s0� � d
π�s1� � τ
π�s2� � c
π�s3� � c
π�s4� � d
π�s5� � τ

This policy is an optimal expected-case solution, i.e., it has shortest execution in
the expected-case. By executing action d in state s0, we expect that in 90% of the ex-
ecutions the goal state can be reached with only one step. This is very efficient and,
in some applications, this could be advantageous, even if 10% of the executions fail
to reach the goal state. However, there are many other practical applications where
failures are unacceptable. In such applications, a plan that may lead to longer exe-
cutions, but necessarily reaches the goal, is preferable to a plan that in the optimistic
case may reach the goal earlier, but in the pessimist case may no longer reach the goal.
Clearly, the policy returned by the probabilistic algorithm is weak for state s0, because
it cannot guarantee that the goal state will be reached from this state. Therefore, if an
application does not allow failures, a weak policy is inappropriate. On the other hand,
if s2 is considered as the initial state, the returned policy is a strong-cyclic solution (a
better solution, because it guarantees to reach the goal state from s2). However, due
to cycles, the number of steps that a strong-cyclic policy need to reach a goal state is
unbounded (e.g., in Figure 3, too many steps c could be needed until agent could leave
state s2). Therefore, if an application is critical in terms of time, a strong-cyclic policy
is inappropriate. �

The next example illustrate the danger of excessive freedom in nondeterministic
planning.

Example 2. Consider the planning domain � , depicted in Figure 3, and let s0 be the
initial state and � � �s5� be the set of goal states. For this problem, the algorithm
STRONGNONDETERMINISTICPLANNING���, s0,��� returns the following nondetermin-
istic policy:

π�s0� � a
π�s2� � �a, b, d�
π�s3� � �a, c�
π�s4� � d
π�s5� � τ

This policy is an optimal worst-case strong solution, i.e., it necessarily reaches the
goal state after a bounded number of steps (that is minimal in the worst-case). Because
in the nondeterministic model there is no preference among actions, any one of the six
policies corresponding to this nondeterministic solution can be selected for execution:
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π1 � ��s0, a�, �s2, a�, �s3, a�, �s4, d�, �s5, τ��
π2 � ��s0, a�, �s2, a�, �s3, c�, �s4, d�, �s5, τ��
π3 � ��s0, a�, �s2, b�, �s3, a�, �s4, d�, �s5, τ��
π4 � ��s0, a�, �s2, b�, �s3, c�, �s4, d�, �s5, τ��
π5 � ��s0, a�, �s2, d�, �s3, a�, �s4, d�, �s5, τ��
π6 � ��s0, a�, �s2, d�, �s3, c�, �s4, d�, �s5, τ��
Although an agent would prefer to select the policy π4, which has the possibility of
reaching the goal with two steps, it can even select the worst of them (π1), which always
needs exactly four steps to reach the goal state. Therefore, if an application needs an
efficient strong policy, a nondeterministic strong policy is inappropriate. �

Remark. As we have seen, the probabilistic planning algorithm cannot guarantee to
find policies that avoid failures and cycles (i.e., strong policies); conversely, the nonde-
terministic planning algorithm cannot guarantee to select the best strong policy. Thus,
we propose a third algorithm, named strong probabilistic planning, that can guarantee
to find an optimal expected-case policy among those policies which are optimal in the
worst-case.

3 Strong Probabilistic Planning

The strong probabilistic planning combines two widely used approaches for planning
under uncertainty. In this framework, the MC approach is used to guarantee that only
optimal worst-case strong solutions can be synthesized during the planning task, while
the MDP approach is used to guarantee that an optimal expected-case policy, among
those that are optimal in the worst-case, is returned by the planning algorithm.

We present two versions of the algorithm for strong probabilistic planning: an enu-
merative version, where states are explicitly represented and manipulated by stan-
dard set operations, and a symbolic version, where states are implicitly represented by
propositional formulas that can be manipulated by efficient operations on MTBDD’s
[Bryant 1986].

3.1 Enumerative Strong Probabilistic Planning

Given a planning problem � � ��, s0,��, where � is a probabilistic planning domain,
the strong probabilistic planning algorithm starts by constructing an initial policy that
maps each goal state σ � � to the trivial action τ , and by assigning optimal expected-
value 1 for each one of them. After this, in each subsequent iteration, the algorithm alter-
nates strong preimage [Muller-Olm, Schimidt, and Steffen 1999] and optimal expected-
value computations. By using the strong preimage computation, it guarantees that the
synthesized policy will necessarily reach a goal state (without possibility of failure and
with a bounded number of steps); and, by using the optimal expected-value computa-
tion, it guarantees that, whenever a state is mapped to more than one action by the strong
preimage computation, only an optimal action will be chosen in that state. Example 3
gives some intuition about how the the strong probabilistic planning algorithm works.
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Fig. 4. Strong probabilistic planning algorithm execution

Example 3. Let γ � 0.9 and consider the planning problem � � ��, s0, �s5��, where
� is the planning domain depicted in Figure 3. Initially, we have π � ��s5, τ�� and
v�s5� � 1:

� In the first iteration (Figure 4-a), the pruned strong preimage of �s5� is ��s4, d��
and the expected gain for executing action d in state s4 is g�s4, d� � γ�1.0�v�s5� �
0.9. Thus, we let v�s4� � 0.9 and π � ��s4, d�, �s5, τ��.

� In the second iteration (Figure 4-b), the pruned strong preimage of �s4, s5�, the cov-
ering set of the current policy, is ��s3, a�, �s3, c��. With this strong preimage com-
putation, we can avoid action b, which could cause a failure (i.e., going from s3 to
s1 leads the agent to a dead-end). The expected gain for the remaining actions are:

g�s3, a� � γ � 1.0 � v�s4� � 0.81
g�s3, c� � γ � �0.3 � v�s4� � 0.7 � v�s5�� � 0.87

With this optimal expected-case value computation, we can give preference to ac-
tion c. We let v�s3� � 0.87 and π � ��s3, c�, �s4, d�, �s5, τ��. Thus, when we have
to select among actions that certainly lead to the goal, we choose the one that
produces the maximum expected gain.

� In the third iteration (Figure 4-c), the pruned strong preimage of �s3, s4, s5� is��s2, a�, �s2, b�, �s2, d��. Now, the strong preimage computation avoids action c,
which could cause cycle. The expected gains for the other actions are:

g�s2, a� � γ � �1.0 � v�s3�� � 0.79
g�s2, b� � γ � �0.2 � v�s3� � 0.8 � v�s5�� � 0.88
g�s2, d� � γ � �0.5 � v�s3� � 0.5 � v�s4�� � 0.80
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being action b the best choice in state s2. Thus, we let v�s2� � 0.88 and π �

��s2, b�, �s3, c�, �s4, d�, �s5, τ��
� Finally, in the last iteration (Figure 4-d), the pruned strong preimage of

�s2, s3, s4, s5� is ��s0, a�, �s0, b��. The action d, which could cause failure, is elim-
inated. The expected gains are:

g�s0, a� � γ � �1.0 � v�s2�� � 0.789
g�s0, b� � γ � �0.5 � v�s3� � 0.5 � v�s2�� � 0.787

Now, action a is the best choice. Thus, we let v�s0� � 0.80 and π �

��s0, a�, �s2, b�, �s3, c�, �s4, d�, �s5, τ��. Because the initial state s0 is covered by
this policy, the strong probabilistic planning stops and returns π as solution (which
corresponds to policy π4 in the comparison section). �

The enumerative version. The enumerative version of the strong probabilistic plan-
ning algorithm is composed of two functions: the STRONGPREIMAGE function, that per-
forms the strong preimage computation, and the CHOOSE function1, that performs the
optimal expected-value computation.

Given a planning problem � , the enumerative version of the strong probabilistic
planning algorithm starts by assigning reward 1 to goal states and by building a policy
that maps each one of these states to the trivial action τ . Afterwards, alternately, the al-
gorithm computes strong preimages and optimal expected values. By using the function
STRONGPREIMAGE, it guarantees that the synthesized policy necessarily reaches a goal
state (in spite of nondeterminism); and by using the function CHOOSE, it guarantees that
whenever a state is mapped to more than one action (by the strong preimage function),
only an action with optimal expected value can be chosen in that state.

STRONGPROBABILISTICPLANNING���

1 foreach σ � � do v�σ� � 1
2 π � �

3 π�

� ��σ, τ� � σ � ��

4 while π � π� do
5 S � STATESCOVEREDBY�π��

6 if s0 � S then return π�

7 π � π�

8 π�
� π�

� CHOOSE�PRUNE�STRONGPREIMAGE�S�, S��

9 return failure

CHOOSE�R�

1 π � �

2 foreach σ � STATESCOVEREDBY�R� do
3 A � �α � �σ, α� � R�

4 foreach α � A do
5 g�σ, α� � γ � �σ�

�� �σ,α��� �σ, α, σ�� � v�σ���

1 Because all paths in a strong policy have a bounded number of steps (finite horizon), a discount
factor is no longer necessary to guarantee convergence; however, it is still necessary to force
the agent to give preference to shortest paths.
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6 v�σ� � maxα�A g�σ, α�

7 π � π � ��σ, arg maxα�A g�σ, α���

8 return π

The function CHOOSE implements the optimality principle through backward induc-
tion. This is possible because the combined use of the functions STRONGPREIMAGE and
PRUNE avoids cycles, allowing a topological sorting of the states covered by the policy
(Figure 5). By processing states in reverse topological order, when the value of a state
is computed, the value of each one of its possible successors is already known. This can
reduce the number of state updates.
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Fig. 5. Topological sorting of the domain’s states

The following theorems are the main results because they prove that backward in-
duction works for our model.

Theorem 1. If a probabilistic planning problem � has a strong solution, the algorithm
STRONGPROBABILISTICPLANNING returns an optimal worst-case strong policy for � .

Proof. We denote by πi the policy built in the i-th iteration of the algorithm. By defini-
tion, a state σ � � is covered by π0 if and only if σ is a goal state; thus, π0 covers all
states from which, in the worst case, there is a path of length 0 to a goal state. In the first
iteration, if the initial state s0 is covered by π0, clearly, the algorithm returns an optimal
worst-case policy for � . Otherwise, the pruned strong preimage of the set S0 of states
covered by π0 is computed. For each pair �σ, α� � PRUNE�STRONGPREIMAGE�S0�, S0��,
all α-successors of σ are goal states, independently of the chosen actions; thus, the pol-
icy π1 �� π0 � CHOOSE�PRUNE�STRONGPREIMAGE�S0�, S0��� covers all states from
which, in the worst case, there is a path of length 1 to a goal state. By the in-
ductive hypothesis, for j � i, policy πj covers all states from which, in the worst
case, there exists a path of length j to a goal state. Therefore, in the i-th iteration,
if the initial state s0 is covered by πi�1, the algorithm returns an optimal worst-case
policy for � . Otherwise, the pruned strong preimage of the set Si�1 of states cov-
ered by πi is computed. If �σ, α� � PRUNE�STRONGPREIMAGE�Si�1�, Si�1��, then
at least one α-successor of σ takes, in the worst case, i � 1 steps to reach a goal
state (otherwise the state σ would have been covered by policy πi�1 and, thus, been
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pruned). Therefore, independently of the chosen actions, the policy πi �� πi�1 �

CHOOSE�PRUNE�STRONGPREIMAGE�Si�1�, Si�1��� covers all states from which, in the
worst case, there is a path of (optimal) length i to a goal state. �

Theorem 2. The optimal worst-case strong policy returned by algorithm STRONG-
PROBABILISTICPLANNING is optimal in the expected-case.

The expected-case optimality of the policy returned by the algorithm STRONGPROBA-
BILISTICPLANNING is derived from the fact that function CHOOSE uses the optimality
principle [Bellman 1957] to choose the best action for each state covered by this policy.

3.2 Symbolic Strong Probabilistic Planning

The basic idea underlying the symbolic version of the strong probabilistic planning
algorithm is to represent states as sets of propositions and to consistently work with
propositional formulas that characterize sets of states. In order to do this, a new defini-
tion of planning domain is needed:

Definition 5. A symbolic probabilistic planning domain is a tuple� � �P,�,�,�, � �,
where:

� P is a finite nonempty set of atomic propositions;
� � is a finite nonempty set of states;
� � is a finite nonempty set of actions;
� � � � � 2P is a state labeling function;
� � � � �� � � � �0, 1� is a state transition function. �

Each atomic proposition p � P denotes a state property. The set of atomic propositions
which are satisfied in a state σ � � is denoted by ��σ�. The intension of a propositional
formula ϕ in �, denoted by �ϕ�� , is the set of states in � which satisfies ϕ. Formally,
we have2:

� �ϕ� � �σ � � � ϕ � ��σ�� if ϕ � P

� �
ϕ� � � � �ϕ�
� �ϕ � ϕ�� � �ϕ� � �ϕ��
� �ϕ � ϕ�� � �ϕ� � �ϕ��

Furthermore, we assume that � � ��σ�, for all state σ � �. Therefore, it follows that
��� � �.

The trivial action τ � � and the transition function � are defined as in the pure
probabilistic case.

Definition 6. A symbolic probabilistic planning problem is a tuple� � ��, s0, �ϕ, ϕ���,
where:

� � is a symbolic probabilistic planning domain;
� s0 � � is an initial state;
� �ϕ, ϕ�� is an extended reachability goal. �

2 For the sake of simplicity, we omit subscript � in �.�.
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An extended reachability goal [Pereira and Barros 2008] is a pair of logical formulas
�ϕ, ϕ��: the preservation condition ϕ specifies a property that should hold in each state
visited through the path to a goal state (excepting the goal state); and the achievement
condition ϕ� specifies a property that should hold in all goal states, i.e., � � �ϕ���.

Extended goals (Pistore, Bettin, and Traverso 2001; Lago, Pistore, and Traverso
2002; Pereira and Barros 2008) represent an improvement on the expressiveness of
the reachability planning framework. By using such goals, besides defining acceptable
final states, we can also establish preference among possible intermediate states. Note
that a reward function can have the same expressiveness of extended goals; however,
extended goals are high level specifications.

An example of a symbolic probabilistic domain is depicted in Figure 6. The shad-
owed states are the ones that can be covered by a policy for the extended reachability
goal �
q, p � q � r�, which specify that the agent should preserve property 
q (equiva-
lently, avoid property q), until reaching a state where the three properties p, q and r can
be satisfied. Other examples of useful extended reachability goals are:

� ��, r�: to achieve property r;
� �p, r�: to achieve property r, by preserving property p;
� �
q, r�: to achieve property r, by avoiding property q;
� �p � 
q, r�: to achieve r, by preserving p and avoiding q.
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Fig. 6. A symbolic probabilistic planning domain

The symbolic version. The symbolic version for the algorithm for extended reachabil-
ity goals is very similar to the enumerative one. The main difference is on the “inten-
sional” representation of set of states and on the definition of the prune function, which
is defined as following:

PRUNE�R, S, ϕ�

1 return ��σ, α� � R � σ � �ϕ�� and σ � S�

Given the strong preimage R of a set of states S, as well as a preserving condition
ϕ, the function PRUNE selects from R all pairs �σ, α�, such that state σ has property ϕ
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and it was not yet mapped to another action in a previous iteration. By proceeding in
this way, the prune function avoids all intermediate states which does not satisfy the
preserving condition ϕ.

The remainder of the planning algorithm is as following:

STRONGPROBABILISTICPLANNING���

1 foreach σ � �ϕ��� do v�σ� � 1
2 π � �

3 π�
� ��σ, τ� � σ � �ϕ����

4 while π � π� do
5 S � STATESCOVEREDBY�π��

6 if s0 � S then return π�

7 π � π�

8 π�

� π�

� CHOOSE�PRUNE�STRONGPREIMAGE�S�, S��

9 return failure

CHOOSE�R�

1 π � �

2 foreach σ � STATESCOVEREDBY�R� do
3 A � �α � �σ, α� � R�

4 foreach α � A do
5 g�σ, α� � γ � �σ�

�� �σ,α��� �σ, α, σ�� � v�σ���

6 v�σ� � maxα�A g�σ, α�

7 π � π � ��σ, arg maxα�A g�σ, α���

8 return π

The following theorems prove that backward induction also works for the symbolic
version of our model.

Theorem 3. If a symbolic probabilistic planning problem � has a strong solution,
the symbolic version of algorithm STRONGPROBABILISTICPLANNING returns an optimal
worst-case strong policy for � .

Theorem 4. The optimal worst-case strong policy returned by the symbolic version of
algorithm STRONGPROBABILISTICPLANNING is optimal in the expected-case.

The proofs to these theorems are straightforward from proof of Theorem 1. Noticing
that, besides pruning the states already covered by the policy under construction, the
symbolic version of the function PRUNE also prunes states that do not satisfy the ex-
tended reachability goal.

4 A Note about Implementation

The policies for the examples in this paper were synthesized by programs
that we have implemented. The algorithm PROBABILISTICPLANNING was imple-
mented in JAVA, while the other two – STRONGNONDETERMINISTICPLANNING and
STRONGPROBABILISTICPLANNING – were implemented in PROLOG. Because the com-
parison of techniques does not take into account efficiency issues, the use of different
programming languages for the implementations does not affect our analysis.
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5 Conclusion

In this paper we have identified, and solved, the problem of strong probabilistic plan-
ning. In essence, this is a situation with features of nondeterministic and probabilistic
planning: requirements on the planning goals mix worst-case and expected-case anal-
ysis, and actions with (uniform) costs and (Markovian) probabilities associated with
them.

Our main contribution is to show that the resulting problem can be tackled efficiently
by using backward induction (with minimum number of state updates), thus producing
the enumerative and symbolic versions of the STRONGPROBABILISTICPLANNER algo-
rithm. While Theorems 1 and 2 deal with straightforward reachability goals, Theorems
3 and 4 show that our techniques can be applied in much greater generality to extended
reachability goals. With such goals we can also impose constraints on states visited
during policy execution. Hence the symbolic framework is more expressive than the
enumerative one. As expressiveness increases planner usability, the symbolic frame-
work seems to be more appropriate for practical planning applications.

The desire to combine features of nondeterministic and probabilistic planning have
led us to develop a perspective for planning problems that integrates these features
coherently, as we feel that current literature treats these varieties of planning as too iso-
lated islands. We have tried to convey some of this perspective in the second section of
this paper; we hope that the resulting blend improves understanding of this multifaceted
area.

We should still emphasize that we can found in the literature algorithms that are ca-
pable of synthesizing weak solutions (e.g., value-iteration [Puterman 1994]), as well
as strong-solutions (e.g. RTDP [Bertsekas and Tsitsiklis 1991]), for probabilistic plan-
ning problems modeled as MDPs. However, to the best of our knowledge, the hybrid
framework proposed in this paper is the first one that is capable of guarantee the syn-
thesis of strong solutions for such kind of probabilistic planning problems (the work
in [Mausam, Bertoli, and Weld2007] does not offer this guarantee).
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