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Abstract. This paper investigates an encoding of a probabilistic
TBox using relational Bayesian networks that are specified through
a probabilistic description logic. The probabilistic description logic
extends the popular ALC language; on top of this language we add
a few operations that are needed to represent the cardinal direction
calculus. Using such resources we model roads containing lanes, and
vehicles containing digital maps, GPS and video cameras.

1 Introduction

In this paper we study the combination of description logics and rela-
tional Bayesian networks as a language to encode qualitative spatial
reasoning (QSR). Bayesian networks can be used to represent uncer-
tainty in propositional domains [26], while relational Bayesian net-
works lift the representation to first-order. Our strategy is to restrict
the full generality (and full complexity) of relational Bayesian net-
works by focusing on a class of relational Bayesian networks that can
be specified using a probabilistic description logic called CRALC
[7, 6]. In a recent publication [30] we have discussed the use of
CRALC to encode a subset of a cardinal direction calculus [14, 19],
but we did so by restricting some features of this calculus. In this pa-
per we remove some of these restrictions by adding a few elements
to our relational Bayesian networks (elements that cannot be directly
expressed by CRALC but that do not introduce substantial complex-
ity). We then investigate the use of the resulting qualitative spatial
reasoning formalism to handle queries about a traffic scenario.

We focus on lane recognition tasks. Lane recognition research has
traditionally focused on estimating the geometric properties of the
lane in front of the vehicle using on-board imaging devices (Mc-
Call and Trivedi [22] provide an overview of this area). Only a
few attempts have been made at inferring functional properties of
lanes [17], such as the permitted driving directions (e.g. going up

/ going down the road), the permitted turning directions (e.g. right

turn/straight ahead/left turn), or the permitted traffic participants
(e.g. motor vehicles/emergency vehicles/cyclists). Existing on-board
sensors can only provide a highly incomplete picture of the func-
tional road configuration, with substantial uncertainty.

This paper is organized as follows. After a literature review in the
next section, Sections 3 and 4 present, respectively, a formalization
of the chosen application scenario and its implementation, with em-
phasis on features that we have added to the CRALC specification
and that go beyond our previous publication [30]. We note that the
present paper revisits material from this previous publication, con-
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tributing mainly on the extensions of CRALC that handle role hierar-
chies and disjoint concepts needed in the cardinal direction calculus.
Conclusions are left to Section 5.

2 Literature Overview
This section reviews relevant literature on QSR, cardinal direction
calculus, probabilistic description logics, and CRALC; this material
is mostly lifted from our previous publication [30].

2.1 Qualitative spatial reasoning
The aim of Qualitative Spatial Reasoning (QSR) is the logical for-
malisation of knowledge from elementary spatial entities, such as
spatial regions, line segments, cardinal directions, and so forth, as
surveyed in [4, 5]. Relevant to the present work are the develop-
ments of spatial formalisms for computer vision and robotics. The
first proposal for a logic-based interpretation of images is described
in [28], where image interpretation is reduced to a constraint satis-
faction problem on a set of axioms. Inspired by these ideas, [21] pro-
poses a system that generates descriptions of aerial images, which
more recently received a descriptive logic enhancement [24].

A spatial system based on spatio-temporal histories for scene
interpretation was investigated in [15], which was inspired on an
earlier proposal for learning event models from visual information
[13]. More recently, [3] proposes a system that uses multiple spatio-
temporal histories in order to evaluate an image sequence. A logic
formalisation of the viewpoint of a mobile agent was presented in
[27], and was further explored in the interpretation of scenes within
a mobile robotics scenario in [29]. In [17], functional and geomet-
ric properties of roads and intersections could be inferred using an
expressive, yet deterministic, description logic in combination with
on-board vehicle sensors.

These approaches do not handle uncertainty, which is either left
for the low-level processing [3] or simply ignored [29].

2.2 Cardinal direction calculus
The cardinal direction calculus (CDC) [14] is a formalism for rea-
soning about cardinal directions between spatial objects. The major
reasoning task that CDC is concerned with is to infer the direction
between two objects A and C, from the known directions between
A and (another object) B and between B and C. The basic part of
the calculus has nine relations: equal (eq), north (n), east (e), west
(w), south (s), northwest (nw), northeast (ne), southeast (se) and
southwest (sw).

This paper defines a CDC inspired on the formulation given in
[19], where spatial objects are points in a two-dimensional space and
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the cardinal directions between two objects A and B are defined as
the two projections of the straight line from A to B: one on the axis
South-North and the other on the axis West-East.

In this paper we assume that each road defines its local cardinal
direction system, whereby the direction “South-North” goes from
the origin of the road towards its end, following the road’s centre line.
In other words, the “South-North” direction between two objects A
and B on the road are defined as the projection of the line from A
to B on the road’s centre line. The “East-West” direction is defined
at every point of the road as the continuous orthogonal line to the
tangent of the centre line at that point. Figure 1 shows an example of
this local CDC.

In order to make clear that we are not dealing with global cardinal
directions (while also taking inspiration of the dynamic nature of a
traffic scenes), this paper refers to the directions going down and
going up (the road), instead of resp. “South” and “North”, and right–
left instead of “East”–“West”.
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Figure 1. The local cardinal system for roads: A is to the south of B and to
the west of C.

2.3 Probabilistic description logics
Description logics (DLs) are fragments of first-order logics origi-
nated in the 1970s as a means to provide a formal account of frames
and semantic networks. In general terms, description logics are based
on concepts , which represent sets of individuals (such as Plant or
Animal); and roles, which denote binary relations between individ-
uals, such as fatherOf or friendOf. Set intersection, union and com-
plement are usual operators found in DLs, as well as some con-
strained forms of quantification. A key feature of most description
logics is that their inference is decidable [1].

In recent years there have been an increasing interest in the com-
bination of probabilistic reasoning and logics (and with description
logics in particular) [25, 11, 23]. This combination is not only mo-
tivated by pure theoretical interest, but it is very relevant from an
application standpoint in order to equip a reasoning system with re-
lational inferences capable of making also probabilistic assessments.

In [18] a number of distinct probabilistic logics were proposed
where probabilities were defined over subsets of domain elements.
These logics, however, have difficulties to handle probabilistic as-
sertions over individuals, as statistical information over the domain
does not preclude information about individuals (this is known as the
direct inference problem [2]). This problem is also present in various
formalisms, as summarised in [11].

The direct inference problem is solved in [12] by adopting prob-
abilities only on assertions. An alternative way around the direct in-
ference problem is to assign probabilities to subsets of interpreta-
tions, rather than subsets of the domain. This solution was assumed
in [9, 10] and also in CRALC.

2.4 CRALC: credal ALC
This section summarizes CRALC, a probabilistic extension of the
popular ALC description logic [31]. CRALC inherits all the con-
structs of ALC, summarised as follows. The basic vocabulary of
ALC contains individuals, concepts (sets of individuals) and roles
(binary relations of individuals). Given two concepts C and D, they
can be combined to form new concepts from conjunction (C � D),
disjunction (C � D), negation (¬C), existential restriction (∃r.C)
and value restriction (∀r.C).

A concept inclusion, C � D, indicates that the concept D con-
tains the concept C and a definition, C ≡ D, indicates that the con-
cepts C and D are identical. The set of inclusions and definitions
constitute a terminology. In general, a terminology is constrained to
be acyclic, i.e., no concept can refer to itself in inclusions or defini-
tions.

The semantics of ALC is defined by a domain D and an interpre-
tation function I, which maps: each individual to a domain element;
each concept to a sub-set of D; and, each role to a binary relation
D × D, such that the following holds: I(C �D) = I(C) ∩ I(D);
I(C �D) = I(C) ∪ I(D); I(¬C) = D\I(C); I(∃r.C) = {x ∈
D|∃y : (x, y) ∈ I(r) ∧ y ∈ I(C)}; I(∀r.C) = {x ∈ D|∀y :
(x, y) ∈ I(r) → y ∈ I(C)}.

An inclusion C � D holds if and only if I(C) ⊆ I(D), and a
definition C ≡ D holds if and only if I(D) = I(D). For instance,
C � (∃ hasSibling.Woman) � (∀buys.(Fish � Fruit)) indicates
that C contains only individuals who have sisters and buy fruits or
fishes.

In the probabilistic version of ALC (CRALC), on the left hand
side of inclusions/definitions only concepts may appear. Given a con-
cept name C, a concept D and a role name r, the following proba-
bilistic assessments are possible:

P (C) ∈ [α, α], (1)
P (C|D) ∈ [α, α], (2)

P (r) ∈ [β, β]. (3)

We write P (C|D) = α when α = α, P (C|D) ≥ α when α <
α = 1, and so on.

In order to guarantee acyclicity, no concept is allowed to use itself
in deterministic (or probabilistic) inclusions and definitions.

The semantics of CRALC is based on probabilities over interpre-
tations so that the direct inference problem can be avoided. In other
words, probabilistic values are assigned to the set of all interpreta-
tions. The semantics of Formula (1) is, thus: for any x ∈ D, the
probability that x belongs to the interpretation of C is in [α, α] .
That is,

∀x ∈ D : P
“ n

I : x ∈ I(C)
o ”

∈ [α, α].

Informally, the semantics can be represented as:

∀x ∈ D : P (C(x)) ∈ [α, α].

The semantics of Expressions (2) and (3) is then:

∀ x ∈ D : P (C(x)|D(x)) ∈ [α, α],

∀ (x, y) ∈ D ×D : P (r(x, y)) ∈ [β, β].

Given a finite domain, a set of sentences in CRALC specifies prob-
abilities over all instantiated concepts and roles. In general, a set
of probabilities is specified by a set of sentences (for example, one
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may specify P (C) ∈ [0.2, 0.3], allowing all probability values in
an interval). A few assumptions guarantee that a single probability
distribution is specified by a set of sentences: unique-names, point-
probabilities on assessments, rigidity of names [6]. Under these as-
sumptions, a finite domain and a set of sentences specify a unique
Bayesian network over the instantiated concepts and roles. To com-
pute the probability of a particular instantiated concept or role, one
can generate this Bayesian network and then perform probabilistic
inference in the network. Because the domains we deal with in this
paper are relatively small, we follow this propositionalisation strat-
egy in our examples. For large domains it may be impractical to ex-
plicitly generate a Bayesian network. In this case, approximate algo-
rithms can be used and, in particular, algorithms based on variational
methods have been developed with success [6].

3 CRALC encoding of a traffic scenario
This section presents a formalisation in CRALC of a road traffic do-
main. Incomplete sensor data and domain knowledge in the form of
road building regulations are used to solve functional lane recogni-
tion tasks. Let ego-road and ego-lane denote, respectively, the road
and the particular lane on which a vehicle is driving.

The scenario we represent consists of a road where each lane goes
either up or down. Dividing every pair of adjacent lanes is either a
dashed divider or a solid divider. The scenario also contains an ex-
perimental vehicle equipped with three on-board sensors: a digital
map, a GPS and a video camera. The task of the formalism is to
estimate two functional properties of the ego-road using on-board
vehicle sensors. First, which lane corresponds to the ego-lane? The
answer is one element of the set: {1, . . . , n}, where n is the number
of lanes in the road. This task is derived from the fact that current
differential GPS receivers are able to reliably determine a vehicle’s
ego-road, but not its ego-lane (e.g. [16]). Second, which driving di-
rection does each lane permit? The answer is either up or down the
road, relative to the ego-road’s coordinate system.

The functional properties of lanes that are adjacent to the ego-
lane are poorly picked out by state-of-the-art vehicle sensors. One
reason for that is the narrow field of view of cameras pointing in the
driving direction, which causes blind spots over a large portion of the
adjacent lanes. Besides, other vehicles frequently occlude relevant
image cues, such as divider markings, arrow markings, and traffic
signs. Finally, some properties are not explicitly given in the form of
symbols but need to be derived from the context by the human driver
(e.g. right-handed traffic rules, as assumed in this work).

These observations are reflected by the sensor input available to
solve this task.

First, a video-based divider marking recognition is available. Such
a sensor recognises lane divider markings on the right of the vehicle
and classifies them into either dashed or solid divider lines. Hit and
false alarm rate of the recognition task, and the confusion table of the
classification task, are given in Tables 1(a) and 1(b), respectively.

Second, a vehicle has a map-matched GPS position that retrieves
the current road from a digital map and provides the vehicle’s driving
direction on that road segment, discretised into “going up” or “going
down” relative to the road’s coordinate system [16]

Third, a digital navigation map is available, providing classifica-
tion of the road into either one-way or two-way traffic and an esti-
mate for the number of lanes. Table 1(c) is a confusion table for this
classification task.

It is worth pointing out that tables 1(a) and 1(c) are based on com-
paring the algorithm’s outcomes with ground truth [17], whereas the

data in Table 1(b) was estimated.

Table 1. Sensor model. In the confusion tables (b) and (c), columns denote
ground truth and rows denote estimates.

(a)
Video: Divider

Recognition

Hit rate .51
FA rate .23

(b)
Video: Divider
Classification

So
lid

D
as

he
d

Solid .80 .067
Dashed .20 .933

(c)
Digital map:

Road Classification

O
ne

w
ay

Tw
ow

ay

Oneway .99 .01
Twoway .01 .99

A taxonomy of concepts and roles relevant to the traffic task is
now presented (mostly from our previous publication [30]). The
concept Lane is defined using two primitives, Up and Down; the
concept Divider is defined as the union of DashedDivider and
SolidDivider, and Vehicle is either going up (GoingUp) or going
down (GoingUp):

Lane ≡ Up � Down (4)
Divider ≡ DashedDivider � SolidDivider (5)
Vehicle ≡ GoingUp � GoingDown (6)

In Formulae (7)–(11) and (13) below we use the abbreviation
disjoint(t1, t2, . . . , tn) to represent the set of statements about pair-
wise disjoint terms, i.e., ti � ¬tj ∀i, j ∈ 1, ..., n, i �= j.

disjoint(Vehicle, Divider, Lane) (7)
disjoint(Up,Down) (8)
disjoint(DashedDivider, SolidDivider) (9)
disjoint(GoingUp, GoingDown) (10)
disjoint(OnOneWayRoad, OnTwoWayRoad) (11)

The taxonomy of roles consists of CDC relations only. Out of the
nine cardinal directions, only three are relevant to the task at hand
east (e), west (w) and equal (eq), since the domain does not have
cross-roads.

In this paper the cardinal direction “west” is implicit, as it is
not directly defined but it is used in some restrictions such as
DashedDivider. (this is more efficient than the representation strat-
egy used in our previous publication [30]). Another change from our
previous work is that we use a global point of view (bird-eye) with
fixed coordinates (north, south, east, west). This simplifies inference
through Bayesian networks, as discussed later.

The relation eq represents the fact that a vehicle being located on
a particular lane. We have:

cdc ≡ e � w � eq (12)
disjoint(e, w, eq) (13)

A set of hard constraints is now defined on road building regula-
tions. The first two constraints (Formulae (14) and (15)) formalise
the semantics of right-handed traffic: to the right of a lane allowing
for traffic going up the road (with respect to the road’s egocentric
coordinate system) there must only be lanes allowing for “going up”
traffic, and to the left of traffic going down the road there must only
be “down” lanes. When a vehicle is “going up” in a lane with direc-
tion up, to its east there is a “solid divider” or to its west there is a
“dashed divider”and there is also a lane to its east that is up. Simi-
larly, when a vehicle is “going down” in a lane with direction down,
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to its west there is a “solid divider” or to its west there is a “dashed
divider” and there is also a lane to its west that is down.

GoingUp � ∃e.(SolidDivider � ¬Lane) � (14)
∃e.(DashedDivider � Up)

GoingDown � ∀w.(SolidDivider � ¬Lane) � (15)
∃w.(DashedDivider � Down)

Formulae (16) and (17) refer to the dividers function, which may
be distinct in different countries. A dashed divider divides two lanes
with same driving direction, whereas a solid divider either marks the
road border or it separates roads with opposing driving directions:

DashedDivider � (∃e.Up � ∃w.Up) � (16)
(∃e.Down � ∃w.Down)

SolidDivider �(¬∃e.Lane � ∃w.Lane) � (17)
( ¬∃w.Lane � ∃e.Lane) � (∃e.Up � ∃w.Down) �

(∃e.Down � ∃w.Down)

Finally, the following axiom states that a two-way road has traffic
in both directions (Formula (18)).

OnTwoWayRoad � ∃cdc.Up � ∃cdc.Down (18)

The probabilities given in Tables 1a-1c can be justified as follows.
First, new concepts (prefixed by Sensed) are added as subclasses of
Sensor for all probabilistic inputs:

Sensor ≡ SensedOnOneWayRoad � (19)
SensedOnTwoWayRoad � SensedDivider

SensedDivider ≡ SensedDashedDivider � (20)
SensedSolidDivider

The confusion tables (Tables 1(a)–1(c)) show joint probabili-
ties of an event and its detection by a sensor. These probabili-
ties can be represented as conditional probabilities using the defi-
nition of conditional events in terms of their intersections, such as:
P (SolidGT | DashedS) = P (SolidGT � DashedS) /P (DashedS) =
0.05/0.75 = 0.07, where the subscript GT denotes “ground truth”
and S stands for “sensed”. The sensor model from Table 1b (for in-
stance) can now be elegantly formulated as a set of axioms as fol-
lows:

P (DashedDivider|SensedDashedDivider) = 0.93 (21)
P (SolidDivider|SensedDashedDivider) = 0.07 (22)
P (DashedDivider|SensedSolidDivider) = 0.20 (23)
P (SolidDivider|SensedSolidDivider) = 0.80 (24)

An analogue set of axioms is used for confusion Table 1. For
recognition tasks the sensor model can be translated as follows:

P (Divider|SensedDivider) = 1− false alarm rate = 0.77 (25)
P (SensedDivider|Divider) = hit rate = 0.51 (26)

With the previous axioms, the T Box is fully specified.
DL is used in this work as a specification language from which a

Bayesian description is derived. In the present context, a DL descrip-
tion is used to encode high-level knowledge, such as the permitted
driving directions. The use of a DL-based probabilistic logics gives
us guarantees concerning expressivity and complexity that are not
available when one resorts to full first-order probabilistic logic.

4 Coding and running the scenario
Most axioms presented in the previous section are within the ba-
sic definitions of CRALC. However, the original role hierarchies are
not even within the scope of ALC (and, consequently, not within
CRALC). In our previous publication [30] we circumvented these
axioms to construct a TBox with the confines of CRALC. In this pa-
per we wish to follow a different strategy.

As any TBox in CRALC is turned into a Bayesian network upon
inference, we have handled hole hierarchies and disjoint concepts
within the transformation TBox→Bayesian network. Concepts are
translated into nodes of the network in such a way that concepts
that are to the left are translated into parents of concepts that are
to the right. To handle disjoint concepts, we create or-exclusive
nodes that are always set to true in the network. We can then de-
termine whether a lane is up or down using Formulae (16), (17)
and (18). Even though concepts in these formulae are defined using
roles, we compute their probabilities by conditioning on concepts
GoingUp, GoingDow, OnTwoWayRoad, OnTwoWayRoad. The
same procedure is used to determine the kind of “divider” that
is related to each lane; that is, which divider is to the east of a
lane. In this work we focus on the cardinal direction calculus to
determine in which lane the vehicle is located. We can determine
P (eq(vehicle, lane)) using data in the ABox; for instance, if the
sensor indicates a divider to the east of the vehicle, and we can then
infer the kind of divider for each lane. Hence we can compute the
probability of each lane being an ego-lane.

Given the formalisation presented in Section 3 (and the consid-
eration above), the system generated the Bayesian network repre-
sented in Figure5 2 , where the nodes in red are observed variables,
i.e. sensors’ states. A detail of this network is shown in Figure 3, that
represents a Bayesian Network for one individual (out of the 5 in-
terconnected nets shown in Figure 2). Besides the information in the
ABox, there is evidence in the nodes that represent disjoint concepts
(that is, the nodes that encode or-exclusive relations) and nodes that
indicate whether a network represents a lane, a vehicle, or a divider.

It is now possible to answer the queries specified in Section 3,
which correspond to the following:

1. argmax
li
P ((v : li : eq)), i.e. li is the lane with maximum probabil-

ity of being the vehicle’s (v) ego-lane .
2. ∀i : P (li : Up), i.e. for each lane li, the probability of being a Up

lane.

Consulting the network in Figure 2 for all of the eight possible
states of the three sensors, we obtain the answers presented in Ta-
bles 2 and 3 for the queries 1 and 2 respectively (we employ the
abbreviations STWR for SensedOnTwoWayRoad and SDD for
SensedDashedDivider).

Table 2 shows the most probable lane on which the vehicle v is
driving (argmaxliP ((v, li : eq))), given the evidences, represented on
the first three columns. The first line of the table, for instance, repre-
sents the state where the GPS obtained GoingDown, the map sensed
that the vehicle was on a one way road and the vision system sensed
a solid divider. Given these evidences the node li with the highest
probability (on the network of Figure 2) was l1. This case is shown
in Figure 4(c). On the second line of Table 2, however, the GPS and
the map sensor remained in the state just described, but the vision
sensed a dashed divider (instead of a solid one). In this case, there
were two hypotheses with equal probabilities6: l2 and l3 (as repre-

5 For colour image, please refer to the electronic version of this paper.
6 They differ on the third decimal digit.
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Figure 2. Bayesian Network representing a traffic domain.

sented in Figures 4(a) and 4(b) respectively). The remainder cases
on Table 2 are analogous.

Table 3 represents the probabilities for each of the li lanes to be a
Down lane, given the evidence on the first three columns. The prob-
ability of Up is the complement of the values stated in the table. Take
for instance the first line, the highest probability for l1, l2 and l3 is
Down, which is consistent with the evidence GoingDown (for the
vehicle) and SensedOnOneWayRoad. Similarly for the remainder
sensor states represented in the table.

Table 2. Answer to query 1: the probability on the ego-lane given the
evidence A (expressed on the first three columns).

GPS map video argmaxliP ((v, li : eq|A))
GoingUP STWR SDD

0 0 0 l1

0 0 1 l2 ∨ l3

0 1 0 l2 ∨ l3

0 1 1 l3

1 0 0 l1

1 0 1 l2 ∨ l3

1 1 0 l1

1 1 1 l2

Table 3. Answer to query 2: the probability for the lane’s driving direction

given the evidence A (expressed on the first three columns).

GPS map video l1 l2 l3

GoingUP STWR SDD P (l1:Down|A) P (l2:Down|A) P (l3:Down|A)

0 0 0 0.98 0.99 1.00
0 0 1 0.98 0.99 1.00
0 1 0 0.50 0.5 1.00
0 1 1 0.05 0.5 1.00
1 0 0 0.00 0.00 0.00
1 0 1 0.00 0.00 0.00
1 1 0 0.00 0.50 0.99
1 1 1 0.00 0.50 0.99

In this work the queries presented in Table 2 and 3 were run off-
line. However, for small size scenarios they could be executed in real
time.

A network is generated for each individual; in total we have five
individuals: 3 lanes, 1 vehicle and 1 divider. The generation of the
resulting network is a non-trivial task that is obviously simplified by
the use of a probabilistic description language.

(a) (b) (c)

Figure 4. Three traffic scenarios.

5 Concluding remarks
In this paper we have extended our previous efforts on encoding spa-
tial domains with a probabilistic description logic. We still employed
CRALC as the basic description language but added features that af-
fect the translation of terminologies into Bayesian networks; namely,
we added the ability to handle the role hierarchies and the disjoint
concepts that appear in spatial domains. The development of more
general inference algorithms is the object of our future work.

Overall, the representation of qualitative spatial reasoning with de-
scription logics is a recent endeavour [8]. The major difficulty of this
task, which we still face in our work, is the representation of tran-
sitive relations. Decidability of description logic representations of
spatial formalisms were investigated in [20, 8] for a combination of
ALC with a decidable constraint system (called ALC(C), where C
is the constraint system). The investigation of probabilistic exten-
sions of ALC(C), and whether decidability is maintained, is an in-
teresting issue for future research.
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