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Abstract. Knowledge embeddings are key ingredients of advanced question-
answering and recommender systems. Even though their predictions are ac-
curate, they are rather hard to interpret by human users; interpretability tech-
niques are needed so as to provide meaningful human-friendly explanations
for prediction generated by embeddings. We propose a novel model-agnostic
method inspired by local surrogate approaches that generates faithful explana-
tions for knowledge embedding predictions.

1. Introduction
Large-scale Knowledge Graphs (KG), such as Freebase [Bollacker et al. 2008], are of-
ten built by automatic knowledge base construction [Nickel et al. 2016]. Automatic KB
construction aims at extracting factual information from unstructured or semi-structured
textual data typically using natural language processing (NLP) techniques. A KG built
automatically, although less dependent on human experts than curated KGs, has usually
limited applicability due to missing or incorrect facts. The collaborative construction of
KGs may also lead to missing or incorrect data that may be unknown by the volunteers
filling the KG. For instance, the place of birth attribute is missing for 71% of all people in
Freebase [Murphy et al. 2012], a KG that is constructed collaboratively.

Knowledge base completion has received significant attention
[Nickel et al. 2016]; most techniques are based on the assumption that statistical
regularities pervade the collection of known facts and, once identified, they can be used
to infer new information. While some methods are based on graph feature models,
e.g. Subgraph Feature Extraction (SFE) [Gardner and Mitchell 2015] and Path Ranking
Algorithm (PRA) [Lao et al. 2011], others are based on knowledge embeddings, e.g.
TransE [Bordes et al. 2013]. Knowledge embeddings (KEs) map entities and relations to
a real-valued vector space where simple arithmetic operations are used to complete the
KG.

Knowledge Embeddings also represent a promising approach for question-
answering [Huang et al. 2019] and recommender systems [He et al. 2017]. Even though
knowledge embeddings can lead to accurate recommendations or responses, a high degree
of interpretability is also needed either for the user to effectively accept a suggestion or to
agree with an answer. However, KE results are hard to interpret as they are represented
by operations in a real-valued space.

On the other hand, graph feature models, e.g. SFE, even though not as accurate as
knowledge embeddings, usually produce highly interpretable explanations for their link
predictions [Nickel et al. 2016]. Graph feature models have recently been used generate
explanations for KEs, but their explanations have low fidelity [Gusmão et al. 2018]. Other



approaches offer transparency on the underlying embedding but, despite understand-
able by experts, their explanations are not meaningful for most users [Xie et al. 2017]
[Kazemi and Poole 2018].

This paper aims at developing and evaluating a novel method for human-friendly
explanations for knowledge embeddings in a model-agnostic and faithful manner. To
achieve this goal, we explore a local surrogate approach that has produced promising
results in non-relational classifiers, e.g. LIME [Ribeiro et al. 2016]. Our proposal pro-
vides insights into the development of local scoped explanation techniques for explainable
knowledge embeddings, in contrast to previous efforts in the literature that have focused
on global explanations [Gusmão et al. 2018].

The paper is organized as follows. Section 2 and 3 presents some notation and
terminology followed by some theoretical foundations about knowledge graphs and in-
terpretability, respectively. Section 4 discusses related works and highlights the research
gap. We then propose in Section 5 our explanation method. Finally, we discuss empirical
results in Section 6, and offer some concluding remarks in Section 7.

2. Knowledge Graphs
In this paper, we follow loosely the RDF notation [W3 ], focusing on relational databases
where a triple representing a fact is written as 〈h, r, t〉 where h, r and t are, respectively,
the subject (head), predicate (relation) and object (tail). A knowledge graph KG consists
of the set of all entities E = {e1, . . . , eNe}, and the set of relations R = {r1, . . . , rNr},
where Ne and Nr represent the number of entities and relations in the KG, respectively.
The existence of a triple xh,r,t = 〈h, r, t〉 is indicated by a random variable yh,r,t ∈ {0, 1}.

Several approaches have been developed to address the task of Knowledge
Base Completion (KBC). The main assumption behind those methods is that it is pos-
sible to predict new facts from a statistical model based on existing facts (triples)
[Nickel et al. 2016]. There are two major approaches for KBC: the first one focuses on
on observable graph features, while the second one works by converting semantically
rich factual information into low-dimensional vector spaces. We now examine both ap-
proaches.

2.1. Graph Feature Models
These models aim at predicting new triples by extracting features from the observed graph
[Nickel et al. 2016]. For instance, a number of popular techniques based on graph feature
models are derived from the Path Ranking Algorithm (PRA) [Lao et al. 2011]. In par-
ticular the Subgraph Feature Extraction (SFE) [Gardner and Mitchell 2015] method has
displayed promising performance and computational efficiency. SFE works by perform-
ing random walks to extract path patterns connecting two entities, to latter construct a
feature matrix to be used as input of a classifier to predict new triples.

We define πl as a path type composed of a number L of arbitrary relations (edges
of the graph) in the form r1−r2−...−rl. To extract the features for a given triple 〈eh, r, et〉,
SFE operates by searching values for paths πl. One traditional approach is to search for
PRA-styled features or paths πl connecting head eh and tail et entities, where the existence
of each path is the feature value. Another more expressive approach is to search for the
tail entity eπ where the head is eh and πl is the path connecting them. Therefore, the



feature vector for a given entity eh is represented by φh = [eπ : π ∈ ΠL], where ΠL is the
set of all possible paths of length L; this approach is known as one-sided path features.
The features extracted by SFE can be considered as Horn clauses and assume the form of
bodies of weighted rules, that is considered easily interpretable [Nickel et al. 2016].

2.2. Knowledge Embeddings (KEs)
Approaches based on Knowledge Embeddings (KE) now display state-of-the-art per-
formance in KBC. KEs offer expressive representations for multi-relational graphs
[Wang et al. 2017]. The main intuition behind KEs is that interactions of latent features
can represent actual relationships [Nickel et al. 2016]. Because these interactions can be
both diverse and complex, many models have been proposed, each one with distinct char-
acteristics [Bordes et al. 2013] [Wang et al. 2014].

Each model defines a particular scoring function fr(h, t | Θ) to measure the plau-
sibility of fact 〈h, r, t〉, where Θ contains the parameters. Embedding models build the
latent features through an optimization process that maximizes the total plausibility of all
known facts. The training is carried out either under the open world assumption (OWA)
or closed world assumption (CWA) [Nickel et al. 2016]. The OWA considers a missing
triple as simply unknown, whilst CWA considers missing facts as negative. In this paper
we consider OWA KGs.

3. Interpretability
Several techniques have been developed to help in understanding how complex models,
such as Deep Neural Networks and Random Forests, make their predictions. These tech-
niques can be divided in two groups: model-specific and model-agnostic. The first one
is bound to specific class of models; these techniques usually have access to internal or
structural information about the explainee. On the other hand, the model-agnostic tech-
niques can be applied to any machine learning model, as they consider the explainee as a
black-box, i.e. do not make any assumptions about its internal behavior.

A popular model-agnostic approach is the construction of interpretable surrogate
models. These surrogate techniques vary in scope: some aim to explain the model of
interest as a whole (a global or holistic approach) while others focus on a single or set of
predictions.

3.1. Global Surrogate
The global surrogate technique consists of training an intrinsically interpretable model
using the black-box predictions as ground truth, so that the global surrogate mimics the
black-box model. If the global surrogate is intrinsically interpretable, explanations about
the black-box model can be drawn from it. However, because the black-box model is
presumably complex, it is not to be expected that another model (the global surrogate)
can mimic its behavior in a faithfully manner while remaining simple and interpretable.
Also, if a faithful interpretable model is achieved, one could ask why keep the black-box
model itself.

3.2. Local Surrogate
One popular model-agnostic strategy consists of reducing the scope of the surrogate
model [Ribeiro et al. 2016]. The interpretable model is then expected to mimic the black-
box behavior only partially.



The main intuition behind local surrogates is that an interpretable and simple
model should be faithful to a complex model at least locally. For instance, suppose that
one intends to use a local surrogate to explain a single prediction of a black-box. First,
the input data of interest is perturbed, generating a set of variations of the original data
or “neighborhood”. This set of data points around the original input are then fed to the
black-box model that provides labels. Finally, an interpretable surrogate model is trained
considering the data points around the original input and their respective labels given by
the black-box.

Formally, local surrogate models with interpretability constraints are defined as
follows:

explanation(x) = arg min
g∈G

L(f, g, dx) + Ω(g). (1)

The explanation given for the instance x is the interpretable model g∗ ∈ G, whereG is the
set of all possible models that minimizes the loss function L and the complexity constraint
Ω. The loss function measures the unfaithfulness of the surrogate model g to the black-
box function f considering the neighborhood around instance x limited by the distance
parameter dx. The complexity function Ω balances the trade-off between interpretability
and fidelity; it may be for instance a measure of model sparsity.

It is worth noting that if Expression (1) covers the entire training set instead of the
neighborhood dx, the resulting model g∗ would correspond to a global surrogate.

One of the most popular local surrogate techniques is LIME [Ribeiro et al. 2016].
Roughly speaking, LIME runs a sensitivity test around the instance of interest, then it
presents as explanations the most significant features for each label. Even though it is
effective in producing explanations virtually for all kinds of data, e.g. tabular, textual or
visual data, LIME is limited to non-relational classifiers. LIME explains based on the
assumption that features themselves are interpretable, a weak assumption in the context
of embeddings. For instance, LIME, when applied to a binary text classifier, produces
explanations such as “Word XYZ is significant for the prediction”; similarly, when applied
to embeddings, LIME explanations would be such as “Dimension 123 is significant for
the prediction” — a sentence that is hard to interpret because the dimensions are latent
features and, thus, convey no meaning for users.

The dimensions of an embedding are part of the underlying structure of the model,
so explanations should rely only on features from semantic field instead. Multi-relational
classifiers, such as knowledge embeddings, require techniques for mapping real-valued
latent features to the semantic field in order to produce human-friendly explanations; this
issue is addressed in Section 5.

4. Related Work
Many proposals related to the interpretability of knowledge embeddings fol-
low the model-specific approach, e.g. ITransF [Xie et al. 2017], SimplE
[Kazemi and Poole 2018] and CrossE [Zhang et al. 2019].

SimplE model claims that each dimension of an entity embedding can be consid-
ered a feature and the correspondent element of a relation representation is a measure
of how important that feature is to the relation. Even though this characteristic pro-
vide a certain degree of transparency, it does not seem to be really interpretable. The



Table 1. Comparative summary of related works

Method Human-friendly Model-Agnostic Faithful

SimplE No No -
ITransF No No -
CrossE Yes No Yes
XKE Yes Yes No

model allows one to include background knowledge into the embeddings, however since
its interpretability focuses embedding dimension, it is not possible to drawn meaningful
explanations for its predictions.

Similarly to SimplE, ITransF model also deals with interpretability on latent fea-
tures level. ITransF proposes a sparse attention mechanism to represent shared concepts
among relations. For instance, both relations “nominated for” and “honored for” repre-
sent a concept of high quality work even as they are distinct. The attention mechanism of
ITransF allows the identification of latent features, or concepts, however as these features
are given in the embedding level, they are not really interpretable. Back to our example,
even though we identify a strong link between the relations “nominated for” and “hon-
ored for”, it is hard to infer what is the actual concept shared. Despite SimplE and ITransF
techniques provide a certain degree of interpretability, as their insights are mostly related
to the embedding internal structure and are given in terms of real-valued vector or heat
maps, their explanations are only understandable by data scientists or by experts.

On the other hand, the CrossE model exploits a particular type of interaction be-
tween relations and entities called crossover interactions (CI) to explain embedding pre-
dictions in the semantic field instead of the real-valued one. For instance, suppose one has
to explain the triple 〈personX, isFatherOf, personZ〉. An explanation that supports
this triple could be the path hasWife−−−−→ hasChild−−−−→ connecting head and tail entities. Despite
being highly interpretable [Gardner and Mitchell 2015] and faithful, once these support
paths are reconstructed considering the embedding, CrossE method cannot explain all
predicted triples; it is also not affected by negative instances.

In contrast to the model-specific approaches described previously in this section,
the XKE method [Gusmão et al. 2018] is a model-agnostic. XKE consists in training a
global surrogate logistic regression on SFE graph features while using the embedding
labels, so that explanations can be drawn from the interpretable classifier. Even though
XKE is easy to interpret, it displays relatively low fidelity [Gusmão et al. 2018].

As presented in Table 1, it is possible to identify a research gap regarding expla-
nation methods for knowledge embeddings that are both model-agnostic and faithful.

5. A Proposal for Faithful Model-Agnostic Explanations

Our proposal is a novel model-agnostic explanation method for knowledge embeddings,
inspired by the local-surrogate approach as adopted by LIME [Ribeiro et al. 2016]. We
address a series of challenges due to the complex nature of embedding techniques and
provide a method to effectively produce faithful explanations for link predictions.



Explanations drawn from local surrogates usually are given in form of weighted
features, what implies that the feature itself must be meaningful for the user. Even though
this is true for most traditional classifiers, in some cases, e.g. knowledge embeddings,
the features considered by the model to realize their predictions are too complex to be
comprehensible or bear no explicit meaning for the target audience. For instance, while a
machine learning practitioners may feel comfortable when analyzing vector dimensions,
a layman shall prefer a small list of reasons instead.

Knowledge embeddings map semantic rich input (entities and relations) into nu-
meric representations that carry no meaning for humans, thus, latent features or embed-
ding dimensions are inappropriate for human-friendly explanations. Furthermore, it im-
plies that the features in the explanations need to be different than the features (real-valued
vectors) used by the knowledge embedding. To address this issue, we argue that the
knowledge embedding itself can be used to extract interpretable representations for entity
embeddings, so that we can generate meaningful explanations while remaining faithful to
the model. This feature extraction procedure is described below, but first consider some
important definitions.

The knowledge embedding, for top-1 tail prediction task, can be defined as a set
of black-box classifiers gr ∈ G, one for each relation r ∈ R, where gr(h|Θ) returns the
tail entity et ∈ E that gives the greatest plausibility score fr for the triple 〈eh, r, et〉. That
is,

gr(h|Θ) = arg max
ei∈E

fr(eh, ei | Θ). (2)

As there exists a real-valued vector representation for each entity ei ∈ E in the
knowledge embedding parameters Θ, i.e. ∃êi ∈ Θ, ∀ei ∈ E , we can define the classifier
function gr so that it takes as input the head entity embedding. That is,

gr(êh) = arg max
êi∈Θ

fr(êh, êi). (3)

We have defined gr(êh) as a classifier that takes the head entity embedding êh (or
tabular data) and outputs the most plausible tail entity (or label), thus gr and a tabular data
traditional classifier are alike.

Example 1 To illustrate our definitions, consider the toy example where we realize the
tail prediction for the triple 〈dom pedro ii, religion, ?〉. Let us define:

T = [freligion(epedro, ei | Θ), ei ∈ E ].

sort desc(T) =


catholic
protestant

...
em

 , greligion(pedro|Θ) = catholic. (4)

The list T represents plausibility score calculated for all entities. Thus, to discover
the most plausible candidates for Dom Pedro II’s religion, we sort T in descending order
and identify that he is most presumably catholic, then protestant and so on. Our function
gr returns only the top 1 ranked entity, in this case catholic.



At this point, we should be able to train a local surrogate to gr. However, as its
input is given in term of latent features, i.e. embedding dimensions, we still cannot extract
meaningful explanations. Thus, to proceed we need to answer the following questions:

1. Q1: What should be considered an interpretable representation for entities em-
beddings?

2. Q2: How to extract these interpretable representations from the real-valued vector
space?

To answer the first question we take graph feature models as alternatives
[Gardner and Mitchell 2015]. Even though we consider that other feature types could
be used, e.g. PRA-style features, in this work we opted for one-sided path features due to
its simplicity, and leave such exploration for future works. As described in Section 2.1,
the interpretable representation provided by one-sided path features for an certain entity
eh is φh = [eπ : π ∈ ΠL]. Note the parameter L represents a complexity constraint,
because it limits both the path’s maximum length and the number of features.

Example 2 For instance, consider the comparison between the interpretable representa-
tion of Dom Pedro II φpedro, and its real-valued vector êpedro:

Π2 =


religion

nationality
...

spouse− gender

 : φpedro =


catholic
brazil

...
female

 , êpedro =


0.9
1.2

...
0.1

 . (5)

In order to answer the second question, we propose to use the knowledge embed-
ding itself to extract the graph features. Since each path πl is compound by a sequence
of relations r1 − r2 − ... − rl, where ri ∈ R,∀i ∈ {1, 2, ...l}, we can use our classifiers
gr, r ∈ R (the knowledge embedding itself) to extract the interpretable features for a
given entity embedding.

Example 3 Back to our toy example, we illustrate the embedding feature extraction for
the compound feature spouse− gender of the entity dom pedro ii. First we discover the
spouse of Dom Pedro II using the function gspouse, then we inquire for her gender using
ggender. That is,

gspouse(pedro|Θ) = teresa→ ggender(teresa|Θ) = female. (6)

Once we defined how to map the embeddings to their interpretable representations,
we are ready to proceed. Suppose we wish to explain why et is a plausible tail entity for
the triple 〈eh, r, ?〉. First, we sampleK data points around êh, similarly to LIME applied to
tabular data [Ribeiro et al. 2016], thus generating a dataset Z of perturbed samples ẑk. It
is worth to mention that unlike LIME, we sample around the input original representation,
instead of its interpretable one.

Next, for each perturbed sample ẑk ∈ Z we realize the feature extraction proce-
dure previously described. That is,



Algorithm .1 Explanation Generation
1: procedure EXTRACT-FEATURES(ẑk,ΠL,G)
2: φk = {}
3: for all π ∈ ΠL do . Equivalent to Equation (7)
4: eπ ← ẑk
5: for each edge rj ∈ π do
6: eπ ← grj(eπ)

7: φk ← φk ∪ eπ
8: return φk
9: procedure EXPLAIN-INSTANCE(êh, r, t, L,G)

10: Φ← {}
11: ΠL← GRAPH-FEATURES(L) . Generate set of path features
12: for k ∈ 1, 2, 3, ..., K do
13: ẑk ← SAMPLE-AROUND(êh) . Generate perturbed sample
14: φk ← EXTRACT-FEATURES(ẑk,ΠL,G)
15: Φ← Φ ∪ 〈φk, gr(ẑk), d(êh, ẑk)〉
16: g′r ← SLR(Φ) . Train interpretable classifier with φk as features and t as target
17: Draw explanations from g′r in terms of feature importance

φk = [eπ : gπ(ẑk), π ∈ ΠL]. (7)

As a result of the previous step, we have the interpretable representation φk ∈ Φ
for each perturbed sample z ∈ Z . Finally, we train a intrinsically interpretable classi-
fier, such as a sparse logistic regression (SLR), g′r ←− SLR(Φ) and draw explanations
from it in terms of feature importance, e.g. the top n high-valued coefficients, following
Algorithm .1.

6. Experiments
In this section we present and discuss our empirical results.

6.1. Set-Up

Before we properly evaluate our proposed explanation method, we first need to generate
a knowledge embedding. Therefore, we start by describing the selection of dataset and
model for the embedding, followed by the training procedures and results.

We selected the subset FB13 of Freebase [Bollacker et al. 2008], as it has
been consistently used as benchmark [Gardner and Mitchell 2015] [Gusmão et al. 2018].
FB13 dataset contains 75, 043 entities, 13 relations and a total of 345, 873 triples that
are divided into 316, 232, 5, 908 and 23, 733 triples for training, validation and testing,
respectively.

We selected the model TransE [Bordes et al. 2013] to train our embedding, as it
is a commonly used baseline [Gusmão et al. 2018] [Zhang et al. 2019] and many popular
embeddings models are inspired by it [Wang et al. 2017]. TransE models relationships as
translations on embedding space and the plausibility score function as a distance measure,



Table 2. Embedding Model Training Parameters

Parameter Train times Batches Alpha Margin Dimension Optimizer

Value 1000 100 0.001 1.0 100 ADAGRAD

Table 3. Link Prediction results

Metric MR MRR (%) Hits@1(%) Hits@10(%)
Eval. setting Raw Filt. Raw Filt. Raw Filt. Raw Filt.

No Type Const. 14,571 7,279 26.30 28.26 20.81 23.34 36.47 37.32
Type Const. 12,338 5,047 26.32 28.29 20.82 23.36 36.51 37.38

so that if the summation of the head entity vector and the relation vector is close to the
tail vector in the real-valued space, the triple holds.

The whole system was implemented in Python, with the implementation of TransE
from OpenKE 1. We also employed packages matplotlib 2 and pandas 3.

The TransE model was trained on FB13 following the parameters presented in
Table 2. The resulting knowledge embedding was evaluated on common knowledge base
completion tasks (triple classification and link prediction) [Wang et al. 2019] following
the procedure of [Bordes et al. 2013]. The triple classification accuracy obtained was
79.52%, while the summary overall metrics for link prediction is presented in Table 3. The
metrics obtained by our knowledge embedding are similar to those reported in previous
works [Gusmão et al. 2018].

As a complement to the objective metrics for triple classification and link predic-
tion, we also realized a qualitative analysis on our embedding. Table 4 presents the top 3
entities for sample link predictions using our trained knowledge embedding. One can see
that the predicted tails are coherent, what suggests that the embedding is appropriate.

6.2. Results Discussion

In this section we evaluate our explanation method, so as to answer:

1. Q1: Can meaningful and human-friendly explanations be drawn from the pro-
posed method?

2. Q2: Does the explanation give reasons to both support or deny a prediction?
3. Q3: Are the presented reasons coherent?

As these questions are inherently subjective, their evaluation relies on qualitative
analysis. We assumed that manual inspection of embedding predictions and their corre-
spondent explanations is a suitable evaluation technique for this purpose. Our proposed
explanation method used a L = 1 as maximum path length and a number of samples
K = 5000. The distance function dx considered was an exponential kernel defined on L1
distance. The interpretable classifier used in our test was a sparse logistic regression.

1https://github.com/thunlp/OpenKE
2https://matplotlib.org/
3https://pandas.pydata.org/



Table 4. Link Prediction ranking sample triples

Head Relation Predicted Tails (Top-3)

Jesus religion Judaism, Christian, Christianity
Jesus nationality Israel, Roman Empire, Iudaea Province
Gandhi profession Independence Activist, Political Prisioner, Statesman
Anne Frank profession Writer, Author, Poet

Table 5 presents the top 3 reasons (feature importance on interpretable classifier)
4. For instance, the reasons that supports “Judaism” as Jesus religion are that his ethnicity
is “Jew”, his profession is “Rabbi” and his nationality is from the country “Israel”. The
intuition behind this explanation is that the presented reasons represent features that are
most correlated to the tail entity. The features that are indeed correlated to the tail are
highlighted. Because for all three samples at least one feature is highlighted, we can
observe that our method successfully identified meaningful explanations, answering the
first question (Q1).

In addition, as the interpretable classifier assigns negative weights for features
that denies the tail entity, the most negative coefficients can be interpreted as reasons that
refute the prediction. It is desired for an explanation to present both the pros and cons
reasons for a given prediction, because it offers a broader understanding than presenting
only one perspective. For example, the cause of death (cod) being crucifixion supports
that Jesus religion is “Christian”, while the fact that his ethnicity is “Jew” negates. Our
proposed method successfully identified meaningful pros and cons reasons for all the
samples, what answer the second question (Q2).

It is worth noting that, for a given relation, a positive reason for one tail entity
tends to be a negative against another one. For instance, while ethnicity “Jew” is a fea-
ture that supports the religion “Judaism”, it at the same time discourages the alternative
“Christian”. This characteristic can be interpreted as coherence between features, thus
addressing the third question (Q3).

7. Conclusion

This paper has proposed a novel model-agnostic method for faithfully explaining knowl-
edge embedding predictions. We have also also presented a feature extraction technique
that provides an interpretable representation for multi-relational embeddings. The results
produced by our method support local-surrogate techniques as offering a promising ap-
proach to explain embedding predictions in a human-friendly manner.

The present work is a step towards explainable knowledge embeddings. Future
work should include a comparison between different types of graph features and the ex-
ploration of other approaches for explanation generation, such as counterfactuals, and an
evaluation of explanations with human subjects.

4“ethn”, “prof”, “nat”, “rel”, “cod” and “pob” are abbreviations for “ethnicity”, “profession”, “nation-
ality”, “cause of death” and “place of birth”, respectively.



Table 5. Explanation samples in FB13

Head Jesus Jesus Jesus
Relation Religion Religion Cause of Death
Tail Judaism Christian Crucifixion

Pros (Positive coefficients)

Reason 1 1.03 ethn. → jew 1.03 cod→ crucifixion 0.57 rel. → christian
Reason 2 0.82 prof. → rabbi 0.75 nat. → puerto rico 0.50 prof. → prophet
Reason 3 0.73 nat→ israel 0.50 cod. → air. crash 0.41 pob. → cluj-napoca

Cons (Negative coefficients)

Reason 1 (0.92) nat. → puerto rico (1.05) nat. → israel (1.22) rel. → judaism
Reason 2 (0.4) cod. → crucifixion (0.97) pob. → lahore (0.91) pob. → kabul
Reason 3 (0.27) prof. → prophet (0.75) ethn. → jew (0.77) ethn. → javanese
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