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Abstract
We propose techniques for explanation generation in conver-
sational recommendation systems. The idea is that explana-
tions can be generated by exploring a knowledge graph, but
to improve coverage one must complete the knowledge graph
using embeddings. We present a method that searches for ex-
planations using a knowledge graph and associated embed-
dings; the search is designed to be fast enough to be useful in
an interactive context. We describe experiments that validate
our proposal, showing that it is superior to alternatives.

Introduction
Conversational recommendation systems resort to dialogue
to grasp the user needs and to build accurate recommenda-
tions. Such systems can clearly benefit from the ability to
state reasons for any particular recommendation. Indeed, ex-
planations can increase user’s trust and confidence (Tintarev
2007; Tintarev and Masthoff 2007).

A conversational recommendation system cannot impose
long delays on its users; if an explanation is to be pro-
vided, then it must be produced quickly. No user will wait
a minute to grasp the reasons why a particular product has
been suggested. Alas, the literature on explainable AI has
paid little attention to the time required to generate explana-
tions; existing methods may take dozens of seconds to ex-
plain a single decision (Ribeiro, Singh, and Guestrin 2016;
2018). This may be tolerable during exploratory data analy-
sis, but it is certainly too long for an interactive dialogue.

Recent techniques generate explanations by establishing
connections between chosen and recommended items with
respect to large scale knowledge graphs (Musto et al. 2019;
Alshammari, Nasraoui, and Sanders 2019). However, be-
cause the knowledge graphs themselves are often incom-
plete (Murphy, Talukdar, and Mitchell 2012), many recom-
mendations may remain unexplained due to missing links.

In this paper, we aim at increasing the fraction of recom-
mendations that can be explained by a conversational recom-
mendation system that extracts information from a knowl-
edge graph. We employ knowledge base completion tech-
niques based on embeddings (Nickel et al. 2015) to help
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generate explanations for recommendations. We focus on
embeddings such as TransE (Bordes et al. 2013) as they have
state-of-art performance in knowledge base completion.

In short, we investigate the quick generation of explana-
tions through knowledge embeddings in the context of con-
versational recommendation systems; the embeddings are
used to improve coverage, thus guaranteeing the explana-
tion of more recommendations. We have evaluated our pro-
posal concerning time efficiency to ensure that it is suitable
for interactive scenarios. Furthermore, we have tested our
proposal with human subjects to evaluate the quality of gen-
erated explanations.

The paper is organized as follows. The next section
presents basic material on conversational recommendation
systems, social explanations and knowledge graph embed-
dings. We then propose our explanation method. Finally, we
present our empirical validation set-up and discuss empiri-
cal results in two sections on Empirical Evaluation, and offer
concluding remarks in the Conclusion.

Background
Any rational process, from daily life interactions to scien-
tific discourse, must rely on explanations both as a source of
information and as a cognitive process open for inspection.
Despite their importance, explanations are not usually found
in recommendation systems that employ latent representa-
tions such as matrix factorization (Koren and Bell 2011) or
embeddings (Le and Mikolov 2014). The user only gets sug-
gestions, often produced through complex algorithms, that
she can either adopt or reject without a provided rationale.

We now discuss a few relevant aspects of explanations and
knowledge graph embeddings.

Explanations, Motivations, and the Like
Explanations are essentially communicative processes;
within a communicative process, reasons can explain the
action or point out a motivation for action (Alvarez 2007;
2009; 2010). These two factors are not the same. For ex-
ample, suppose that John suggests a course Exoplanets101
to Mary because he finds out that Mary has the same inter-
est in astronomy as himself. The fact that John knows that



Mary has the same interest as himself is a reason that ex-
plains John’s action of suggesting. However, that fact about
John’s mental state of knowledge is not the reason as to why
John suggests a course to Mary as the reason is a fact about
Mary, namely that she is interested in Astronomy. That is
the motivating reason. So, in this example, we have two dif-
ferent (though related) reasons that play different roles: a)
that Mary is interested in Astronomy and b) that John knows
that Mary is interested in Astronomy as himself. One reason
motivates John to suggest Mary Exoplanets101 (the shared
interest); the other explains why he does it (the knowledge
of such interest). In this example, we learned only at a su-
perficial level the motivation for suggesting a course. If in-
spected, there is an undefined variety of ground reasons
for the motivation, for instance, that John wants to have
someone else sharing the same amount of knowledge about
exoplanets as he does, or he had a good experience with
the instructor, and so on. Clearly motivations can be rather
opaque; in our daily lives we do not want to inquire about
others’ innermost motivation for actions, except in some cir-
cumstances such as trials.

If we transpose this reasoning to an algorithm that makes
recommendations, the motivation for a recommendation is
its computational process, and it could be as opaque as any
other human cognitive process regarding the motivation of
an action. Even if we try our best to make a conversational
recommendation system generate motivating reasons for its
suggestions, they would never be enough. However, a ratio-
nalized reason would be enough to explain the recommen-
dation. Studenta suggested Studentb Exoplanets because
Studentb is interested in Astronomy. Because exoplanets
are a topic of Astronomy, the suggestion is justified. This
line of thought is at the epistemological level of discussion.

Of course, there are other pragmatic aspects of an expla-
nation: Is it accepted? Is it necessary/sufficient? Such as-
pects can only be assessed through experiments with human
subjects (as we discuss later).

Explanation Generation Techniques
Explanation generation techniques are intended to shed light
on the reasons why a complex model, such as a Deep Neural
Network (DNN), emits a particular decision. One possibility
is to decompose the mechanism that led to the decision. Such
an approach is usually said to be model-specific, because it
is limited to a specific class of models as it relies on internal
information about it.

In contrast to model-specific approaches, model-agnostic
approaches make no assumption about the model internal
structure, instead taking the model as a black-box. There
the goal is to develop an “interpreter” or surrogate that can
produce explanations for whatever black-box device makes
decisions. Surrogate methods consists of training an inter-
pretable model, perhaps a linear or logistic regression, that
can mimic the black-box at least locally around a decision.
That is, the local surrogate may be trained only for the in-
stance we aim to explain: First, we add noise to the input
instance so that a “neighborhood” of artificial data points is
generated; next, we collect the labels produced by the black-
box for each point in the neighborhood; finally, we fit an in-

terpretable model. These operations of course take time that
must be spent after the particular decision.

For example, Listwise Explainer (LISTEN) (ter Hoeve
et al. 2018) explains rankings faithfully by training an
interpretable local-surrogate model –– similarly to LIME
(Ribeiro, Singh, and Guestrin 2016). Despite promising re-
sults, LISTEN is still not suitable for explanation generation
at scale in real-time environments due to the high compu-
tational cost at online training a local-surrogate model for
each recommendation. Alternatively, ter Hoeve et al. (2018)
proposes Q-LISTEN, where a Neural Network learns the un-
derlying explaining function: while the time to produce an
explanation decreases considerably, the surrogate itself be-
comes a black-box.

In short, local-surrogate based methods are typically time
expensive because they demand that a new interpretable
model is trained from scratch to explain an single decision.
To speed up matters, one might consider training a single
global-surrogate model that aims at capturing the black-box
behavior as a whole and draw explanations from it for all in-
stances. While this approach could dramatically reduce the
explanation time, it is hard to expect that a simple and in-
terpretable model can faithfully capture the complex black-
box behavior. Indeed, global-surrogate based methods, like
XKE, display relatively low fidelity (Gusmão et al. 2018).

As noted in the Introduction, concern about time effi-
ciency is really important in interactive systems such as
the ones we contemplate. We thus look at faster techniques
based on knowledge graphs.

Detour: Knowlege Graphs and their Embeddings
A Knowledge Graph (KG)G is here taken as a set of entities
E , relationsR and facts T . A fact is an atomic representation
of a relationship between entities. We model a fact as a triple
〈h, r, t〉, where the head entity h is the subject, relation r is
the predicate and tail entity t is the object. For instance, the
information that “exoplanets is a topic of astronomy” can be
described as the triple 〈exoplanets, topic of, astronomy〉,
in which both exoplanets and astronomy are entities, and
topic of the relation connecting them.

Large-scale KGs, such as Freebase (Bollacker et al. 2008)
and DBpedia (Auer et al. 2007), are often incomplete
(Nickel et al. 2015); this clearly limits their application to
real-world tasks. Knowledge Graph Embeddings (KE) now
achieve state-of-the-art performance in KG completion tasks
such as triple classification and link prediction (Wang et al.
2019). Embedding techniques learn representations for en-
tities, so that relationships between them can be predicted
by operations in the latent space. Embeddings are learned
as a result of an optimization process that maximizes the
total plausibility of all known facts in the original KG.
Thus, a KE model must define a plausibility scoring func-
tion fr(h, t | Θ), where Θ represents all model parameters
and h, r and t are head, relation and tail respectively.

Despite being originally proposed for knowledge base
completion, we should note that embeddings are also used to
produce recommendations (He, Kang, and McAuley 2017;
Henk et al. 2018) and to answer questions (Huang et al.
2019). Proposals in the literature typically employ the KE



plausibility scoring function to rank entities and to return
those with the highest plausibility as recommendations.
Even though these approaches are accurate, they are not in-
terpretable as they operate in the latent space of embeddings,
and they do not attempt to generate explanations for/with
embeddings (as we do).

Explanations via Knowledge Graphs and
Embeddings
There are recommendation systems that rely on large-scale
knowledge graphs for explanation generation; for instance,
ExpLOD (Musto et al. 2019) and ASEMF UIB (Alsham-
mari, Nasraoui, and Sanders 2019). Both employ semantic
information about items to find similarities between user
profiles (e.g., previously liked items). For example, con-
sider that a hypothetical recommendation system suggests
“Titanic” to someone who has watched “Avatar.” If the
knowledge base contains the fact that “James Cameron” di-
rected both movies, then ExplLOD might utter: “I recom-
mend you Titanic because you are fond of movies directed
by James Cameron like Avatar.” The explanation might be
even more transparent:“I recommend you Titanic because
you have been watching James Cameron’s movies lately.“
Despite producing human-friendly explanations, this sort of
approach relies on the completeness of the KG to work prop-
erly, a strong assumption considering the incompleteness of
large-scale KGs (Murphy, Talukdar, and Mitchell 2012). If
the KG does not contain the fact that “James Cameron” is
the director of “Titanic”, the recommendation system may
fail to explain the recommendation.

One alternative is to use knowledge embeddings to com-
plete the original KG. CrossE (Zhang et al. 2019) intro-
duces an embedding-based explanation search method for
a specific type of interaction between entities and relations
called crossover interactions. For instance, the fact “user A”
is friend of “user B”, who likes “Titanic”, can be considered
as an explanation for the fact “user A likes the movie Ti-
tanic” if and only if it can be found at least one crossover
interaction in the KG to support it, where users who like
the same movies are mutual friends. Although CrossE ex-
plores the latent embedding space, it still relies on the KG,
which limits the number of instances it can find explana-
tions. Also, CrossE restricts its search to crossover interac-
tions only, while other proposals in the literature suggest that
more expressive types of graph features can produce better
explanations (Gusmão et al. 2018) (Gardner and Mitchell

Table 1: Qualitative comparison among proposals in the lit-
erature.

Approach Real-Time High Coverage
LISTEN No Yes
ExpLOD Yes No
ASEMF UIB Yes No
XKE Yes No
CrossE Partially No

2015).
Table 1 highlights a research gap on explanation methods

that are suitable for interactive, real-time settings and that
display high coverage. This is exactly where the contribu-
tions in this paper fit in.

Embedding-based Explanations
based on Depth-First Search

We wish to use KGs to generate explanations in conversa-
tional recommendation systems (CRSs). Given that KG in-
completeness seems to be the cause of missing explanations
in existing methods, we expect KEs to be useful in increas-
ing the number of explained recommendations due to the
ability of KEs to infer new facts with good accuracy (Bor-
des et al. 2013; Wang et al. 2014). Presumably, we can find
good explanations by searching for facts in the (necessarily
“complete”) KE latent space.

As a digression, we note that embeddings themselves are
black boxes, so one might argue that the overall scheme is
not really interpretable. Indeed we cannot provide an expla-
nation from “first principles” using embeddings, but we can
certainly provide an explanation that is based on solid se-
mantic information in the available KG using their embed-
dings. For instance, consider a student interested in space
shuttles; for this student, the class Exoplanets101 is recom-
mended. Perhaps the available KG does not contain a con-
nection between topics in Exoplanets101 and space shuttles,
but the learning KE may indicate that, based on connections
in the KG, there is a strong relationship between topics in
Exoplanets101 and space shuttles — a relationship that mat-
ters when explaining the recommendation.

We now describe our proposal for explanations in CRSs.

An Abstract Recommendation Scheme
While interacting with the CRS, the user must inform her
preferences. Suppose that such preferences can be mapped
to an entity eh in an available large-scale KG. Assume that
our base recommendation system runs link prediction using
an embedding (built from the same KG) and returns the Top-
N ranked entities as recommendations. This is a conceptual
scheme that corresponds to the vast majority of recommen-
dation procedures.

To illustrate the assumed recommendation mechanism,
suppose Exoplanets101 is recommended to a student whose
preference lies in astronomy. Then:

T = [fsubject(eastro, ei | Θ), ei ∈ E ];

sort desc(T ) =


Exoplanets101
Aeronautics102

...
em

 .
In this toy example, T is the list containing plausibility val-
ues for all entities in E . We sort T in descending order, and
identify that Exoplanets101 is more related to astronomy
than Aeronautics102 and so on.

That is, the recommendation procedure basically recom-
mends the N entities that best fit as a tail entity in the triple



〈h, r, ?〉, where r is a relation modelling how tail entities
meets user preferences h. For instance, in our example on
astronomy, the user desires classes about a theme of inter-
est, so the relation r in this case could be “topic of class”.

The Possible Explanations
We take an explanation to be, in our context, a path of length
L composed of relations ri ∈ R connecting eh and et. For
instance, the explanation for our toy example (the explana-
tion that Exoplanets101 is about exoplanets, and exoplanets
is a topic of astronomy) could be modeled as the path of
length 2:

astronomy
subject−−−−−→ exoplanets

subject−−−−−→ Exoplanets101

We must specify the set of possible paths π ∈ ΠL that,
if found, are considered to be explanations. We assume that
such a set is specified by declaring the kinds of sequences of
relations that are permissible. It is important to adequately
specify ΠL because there might exist paths that do not pro-
vide any sense of causality, even though they connect eh and
et; such meaningless paths should not be included in ΠL.
Also, the more paths we have in ΠL, the higher the com-
putation time required. In small domains, i.e., KG with a
small number of relations, an expert may define ΠL man-
ually, however in bigger ones, we expect that automated
approaches will be useful, such as graph feature selection
methods (Gardner and Mitchell 2015). It is worth mention-
ing that when we filter the paths included in ΠL, we may
end up missing explanations. So, we must consider a trade-
off between coverage and time efficiency while conducting
an explanation search. For this paper, we assume that ΠL is
available to the conversational recommendation system.

Searching for Explanations
We go through every path π ∈ ΠL starting from eh, using a
depth-first search (DFS), and if at the end of the path we find
et, the sequence of nodes visited from eh to et is recognized
as an explanation. Here the search-tree height is known be-
forehand and equal to the path length L; for this reason we
use DFS instead of say breadth-first search.

It is important to recall that, due to KG incompleteness,
we run this search in the space of all completions of the KG
as produced by the given embedding. However, the KE is
a real-valued continuous latent space and not a graph; how
can we perform DFS on it?

Clearly, a graph Ĝ can be build using the KE. Basically,
the KE can perform two main tasks, link prediction (LP)
and triple classification (TC). TC means to classify a given
triple as true or false, i.e., tells if an edge in the KG holds.
Thus, with TC alone, we can build Ĝ by merely classifying
all possible relationships between entities E ×R×E , but we
go further. With LP, we can also assign plausibility scores
to each edge in Ĝ so that we can discriminate which links
are stronger. We assume that the more plausible an edge is,
the more expected or obvious is the relationship it describes.
As we want our explanations to be easy to understand, we
prioritize edges with a high plausibility in the DSP.

Figure 1: Depth-First Search toy example.

Formally, a path is a sequence of relations π =
{r1, r2, ...rL}. A path exists only if we can find a sequence
of entities Ω = {e1, e2, ..., eL}, where for all entities ei ∈ Ω,
the triples 〈ei−1, ri, ei+1〉,∀i ∈ 1, 2, ..., L also holds. We
consider that a triple exists if the plausibility score for it is
greater than the threshold δr, the same as in TC. That is,

fri(ei−1, ei) > δr, ∀ei ∈ Ω;

e0 = eh, eL+1 = et.

We start by assigning the head entity eh as root node.
Then we expand its outgoing edge with the highest plausibil-
ity score considering the first relation r1 in the path. We then
repeat the procedure for the expanded node and the second
relation in the path, and so on.

To illustrate this procedure, consider the example of a
depth-first search in Figure 1. The nodes are sorted from the
highest plausibility score in the left to lowest in the right.
The numbers in the arrows represent the order each node is
visited. In this particular example, an explanation is the path
eh → e2 → et.

Empirical Evaluation: Set-Up
We carried out an evaluation intended to answer a number
of research questions (discussed in the next section). In this
section we describe the conversational recommendation sys-
tem (and associated tools) we have built.

We implemented two CRSs in an educational domain;
both recommend courses offered by the Universidade de São
Paulo. Our CRSs aim at helping students to find classes of
interest given the large collection of courses offered by Uni-
versidade de São Paulo. We developed the chatbots using
the Dialogflow platform.1 We adopted a timeout constraint
of 5 seconds on the response time to ensure responsiveness.
Both conversational recommendation systems receive as in-
put a single preference of theme from the user, then answer
with the best found recommendation and its explanation.

We also built a knowledge graph and an associated em-
bedding; those tools were used to produce recommenda-
tions and explanations. One CRS uses the original knowl-
edge graph as a source for explanations, and another CRS
uses the knowledge embedding.

We briefly describe the construction process of the KG
consisting of information about courses and faculty of

1https://dialogflow.cloud.google.com/



Universidade de São Paulo. The KG structure consists of
five types of entities: learning-object, professor, concept,
and category. The learning-object includes both graduation
courses offered by the university and articles authored by
faculty members. Concepts and categories represent an on-
tology for the learning-objects content. Thus, we say that a
faculty member is involved in multiple learning-objects in
which he or she can either teach a course or author an article
and that each learning-object is about multiple concepts.

To build the KG, we opted for using an automated semi-
structured approach (Nickel et al. 2015) as it has also been
employed by many popular large scale KGs, such as DBpe-
dia (Auer et al. 2007) and YAGO2 (Hoffart et al. 2013). The
selected approach aims at automatically extracting informa-
tion from semi-structured data, like infoboxes, via rules or
regular expressions. Firstly, we collected the description and
543 teachers’ names for 1740 engineering courses from the
university graduation support website.2 We also retrieved
from the academic repository Scopus3 7648 articles au-
thored by the faculty members. Finally, we performed entity
linking to DBpedia 4 using the articles’ keyword and course
description content, so the hierarchy of concepts and cate-
gories were incorporated from DBpedia. The whole process
resulted in a Knowledge Graph with 34182 entities, 3 rela-
tions, and 152468 triples. Even though the algorithm pro-
duces accurate knowledge graphs, typically, they are incom-
plete (Nickel et al. 2015).

Once we constructed our Knowledge Graph, we trained
a TransE (Bordes et al. 2013) knowledge embedding model
with 500 dimensions for 1000 epochs. We opted for using
a batch size of 500, 0.001 as alpha, 1.0 as margin and the
optimizer ADAGRAD to perform the training. We selected
TransE because it is commonly used as benchmark in the
literature (Gusmão et al. 2018; Wang et al. 2019).

Using the trained KGE, we implemented a neighborhood-
based recommendation system. Our recommendation sys-
tem performs the link prediction task 〈head, relation, ?〉,
in which the head is a conceptual entity representing a pref-
erence of theme provided by the user, relation is the “sub-
ject” relationship modeling learning-objects content. There-
fore, we consider the plausibility score provided by the KGE
to rank entities and, then, realize a Top-N recommendation,
as described in our proposal.

To illustrate the kinds of explanations generated by the
CRSs, Figure 2 depicts an explanation example. Entities and
relations found in the KG appear in the figure, while the tex-
tual explanation derived from them appears in the caption.

Empirical Evaluation: Experiments
In this section we report on experiments that were designed
to address the following research questions:

1. Can we find at least one explanation for a greater fraction
of recommendations when we search the knowledge em-
bedding than the original graph given timeout constraints?

2At https://uspdigital.usp.br/jupiterweb/.
3https://www.scopus.com/home.uri
4http://dbpedia.org/
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LawHumanities

subject

is topic of

is topic of

subject

Figure 2: “Legal engineering is recommended as it is about
Law and both Law and History are topics of Humanities”

2. How long does it take to find explanations using the
knowledge embedding?Is time-to-response acceptable?

3. The quality of the explanations found using the knowl-
edge embedding deteriorates when compared to those us-
ing the original graph?

We have run two sets of experiments, one with simulated
data (aiming at the first two questions above), and the other
with real data collected from human subjects (aiming at the
third question above).

Coverage and Execution Time
We designed user-simulated experiments to evaluate the
fraction of recommendations that our proposed method can
find at least one explanation for — we call it Recall or Cov-
erage. Also, we evaluated the time our proposal takes to find
multiple explanations for recommendations.

Figure 3 presents the behaviour of the recall for our pro-
posed method (embedding recall) compared to the base-
line (graph recall), also the average number of explana-
tions found (avg. explanation no) and average execution time
(avg. exec. time) for our proposed method, when varying
time constraints (timeout).

While the baseline method, which uses only the original
graph to search for explanations, is by far faster than our
proposed one, we can observe that the graph recall achieves
a certain degree of “saturation” at 42%, which is a signif-
icantly lower level than the embedding one at 99%. Here
we consider a “saturation level” the point where one does
not have timeout constraints, i.e., virtually infinite time to
search for explanations. Thus, we verify that the original KG
cannot find explanations for less than half of recommenda-
tions in our experiment; also, it is not sensitive to time con-
straints. On the other hand, the embedding recall, despite
having a slow start (close to 0 for timeouts shorter than 2, 3
seconds), grows greater than the graph recall for timeouts
longer than 3 seconds. Indeed, for a timeout of 5 seconds,
a timeout that can be considered acceptable for an interac-
tive application, we observe that our proposed method can
explain almost two times more recommendations than if us-
ing the original graph; this answers our first research ques-
tion Q1. Note that the average number of explanations and
the average execution time behave linearly, considering the
timeout value. This points out that it may be expensive, in
terms of computation cost, to find multiple explanations for
the same recommendation.

Figure 4 shows the boxplots, with suppressed outliers for
better visualization, of the execution time of our proposed



Figure 3: Recall comparison between our proposal (embedding recall) and the baseline (graph recall). Also present average
explanation number found (avg. explanation no) and average execution time (avg. exec. time) for our proposal

Figure 4: Execution time of our proposal considering expla-
nation number constraints.

method for different numbers of explanations. In this ex-
periment, we aim to evaluating how long it takes to find
a given number of explanations for a recommendation. We
can observe that all boxplots are skewed down, and the top
whiskers are longer than the bottom ones; also, the variabil-
ity of execution time increases as more explanations are de-
manded. Considering an acceptable response time (for in-
stance, 5 seconds), for a small number of explanations (one
to three), the median value is acceptable, and for a single
explanation, even the maximum value is acceptable. There-
fore, our approach can produce multiple explanations but in
a small quantity, answering the second question Q2.

Quality of Explanations
As described previously, we produced two CRSs, one with
the automatically generated KG as a source of explanations,
and the other with our proposed (embeddings-based search)
method as a source of explanations. Our goal was to com-
pare both techniques.

We conducted a user study involving 26 students, in which
each user evaluated two CRSs, one employing our proposed
method and the other one using the original KG as a source
for explanations. As in (Tintarev and Masthoff 2007), the
users were asked to evaluate the following explanation met-
rics: transparency, persuasiveness, engagement, trust and
effectiveness (Musto et al. 2019). The metrics are summa-
rized in Table 2.

We designed a survey-based Likert psychometric scale
(Likert 1932). Users could assign grades ranging from 1 to
5 in which 1 stands for “Strongly disagree“, 2 “Disagree“,
3 “Neither agree nor disagree“, 4 “Agree“, and 5 “Strongly
agree“. This scale helps to avoid central tendency bias that
may happen in this situation whenever users do not want to
present themselves with extreme positions, hence acting by
the social desirability bias.

We asked the 26 students to interact with both chatbots
and, at the end of dialogue, to provide scores from 1 to 5
for each one of the previously mentioned explanation aims
(Tintarev and Masthoff 2007); we used the questionnaire de-
scribed as Table 2. One interaction consists of the user ask-
ing for a recommendation for 5 different themes, so we col-
lected a total of 130 interactions.

Considering the exploratory nature of the survey, we de-
scribe below the performance indicators from the users’ in-
teraction with the CRS. Table 3 presents the average scores
provided by the students in our user study for each one of the
explanation aims. Figure 5 depicts table 3 on a continuum
representing visually the scale. Comparing both algorithms’
overall mean, the KE approach (PRED) was better from the
user’s perspective µ = 2.7 corresponding to the “neutral”
evaluation at the Likert scale; what answers the third ques-
tion Q3. On the other hand, for the graph approach (TRUE)
µ = 2.26 closer to the “disagree” at the Likert scale. Taking
the variable in isolation, Effectiveness got the highest aver-
age value for both µpred = 2.9 and µpred = 2.64. It signal-
izes that users perceived the explanations as coherent. The



Table 2: Questionnaire details.
Aim Question
transparency Did the explanation help you to understand the recommendation?
persuasion On the basis of the explanation, would you follow the recommendation?
engagement Did the explanation have a pedagogical effect?
trust Did the explanation contribute to increase your confidence in the recommendation system?
effectiveness Did the explanation sound coherent ?

Table 3: Average scores for explanation aims from our user study.
Algorithm Transparency Persuasion Engagement Trust Effectiveness
PRED 2.92 2.28 2.84 2.52 2.92
TRUE 2.21 2.36 2.17 1.92 2.64

Figure 5: Visual representation for explanation aims average scores.

TRUE approach had a bad evaluation when the trust was at
stake (µtrust = 1.92). Since TRUE suffers from KG incom-
pleteness, it cannot posit explanations for every suggestion.
When compared to a better performance of the KE approach
(µtrust = 2.52), we might conjecture that users prefer any
explanation instead of no explanations at all.

Users tended to evaluate all the indicators with low varia-
tions for both approaches (σpred = 1.10, σtrue = 1.09). For
a further interpretation of users’ behavior, we can assume
that σ >= 1.0 as a token of higher discrimination of the in-
dicators. 18.5% of users evaluate more carefully the KE ap-
proach against merely 7.4% for the TRUE. One can say that
users evaluated the overall experience in general, and more
strongly in the TRUE approach. Among those who discrim-
inated the indicators properly in KE approach the average
was significantly higher µσ>=1 = 3.28, which transparency
(µ = 4.0) and engagement (µ = 3.8) were better evaluated.

We shall restate here that these are just a first exploratory
analysis of users’ experience. Some insights from the feed-
back (such as it is better to have any explanation rather than
no explanation) must be further explored in future work.

Conclusion
In this paper we proposed and evaluated techniques that pro-
duce fast and effective explanations in the context of conver-
sational recommendation systems. Our experiments support
the claim that KEs, if properly employed, indeed increase
explanation coverage, while also satisfying reasonable time
constraints. In addition, the experiment with human subjects

presented evidence that explanations drawn from embed-
dings not only remain coherent and meaningful from the
user perspective, but also increase trust in the CRS, trans-
parency perception and overall satisfaction.

The present work represents a step towards efficient ex-
planation generation methods that are suitable for interactive
and conversational recommendation systems. Future work
should include the exploration of novel approaches for ex-
planation selection that can handle time constraints. Also,
we intend to investigate how argumentative explanations can
improve the interaction between users and CRSs.
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