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Abstract—Typically, the spatial features of a robot’s environ-
ment are specified using metric coordinates, and well-known
mobile robot localisation techniques are used to track the
exact robot position. In this paper, a qualitative-probabilistic
approach is proposed to address the problem of mobile robot
localisation. This approach combines a recently proposed
logic theory called Perceptual Qualitative Reasoning about
Shadows (PQRS) with a Bayesian filter. The approach herein
proposed was systematically evaluated through experiments us-
ing a mobile robot in a real environment, where the sequential
prediction and measurement steps of the Bayesian filter are
used to both self-localisation and self-calibration of the robot’s
vision system. The results demonstrate that the qualitative-
probabilistic approach effectively improves the accuracy of
robot localisation, keeping the vision system well calibrated
so that shadows can be properly detected.

Keywords-Qualitative Spatial Reasoning; Bayesian Filtering;
Mobile Robot; Self-localisation.

I. INTRODUCTION

Navigation is one of the challenges for autonomous mo-
bile robots. Four distinct skills compose navigation: per-
ception, localisation, cognition, and motion control [17].
Although a significant amount of work on mobile robot nav-
igation has been done, systems that can handle uncertainty
are still a challenge today. The information gathered by a
robot is invariably incomplete and uncertain, usually due to
partial observability or noisy sensors.

In this paper, the goal is to perform localisation under
uncertainty, by reasoning with information from images that
contain shadows. The localisation problem is characterised
as position tracking assuming that an initial qualitative robot
pose is given. The environment is static, with a fixed light
source, and the mobile robot is able to move and get
frames from its camera. Previous studies have addressed the
problem of qualitative region localisation using information
from shadows. We address the localisation problem using a
combination of qualitative and probabilistic techniques.

We employ the theory of Perceptual Qualitative Rela-
tions about Shadows (PQRS), proposed in Ref. [15], to
reason about relations between cast shadow and objects.
This particular formalisation allows the robot to infer its
qualitative position with respect to the fixed light source
and the object. Although the formal theory can describe

all possible locations the robot might be, a major issue
arises when the vision system extracts the shadow from the
scenes: the camera is rather noisy and therefore a threshold
parameter must be fine-tuned in order to correctly detect the
shadows. A method to overcome this issue was proposed in
[7]1, where beliefs about the robot’s previous location were
used.

The present paper extends that previous work by combin-
ing the qualitative beliefs defined by PQRS with a Bayesian
filter. In this approach, the qualitative beliefs represent the
prediction, whilst the extracted object and shadow observed
in the image represent the measurement update. Addition-
ally, the filter is able to make predictions not only about the
robot’s localisation, but also about the best threshold value
to be used with the next image to be captured by the robot.
Our empirical results clearly demonstrate that the proposed
approach considerably enhances the accuracy in localisation
when compared to [7].

This paper is organised as follows. Section II outlines
related work, discussing the state of the art. Then, the PQRS
approach used in robot self localisation is briefly introduced
in Section III. Next, the proposed probabilistic approach
to PQRS with a Bayesian filter approach is detailed in
Section IV and V. Finally, Section VI describes the experi-
ments performed, results and discussions, while Section VII
concludes this paper and presents possible future directions.

II. RELATED WORK

Renaissance painters have always exploited the effect
of shadows in the human depth perception [3]. However,
only on the 21%¢ century researchers begun investigating
the cognitive processes involved in utilising shadows as
cues for external world perception [5], [12]. Shadows carry
information about presence, location, as well as intensity
of the light source. Moreover, shadows provide information
about the caster (object), its shape and texture. Besides,
the distance between caster and screen can be hypothesised
given whether or not the caster and the shadow appear to be
in contact with each other. The information about shadows
enhances detection techniques in Geographic Information
Systems, even improving the detection of buildings [2]. In
Ref. [4], a system is described that determines the 3D shape
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Figure 1: Representation of PQRS relations from several
points of view: an object caster and its shadow cast assume
different relations.

of known vertical objects using information from moving
shadows cast on the ground. The work presented in Ref.
[1] shows that using a single shadow from a fixed light
source can provide a similar disambiguation effect as using
additional cameras for human pose recognition. In robotics,
cast shadows have been used as a cue in trajectory control
[6], and in tracking the position of a robot’s arm [8]. In [15],
a mobile robot employs a qualitative self localisation routine
using a representation of cast shadows in terms of a spatial
formalism based on occlusion relations.

The first idea of qualitative self-localisation was presented
by Ref. [11], where a topological map was formed by spaces
bounded by sets of lines connecting pairs of pointwise land-
marks. Later, several efforts [9], [16], [19] developed spatial
representation behind this idea. In particular, Fogliaroni et
al. [9] considered extended convex objects to be handled
as landmarks and the decomposition of navigable space is
based on the model of occlusion and visibility. Following
similar ideas, we have in previous work [7], [15] proposed
a qualitative spatial theory named Perceptual Qualitative
Relations about Shadows (PQRS), that has been used in the
task of robot self-localisation. As the present work builds
upon this theory, it is presented in more detail in the next
section.

III. PERCEPTUAL QUALITATIVE RELATIONS ABOUT
SHADOWS (PQRS)

The PQRS theory [7], [15] provides a formalism that can
be used to reason about shadows from a particular viewpoint.
The theory relates shadows with occlusion using seven
occlusion relations from the Region Occlusion Calculus
(ROC) [14], here defined with respect to the light source,
the caster and its shadow. The set of relations for a caster o,
its shadow s and a viewpoint v defined by PQRS includes
the Region Connection Calculus (RCC) [13] and a subset of
ROC, as follows:
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Figure 2: The Conceptual Neighbourhood Diagram of RCCS8
relations representation.

PartillyOccludesT PP(o, s,v)
TotallyOccludesT PPI (o, s,v)
TotallyOccludesEQ(o, s,v)
TotallyOccludesNTPPI(o, s,v)

A graphical representation of these relations is shown in
Figure 1.

Besides relations about occlusion, PQRS includes one re-
lation about shadows, Shadow(s, o0, Scr, L), that represents
that a shadow s is cast by a caster o, from the light source L,
on the screen Scr. The axiom constraining the Shadow/4
relation is represented by the following formula:

Shadow(s, o0, Scr, L) +» —=30" (0 # o')A (1)
Occludes(0’,0, L) A PO(region(s), region(Scr))A
TotallyOccludes(o, s, L).

Formula 1 states that the shadow of a caster o is the region
in a screen Scr that is totally occluded by o from the light
source viewpoint L (if there is no other object o’ occluding
o from L).

Informally, there are three relations between shadows and
objects. The first relation, free of occlusions (NonOccludes),
is defined when the viewer v can see the whole shadow cast,
which can be seen in the image as being disconnected (DC)
from or externally connected (EC) to the caster. The second,
partial occlusion (PartiallyOccludes), is defined when the
caster covers part of shadow cast and hence the shadow cast
appears in the image as overlapped by the caster. Finally, the
third relation, total occlusion (TotallyOccludes) is defined
when, from the viewpoint v, only the caster can be observed
in the image, because the shadow cast is totally occluded by
caster.

The PQRS theory inherits a central concept from the
RCC8 calculus [13]: the continuous transitions between
relations are represented by the Conceptual Neighbourhood
Diagram (CND), depicted in Figure 2 [10]. Continuous
transitions are represented by arrows between neighbour
relations; only connected regions can assume neighbour
relations. For instance, two disconnected regions x and y
(DC(x,y)) will never overlap without having previously
been externally connected (EC(z,y)).
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Figure 3: The representation of the qualitative map with five
distinct regions, showing both sides (right, left) and regions
(1, 2, 3, 4 and 5). The lines of sight between the light L, the
caster O and its shadows define boundaries between regions

Relations expressed by PQRS divide the space into five
distinct regions obtained from the distinctions of the per-
ceived relations between a caster and its shadow’s top.
This qualitative map is shown on Figure 3, in which for
each region the robot perceives a distinct relation between
object-shadow. Hence, any viewpoint v located in Regioni
observes the shadow’s top top(s) and the object caster o
as NonOccludesDC' (o, top(s), v). Similarly, in Regions, v
perceives object-shadow as NonOccludesEC (o, top(s),v).
When the v 1is located on Regions it perceives
PartiallyOccludesPO(o,top(s), v), while on Region, the
shadow appears as a strip on the side of its caster, so it is
perceived as TotallyOccludesT PPI(o,top(s),v). Finally,
in Regions the shadow is behind the object, thus, v per-
ceives TotallyOccludesNTPPI (o, top(s),v).

As we can observe, the motion throughout the envi-
ronment represented by the qualitative map follows the
continuous transition in the Conceptual Neighbourhood Di-
agram. As the robot navigates from Region; to Regions, it
observes the relation sequence EC, DC, PO, TPPI, NTPPI
between the object and its shadow on the image. This
continuous change on perception (due to robot motion)
is called qualitative motion. The changes in perception
occur constantly while the observer moves. In the boundary
between regions the features perceived are similar. This
implies that at their borders, it is hard to distinguish between
two regions. This problem is reflected in our results as we
shall see further in this paper.

IV. PROBABILISTIC INFERENCE

PQRS is defined on a first-order logic language, and
therefore it is not able to handle sensor uncertainty. On the
other hand, the robot’s vision system, besides being noisy
in general, is dependent on the threshold which is a key
parameter to object-shadow segmentation. Thus, inferences
within PQRS are dependent on the image segmentation. In

order to achieve a good segmentation, it is necessarily to find
appropriate thresholds as the robot changes its position. In
this work, we extend the PQRS theory combining it with a
Bayesian filter. This filter is used to provide an estimation for
the robot’s location and the best shadow-caster segmentation
threshold, given the robot’s current state (i.e., the robot’s
location wrt a region on the map shown in Figure 3).

We refer to belief distributions as the posterior probabil-
ities over state variables, conditioned on the available data.
We use the notation bel(s;) := P(s¢|eq.t); that is, the belief
bel(s;) is the probability of a state (s) given all evidence (e)
until an instant (¢). In this work, the state s; indicates the
region where the robot is located and (e) represents evidence
obtained from the images. This evidence is denoted in terms
of PQRS relations. Thus, we need to find the value of s;, and
also of T'h (threshold used to extract shadows from images)
that maximises bel(s;).

In order to compute the beliefs, we use:

bel(st) = P(st, Thleo.t)
= P(Sthh|eO:t71aet)
= nP(ey, Th|se, e0.e—1)P(s¢|eo:t—1),

where 7 is a normalisation constant. Using the Markov
hypothesis, the next state is independent of earlier measure-
ment eg.;_1; hence:

bel(st) = ’I’]P(et,Th|5t)P(St‘€0;t_1).

This expression is the measurement update [18]. The term
P(et, Th|st) is, basically, the image model. The posterior
belief P(s¢|ep.t—1) = bel(s:) should be calculated before
incorporating the evidence e;. The term P(e;, Th|s;) incor-
porates the new evidence (e;).

The posterior belief P(s:|eq.+—1) represents a one-step
prediction of the next state s;, obtained by conditioning on
the previous state s;_;. Consequently,

bel(sy) = z P(st|st-1,€0:—1)P(st—1|eo:—1)

St—1

= Z P(s¢|st—1)P(st—1]€0:t—1)-

St—1

In the previous expression, the term P(s¢|s;—1) is the state
transition probability. In this work mowv, is a qualitative
motion throughout the five regions represented in Figure 3
and it could be either clockwise or counterclockwise. The
state s; is a Region; in which ¢ = 1,2,3,4,5. The term
P(s¢|s¢—1, mov;) is defined on Table I and represents the
transition model P(s¢|s;—1). We then obtain P(s;_1|eg.+—1)
by conditioning on Th:

P(si-aleo—1) = Y P(si—1, Thleo:s—1).
Th



Figure 4: Example of shadow-caster segmentation.

Therefore, the posterior belief (or prediction) is the combi-
nation of previous expressions:

bel(s:) = P(selsi-1) > P(si—1,Thlegs—1).

St—1 Th

Finally, the belief is given by:
bel(s;) = nP(es, Th|s;) = bel(s;).

V. THE SELF-LOCALISATION, SELF-CALIBRATION
ALGORITHM

The robot estimates its relative location using a monocular
colour camera. From its viewpoint, the robot perceives a
relation between shadow and object. The PQRS theory then
gives the robot the ability to infer its position.

A threshold on light intensity segments the image into
object and shadow. We use a morphological operator and
saturation values to perform segmentation; after that, the
algorithm looks for the shadow connected to the object’s
base. If more than one shadow is connected to object, the
nearest shadow of light are discarded. Figure 4 shows an
output of this segmentation procedure.

Algorithm 1 initialises the system with an uniform uncer-
tainty about robot position (line 1). Line 2 runs a threshold
calibration, assuming a good shadow-caster recognition on
first frames. The frame sequence is represented by t.

Then, Algorithm 1 calls repeatedly Algorithm 2. Algo-
rithm 2 returns the evidence with maximum probability from
P(E). In Algorithm 2, PQRS relations between shadow-
caster are evaluated by some detected features, such as the
degree of connectivity between the side shadow’s top and the
caster, the degree of connectivity between shadow-object,
the shadow’s bounding-box sizes and the relative position
to the object’s bounding box. It returns the relation with
the greatest number of features perceived. The evidence can
be DC, EC, PO, TPPI or NTPPI. If the object has
no shadow cast, only the relation NTPPI is analysed. Then,
given the evidences, line 5 in Algorithm 1 calculates beliefs
for all five regions (here represented by S;) and a threshold
range ([Th —5,Th + 5]). Line 6 gives the results about the
current region (s;) and the threshold (T'h) to be used in the
next image. The two last lines in Algorithm 1 run a Bayesian
prediction step, calculated by line 8, in which current beliefs

Algorithm 1 THRESHOLD — AND — POSITION()

1: bel(S1) = P(Sp) =1[0.2,0.2,0.2,0.2,0.2]

2: Calibration(th,Scene, /)

3: while (1) do

4: e < max PERCEPTION — ACTION(th,image, v)
5. bel(S;) = P(S¢, Thleo.t) = P(et, Th|Sy) * bel(Sy)

6:  (st,th) «— argmaxs, +n P(St, Thleo:t)

7T: i(St|et) — ZTh P(St7Th‘60;t)

8: bel(Sz+1) = ZSt P(StJrl‘St)P(Szlet)

9: end while

Algorithm 2 PERCEPTION — ACTION (th, Scene, v)

Segment  Scene  using the threshold th to
obtain a <caster O and the top of its shadow
top(S).

1: if caster and shadow were found then
2:  P(e=DC)+— NODC(O,top(S),v)
P(e = EC) «— NOEC(O,top(S),v)
P(e = PO) «— POPO(O,top(S),v)
P(e = TPPI) «— TTPPI(O, top(S),v)

if only caster was found then

3

4

5

6: else
7

8 P(e = NTPPI) +— TNTPPI(O,top(S),v)
9

else
10: return e;_q;
11:  end if
12: end if

13: return argmax. P(E);

for all states (given the evidence) was calculated in line 7.
The probability of the next states (given the current state) is
the motion model given by Table I (as we shall see further
in this paper).

In Algorithm 1 we have abbreviated the PQRS
relations, as follows the NODC(O,top(S),v) represents
NonOccludesDC o, s,v), NOEC(O,top(S),v) repre-

sents  NonOccludesEC(o,s,v), POPO(O,top(S),v)
represents  PartillyOccludesPO(o,s,v), TTPPI(O,-
top(S),v) represents TotallyOccludesT PPI(o,s,v)

and, TNTPPI(O,top(S) represents TotallyOccl-
udesNTPPI (o, s,v).

The Bayesian filter handles two probability models, the
sensor model and the transition model. In Algorithm 1 our
sensor model is the image model (line 5). The motion model
represents the transition between regions in the map and is
used on the posterior belief’s calculation (line 8). Now we

describe how the image and motion models were designed.

A. The image model

The image model is represented by P(es, Thls;), that
indicates what we should expected from sensor data when
in a give state. In this work, each evidence are linked to a
region and this idea is formalised within the PQRS theory.



However, the evidences are dependent of the vision system
threshold. In this way, we need a model that indicates the
frequency that a threshold gives the right evidence to each
region. That was obtained from a set of images. A set
of images captured by the robot was obtained for each
region where the robot could located. On these sets the
target object-shadow were always on the scenes observed.
This guarantees that evidence was always available to be
perceived by vision system, during the evaluation of the
image model. For each threshold value, the sets of images
were analysed. The results form a matrix with information
about the percentage of right answer found per threshold.

B. The motion model

The transition or motion model represents the changes be-
tween the robot’s states, given a moving action. Considering
the qualitative map (Figure 3), and steady-speed clockwise
motion around the target object-shadow, the probability of
the changes between regions are mostly dependent on the
regions’ sizes. Therefore, the larger the region, the higher is
the probability that the robot stays on it. This is represented
by the numbers shown on Table I. The multiplying factor
w represents perceived shadow features that modulate the
probability for a state change. This can be understood by
taking into account that, in this work, the robot’s motion
is inferred from image changes with respect to shadow
features. When the robot approximates a borderline region,
the detection of shadow features related to the next region
should increase the probability of a state change.

VI. EXPERIMENTS AND RESULTS

In our experiments, a Pioneer Peoplebot mobile robot
collected snapshots in an office-like environment. In order
to compare results, we used the same data as in Ref. [7].
Images were captured by the camera into a HSV colour
space. The shadow-object detection was performed with a
threshold filter on V.

Algorithm 1 uses the belief about the robot’s location and
what is perceived from the scene. This algorithm gives both
the robot state and the threshold. The robot was teleoperated
and could start in any of the regions indicated in Figure 3.
While the robot navigated around the object, the operator
marked the real region (gold standard) to compare with the
robot answers.

The approach presented in this paper was applied to 587
snapshots of the target object-shadow. The results on the
localisation procedure (on the map shown in Figure 3) are
presented in a confusion matrix (Table II). Each column
represents our system’s outputs while the rows represent the
actual region that the robot was on (according to the gold
standard).

In Table III, rows refer to the true location for each image
(regions 1, 2, 3, 4 and 5). The column #image is the number
of images captured for each region. The results from [7] are

Table I: The motion model considering robot clockwise
navigation. This model is based on transition regions.

States st =1 st =2 st =3 st=4 | st =5
clockwise
st—1 =1 right 09w 0,1w 0 0 0
st—1 = 2 | right 0,01w 0,8w 0,19w 0 0
st—1 =3 | right 0 0,01w 0,75w 0,24w 0
st—1 =4 | right 0 0 0,01w 0,70w 0,29w
St—1 =5 0 0 0 0,35w 0,65w
st—1 =4 left 0 0 0,29w 0,70w 0,01w
St—1 =3 left 0 0,24w 0,75w 0,01w 0
St—1 = 2 left 0,19w 0,8w | 0,01 w 0 0
st—1 =1 left | 0,99 w 0,01w 0 0 0

Table II: The result of the experiments of self localisation
using a Bayesian filter and perceptual qualitative reasoning
about shadows.

Regions | Regioni | Regiona | Regions | Regiong
Regioni 97% 2% 0% 0%
Regiona 25% T4% 1% 0%
Regions 9% 21% 66% 4%
Regiong 6% 0% 8% 86%
Regions 0% 0% 35% 65%

represented on the column “knowledge based”. The results
shown in column “Belief based” refer to the percentage of
right regions returned by the framework presented in this
paper. The global performance of the current experiments
presents an increase from 58% (obtained in Ref. [7]) to 80%.
On the boundary between two regions (where the shadow-
caster features give equal evidence for two locations) the
system chooses the first region as the robot’s location. This
choice reflects positively on Regions 1, 2 and 4, but on
Regions 3 and 5 the accuracy decreased in comparison to
our early experiments.

Table II shows that the highest number of false negatives
for Regions was related to locating the robot on region
2 (21% of the cases). Part of this error is due to the
borderline problem explained above. Another issue is that
the system presented in this paper never detected when the
robot was located on Regions. This poor performance on
Regions is due to the motion model, where the relation
Totally Occludes was not considered in the composition
of the weight w (because the weight is calculated on the
existence of shadows).

We are currently investigating possible solutions to the
borderline problem and to the issue of detecting Regions.



Table III: Percentage of correct answers from the
knowledge-based and our qualitative Bayesian filter, where
“# images’ is the number of snapshot to region

Regions | # images | Knowledge based (%) | Belief based (%)
Regiony 225 66 97
Regiona 171 34 74
Regions 138 80 66
Regiong 36 44 86
Regionsg 17 59 0

Global 587 58 80

VII. CONCLUSION

In this paper we have presented an approach to robot
localisation using information about shadows in images,
where we combined a probabilistic Bayesian filter with a
qualitative spatial representation. Our method uses an adap-
tive threshold with a Bayesian filter to produce better results
than a purely qualitative localisation approach. Moreover,
considering that the dataset used was composed of 30%
of images where self-localisation was impossible (since the
target object was not present in these data points), our
algorithm had a performance of around 80% over all images.
This suggests the robustness of a probabilistic approach to
infer qualitative facts about space.

Future work shall consider an extension of the method
proposed in this paper in order to allow robot self-
localisation within an environment with various objects and
their shadows.
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